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a b s t r a c t

A system of distinct representatives (SDR) of a family F = (A1,
. . . , An) is a sequence (x1, . . . , xn) of n distinct elements with xi ∈

Ai for 1 ≤ i ≤ n. Let N(F) denote the number of SDRs of a family F ;
two SDRs are considered distinct if they are different in at least one
component. For a nonnegative integer t , a family F = (A1, . . . , An)
is called a (t, n)-family if the union of any k ≥ 1 sets in the family
contains at least k + t elements. The famous Hall’s theorem says
that N(F) ≥ 1 if and only if F is a (0, n)-family. Denote by M(t, n)
the minimum number of SDRs in a (t, n)-family. The problem of
determining M(t, n) and those families containing exactly M(t, n)
SDRswas first raised by Chang [G.J. Chang, On the number of SDR of
a (t, n)-family, European J. Combin. 10 (1989) 231–234]. He solved
the cases when 0 ≤ t ≤ 2 and gave a conjecture for t ≥ 3. In this
paper, we solve the conjecture.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

A system of distinct representatives (SDR) of a family F = (A1, . . . , An) is a sequence (x1, . . . , xn)
of n distinct elements with xi ∈ Ai for 1 ≤ i ≤ n. The famous Hall’s theorem tells us that a family
has an SDR if and only if the union of any k ≥ 1 sets of this family contains at least k elements.
Several quantitative refinements of Hall’s theorem were given in [3,5,6]. Their results are all under
the assumption of Hall’s condition plus some extra conditions on the cardinalities of Ai’s.

Chang [1] extends Hall’s theorem as follows: let t be a nonnegative integer. A family F =

(A1, . . . , An) is called a (t, n)-family if |


i∈I Ai| ≥ |I| + t holds for any non-empty subset I ⊆

{1, . . . , n}. Denote by N(F) the number of SDRs of a family F . Let M(t, n) = min{N(F) | F be a
(t, n)− family}. Hall’s theorem says thatM(0, n) ≥ 1. In fact, it is easy to see thatM(0, n) = 1. By the
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result in [3], a (0, n)-family in which every set has two or more elements has at least two SDRs. Using
this fact and with a straightforward induction, Chang showed that F is a (0, n)-family with N(F) = 1
iff F can be permuted into H = (B1, . . . , Bn) such that there exist n distinct elements b1, . . . , bn with
bi ∈ Bi ⊆ {b1, . . . , bi} for 1 ≤ i ≤ n. He also showed that M(1, n) = n + 1 and F is a (1, n)-family
with N(F) = n + 1 iff |Ai| = 2 for 1 ≤ i ≤ n and G(F) is a tree, where G(F) is a graph with vertex set
V (G) = A1 ∪ · · · ∪ An and edge set E(G) = {A1, . . . , An}.

Consider the (t, n)-family F∗
= (A∗

1, . . . , A
∗
n), where A∗

i = {i, n+1, . . . , n+ t} for 1 ≤ i ≤ n. Then,

N(F∗) = U(t, n) =

t−
j=0


t
j


n
j


j!.

Chang [1] has shown that F∗ as above is the only (2, n)-family F with N(F) = M(2, n) = n2
+ n + 1,

and he raised the following conjecture.

Conjecture 1 ([1]). M(t, n) = U(t, n) and F∗ is the only (t, n)-family F with N(F) = M(t, n) for all
t ≥ 3.

Leung andWei [4] claimed that they proved the conjecture bymeans of a comparison theorem. But
their proof has a fatal mistake (see [2]). Hence, the conjecture is still open. The main purpose of this
paper is to solve the conjecture. In fact, we will show a more general result, which settles the above
conjecture.

We extend the definition of a (t, n)-family as follows: let a1, . . . , an be positive integers, a family
F = (A1, . . . , An) is called a (t, n; a1, . . . , an)-family if |


i∈I Ai| ≥

∑
i∈I ai + t for any non-empty

subset I ⊆ {1, . . . , n}. Hence, a (t, n)-family is a (t, n; 1, . . . , 1)-family.
Let F̃ be a (t, n; a1, . . . , an)-family such that each Ai has ai + t elements and |


i∈I Ai| = t for any

|I| ≥ 2. Hence, F∗ is F̃ with a1 = · · · = an = 1. Define M(t, n; a1, . . . , an) = min{N(F) | F be a
(t, n; a1, . . . , an)-family }, and let

U(t, n; a1, . . . , an) = N(F̃) =

t−
j=0

 t
j


j!

−
1≤i1<···<in−j≤n

ai1 · · · ain−j

 .

In this paper, we will prove that M(t, n; a1, . . . , an) = U(t, n; a1, . . . , an) and F̃ is the only (t, n;
a1, . . . , an)-family F satisfying N(F) = M(t, n; a1, . . . , an) for t ≥ 2. Conjecture 1 is a direct corollary
of the conclusion.

Some notations are needed. Suppose F is a (t, n; a1, . . . , an)-family. Let N = {1, 2, . . . , n} and
B =


i∈N Ai, and let Ix = {i ∈ N | x ∈ Ai} and Icx = N − Ix for x ∈ B. A pair of elements {x, y} ⊆ B

is exclusive if Ix ∩ Icy ≠ ∅ and Iy ∩ Icx ≠ ∅. A subset I of N is full if |


i∈I Ai| =
∑

i∈I ai + t . An exclusive
pair {x, y} is saturated if there exists a full subset I ⊆ N satisfying I ∩ Ix ≠ ∅, I ∩ Iy ≠ ∅, I ∩ Ix ∩ Iy = ∅;
otherwise, the exclusive pair {x, y} is unsaturated.

2. Necessary conditions for (t, n;a1, . . . , an)-family F with N(F) = M(t, n;a1, . . . , an)

We call a (t, n; a1, . . . , an)-family F = (A1, . . . , An) strict if |Ai| = ai + t for 1 ≤ i ≤ n.

Theorem 2. If t ≥ 1 and F = (A1, . . . , An) is a (t, n; a1, . . . , an)-family with N(F) = M(t, n;
a1, . . . , an), then F is strict and so all Ai’s are distinct.

Proof. Let F = (A1, . . . , An) be a (t, n; a1, . . . , an)-family with N(F) = M(t, n; a1, . . . , an). We
first claim that the deletion of any element from Ai (1 ≤ i ≤ n) results in a family that is not a
(t, n; a1, . . . , an)-family.

Suppose that the claim is not true. Without loss of generality we can assume that F ′
= (A1 −

{x}, A2, . . . , An) is a (t, n; a1, . . . , an)-family for some x ∈ A1. Then N(F ′) ≥ M(t, n; a1, . . . , an). On
the other hand, F ′′

= (A2 −{x}, A3 −{x}, . . . , An −{x}) is a (t −1, n−1; a2, . . . , an)-family. As t ≥ 1,
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by Hall’s theorem, F ′′ has an SDR (x2, . . . , xn). Hence, (x, x2, . . . , xn) is an SDR of F but not F ′. Then
M(t, n; a1, . . . , an) = N(F) > N(F ′) ≥ M(t, n; a1, . . . , an), which is impossible.

Now we show that |Ai| = ai + t for 1 ≤ i ≤ n. Suppose to the contrary that there is some
|Ai| ≥ ai + t + 1, say A1. For each x ∈ A1, by the above claim, Fx = (A1 − {x}, A2, . . . , An) is
not a (t, n; a1, . . . , an)-family. Hence there exists a non-empty subset Jx ⊆ {2, . . . , n} such that
|(A1 −{x})∪ (


i∈Jx Ai)| ≤ a1 +

∑
i∈Jx ai + t−1, which implies that |A1 ∪ (


i∈Jx Ai)| = a1 +

∑
i∈Jx ai + t

and x ∉


i∈Jx Ai. Now we select such Jx with a minimum size.
For any element y ∈ A1 \ {x}, let S = A1 ∪ (


i∈Jx Ai) and T = A1 ∪ (


i∈Jy Ai). Then−

i∈Jx

ai +
−
i∈Jy

ai + 2a1 + 2t = |S| + |T | = |S ∪ T | + |S ∩ T |

≥


 

i∈Jx∪Jy

Ai

 ∪ A1

+

 

i∈Jx∩Jy

Ai

 ∪ A1


≥


−

i∈Jx∪Jy

ai + a1 + t +

−
i∈Jx∩Jy

ai + a1 + t, if Jx ∩ Jy ≠ ∅;−
i∈Jx∪Jy

ai + a1 + t + a1 + t + 1, if Jx ∩ Jy = ∅.

=


−
i∈Jx

ai +
−
i∈Jy

ai + 2a1 + 2t, if Jx ∩ Jy ≠ ∅;−
i∈Jx

ai +
−
i∈Jy

ai + 2a1 + 2t + 1, if Jx ∩ Jy = ∅.

Hence, Jx ∩ Jy ≠ ∅ and |(


i∈Jx∩Jy Ai) ∪ A1| =
∑

i∈Jx∩Jy ai + a1 + t . By the minimality of Jx, we have
Jx = Jy. Therefore, y ∉


i∈Jx Ai. This implies that A1 ∩ (


i∈Jx Ai) = ∅. Hence,

−
i∈Jx

ai + a1 + t =

A1 ∪


i∈Jx

Ai


= |A1| +


i∈Jx

Ai


≥

−
i∈Jx

ai + t + a1 + t + 1.

This is a contradiction. Hence |Ai| = ai + t for 1 ≤ i ≤ n. If Ai = Aj for two distinct i and j, then
ai + t = |Ai| = |Ai ∪ Aj| ≥ ai + aj + t is a contradiction. So all Ai’s are distinct. �

Assume that F = (A1, . . . , An) is a (t, n; a1, . . . , an)-family and a pair of elements {x, y} is exclusive
for F . Let

Ai(x, y) =


Ai − {x} ∪ {y}, if i ∈ Ix ∩ Icy ;
Ai, otherwise.

Then we get a new family F x
y = (A1(x, y), . . . , An(x, y)), but it is possible that F x

y is not a (t, n; a1,
. . . , an)-family. For any I ⊆ N , by calculating |


i∈I Ai| and |


i∈I Ai(x, y)|, we get the relationship

between the two values as follows:


i∈I

Ai(x, y)

 =




i∈I

Ai

− 1, if I ∩ Ix ≠ ∅, I ∩ Iy ≠ ∅, I ∩ Ix ∩ Iy = ∅;
i∈I

Ai

 , otherwise.
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Hence, F x
y is still a (t, n; a1, . . . , an)-family if and only if {x, y} is unsaturated for F . Furthermore,

we have the following theorem.

Theorem 3. If t ≥ 2, then any (t, n; a1, . . . , an)-family F with N(F) = M(t, n; a1, . . . , an) does not
contain any unsaturated pair {x, y}.

Proof. Suppose to the contrary that {x, y} is unsaturated for F . Then, F x
y is also a (t, n; a1, . . . , an)-

family. We will prove that N(F x
y ) < N(F) which leads to a contradiction.

Without loss of generality,we can assume that Ix∩Icy = {1, . . . , k1} ≠ ∅, Iy∩Icx = {k1+1, . . . , k2} ≠

∅, Ix ∩ Iy = {k2 + 1, . . . , k3} and Icx ∩ Icy = {k3 + 1, . . . , n}. So F x
y = (A1(x, y), . . . , An(x, y)) =

(A1 −{x} ∪ {y}, . . . , Ak1 −{x} ∪ {y}, Ak1+1, . . . , An). Let (x1, . . . , xn) be an SDR of F x
y . Define a function

f from the set of all SDRs of F x
y to the set of all SDRs of F as follows:

(a) if xi = y for some i ∈ {1, . . . , k1} and xj = x for some j ∈ {k2 + 1, . . . , k3}, then

(x1, . . . , y, . . . , x, . . . , xn) → (x1, . . . , x, . . . , y, . . . , xn).

(b) If xi = y for some i ∈ {1, . . . , k1} and xj ≠ x for all xj, then

(x1, . . . , y, . . . , xn) → (x1, . . . , x, . . . , xn).

(c) Otherwise,

(x1, . . . , xn) → (x1, . . . , xn).

f is clearly one to one and so N(F x
y ) ≤ N(F). Define

F ′
= (A2 − {x, y}, . . . , Ak1 − {x, y}, Ak1+2 − {x, y}, . . . , An − {x, y}).

Since t ≥ 2, F ′ satisfies Hall’s theorem and has an SDR (x2, . . . , xk1 , xk1+2, . . . , xn). Hence, F
has an SDR such as

(x, x2, . . . , xk1 , y, xk1+2, . . . , xn),

which is not an f -image of an SDR of F x
y , so f is not subjective. Hence, N(F x

y ) < N(F). �

3. Saturated pairs of a strict (t, n;a1, . . . , an)-family

Theorem 4. For a strict (t, n; a1, . . . , an)-family F , denote by NSP(F) the number of saturated pairs of
F , then NSP(F) ≤

∑
1≤i<j≤n aiaj.

Proof. We shall prove the theorem by induction on n. The theorem is clear for n = 1 or NSP(F) = 0.
Now we assume that n ≥ 2 and F has at least one saturated pair.

Claim 1. If I and J are two full subsets of N with I ∩ J ≠ ∅, then I ∪ J and I ∩ J are also full.
Since I ∩ J ≠ ∅,−

s∈I∪J

as + t ≤


s∈I∪J

As

 =




s∈I

As


∪


s∈J

As


≤


s∈I

As

+

s∈J

As

−

s∈I∩J

As


≤

−
s∈I

as + t +

−
s∈J

as + t −

−
s∈I∩J

as + t


=

−
s∈I∪J

as + t.

Hence, |


s∈I∪J As| =
∑

s∈I∪J as + t and |


s∈I∩J As| =
∑

s∈I∩J as + t, i.e., I ∪ J and I ∩ J are full.
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Since F has a saturated pair, N has a full subset of size at least two. Choose a minimal full subset I∗ of
N with size at least two, i.e., any proper full subset of I∗ is of size one. Now consider two cases.

Case 1. I∗ ≠ N , say I∗ = {k + 1, k + 2, . . . , n} with k ≥ 1. In this case, F ′
= (A1, . . . , Ak,


i∈I∗ Ai) is a

strict (t, k+1; a1, . . . , ak,
∑

i∈I∗ ai)-family and F ′′
= (Ak+1, . . . , An) is a strict (t, n−k; ak+1, . . . , an)-

family. We claim that any saturated pair of F is either a saturated pair of F ′ or a saturated pair of F ′′.
From this and the induction hypothesis, we then have

NSP(F) ≤ NSP(F ′) + NSP(F ′′)

≤

−
1≤i<j≤k

aiaj +

−
1≤i≤k

ai

 −
k+1≤j≤n

aj


+

−
k+1≤i<j≤n

aiaj

≤

−
1≤i<j≤n

aiaj.

To see the above claim, suppose to the contrary that F has a saturated pair {x, y} that is not a
saturated pair of F ′ or F ′′. Choose a full subset I of N such that I ∩ Ix ≠ ∅, I ∩ Iy ≠ ∅ but I ∩ Ix ∩ Iy = ∅.
Since {x, y} is not a saturated pair of F ′ and so not a saturated pair of (A1, A2, . . . , Ak). This gives that I
is not a subset of N − I∗ and so I ∩ I∗ ≠ ∅. By Claim 1, I ∩ I∗ and I ∪ I∗ are full sets. By the minimality
of I∗, either I ∩ I∗ = I∗ or |I ∩ I∗| = 1.

For the case of I ∩ I∗ = I∗, by I ∩ Ix ∩ Iy = ∅, we have I∗ ∩ Ix ∩ Iy = ∅. This, together with that {x, y}
is not a saturated pair of F ′′, implies that either I∗ ∩ Ix = ∅ or I∗ ∩ Iy = ∅. So, at most one of x and y is
in


i∈I∗ Ai. This gives that {x, y} is a saturated pair of F ′, which is impossible.
For the case of |I ∩ I∗| = 1, assume I ∩ I∗ = {k + 1}. Then, Ak+1 contains at most one of x and y,

say y ∉ Ak+1. So,


i∈I∗−I Ai −


i∈I Ai is a proper subset of


i∈I∗ Ai − Ak+1 since the latter contains y
while the former does not. Hence 

i∈I∪I∗
Ai

 =


i∈I

Ai

+
 
i∈I∗−I

Ai −

i∈I

Ai


<


i∈I

Ai

+

i∈I∗

Ai − Ak+1


=

−
i∈I

ai + t +

−
i∈I∗

ai + t − (ak+1 + t)

=

−
i∈I∪I∗

ai + t,

contradicting to the fact that I ∪ I∗ is full.
Case 2. I∗ = N , an exclusive pair {x, y} is saturated for F if and only if Ix ∩ Iy = ∅. Let C = {{x, y} |

Ix ∩ Iy = ∅}. Then NSP(F) = |C |. Now we calculate |C |.
For an arbitrary element z ∈ B, define C(z) = {{x, z} | Ix ∩ Iz = ∅}. It is not difficult to see that

|C | =
1
2

∑
z∈B |C(z)| and C(z) = {{x, z} | Ix ∩ Iz = ∅} = {{x, z} | x ∉


i∈Iz Ai}. So,

|C(z)| = |B| −


i∈Iz

Ai

 ≤

−
i∈Icz

ai.

Therefore,

|C | ≤

∑
z∈B

∑
i∈Icz

ai

2
=

∑
z∈B


n∑

i=1
ai −

∑
i∈Iz

ai


2

=


n∑

i=1
ai + t


n∑

i=1
ai


−
∑
z∈B

∑
i∈Iz

ai

2



6 D. He, C. Lu / European Journal of Combinatorics 33 (2012) 1–7

=


n∑

i=1
ai + t


n∑

i=1
ai


−

n∑
i=1

(ai + t)ai

2
=

−
1≤i<j≤n

aiaj. �

4. Exclusive pairs of a strict (t, n;a1, . . . , an)-family

Theorem 5. For a strict (t, n; a1, . . . , an)-family F , denote by NEP(F) the number of exclusive pairs of
F . If t ≥ 2, then NEP(F) ≥

∑
1≤i<j≤n aiaj, and F̃ is the only strict (t, n; a1, . . . , an)-family F with

NEP(F) =
∑

1≤i<j≤n aiaj.

Proof. We can assume that n ≥ 2. For an arbitrary element z ∈ B, {x, z} is exclusive for F if and only
if x ∈


i∈Icz

Ai and x ∉


i∈Iz Ai. Define D(z) = {{x, z} | {x, z} is exclusive for F}. Therefore,

D(z) =

{x, z} | x ∈


i∈Icz

Ai −

i∈Iz

Ai

 .

Let A = {z | |Iz | = n} and D = {{x, y} | {x, y} is exclusive for F}. Note that D(z) = ∅ if z ∈ A.
Then,

|D| =
1
2

−
z∈B

|D(z)| =
1
2

−
z∈B−A

|D(z)|

=
1
2

−
z∈B−A



i∈Icz

Ai −

i∈Iz

Ai


 .

We first assume that |Iz | ≥ 2 and hence |


i∈Iz Ai| ≤ t for all z ∈ B − A. Hence,

|D| >
1
2

−
z∈B−A



i∈Icz

Ai

−

i∈Iz

Ai


 ≥

1
2

−
z∈B−A

−
i∈Icz

ai. (∗)

We point out that the inequality strictly holds as z ∈


i∈Iz Ai and z ∉


i∈Icz
Ai. To calculate∑

z∈B−A

∑
i∈Icz

ai, we construct a weighted bipartite graph G as follows: V (G) = V1 ∪ V2, where
V1 = B − A and V2 = {A1, . . . , An}; For z ∈ V1, if z ∉ Ai, then zAi ∈ E(G) and the weight of zAi,
denoted by w(zAi), is ai. So,−

z∈B−A

−
i∈Icz

ai =

−
z∈V1

−
zAi∈E(G)

w(zAi) =

−
Ai∈V2

−
zAi∈E(G)

w(zAi). (∗∗)

Let |A| = a. Obviously, a ≤ t . Each set Ai contains ai + t − a elements in B − A and there are
at least

∑n
j=1 aj + t − a elements in B − A. By the construction of G, we know that the vertex Ai is

incident to at least
∑n

j=1 aj − ai edges in G and the weight of each edge incident to Ai is ai. Therefore,

−
Ai∈V2

−
zAi∈E(G)

w(zAi) ≥

n−
i=1

ai


n−

j=1

aj − ai


=


n−

i=1

ai

2

−

n−
i=1

a2i . (∗ ∗ ∗)

By above inequalities (∗), (∗∗) and (∗ ∗ ∗), we know that |D| >
∑

1≤i<j≤n aiaj if deg z ≥ 2 for all
z ∈ B.
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Now we assume that there exists an element x such that deg x = 1, without loss of generality, we
assume that Ix = {n}. Let k =

∑n
i=1 ai. We use induction on k.

When k = 2, then n = 2 and a1 = a2 = 1, the conclusion is obvious. Assume that k ≥ 3. As the
conclusion is obvious when n = 2, we may assume that n ≥ 3.

If an = 1, let F1 = (A1, . . . , An−1), by induction hypothesis, NEP(F1) ≥
∑

1≤i<j≤n−1 aiaj and
NEP(F1) =

∑
1≤i<j≤n−1 aiaj implies that F1 is a strict (t, n − 1; a1, . . . , an−1)-family such that

|


i∈I Ai| = t for any |I| ≥ 2. It is obvious that the exclusive pairs of F1 are also exclusive for F .
Since (

n−1
i=1 Ai) − An = (

n
i=1 Ai) − An, we know that |(

n−1
i=1 Ai) − An| ≥

∑n−1
i=1 ai. Obviously, each

element y in (
n−1

i=1 Ai) − An is exclusive with x for F and {x, y} is different from any exclusive pair of
(A1, . . . , An−1). Therefore,

NEP(F) ≥

−
1≤i<j≤n−1

aiaj +
n−1−
k=1

ak =

−
1≤i<j≤n

aiaj.

WhenNEP(F) =
∑

1≤i<j≤n aiaj, it implies thatAn∩(
n−1

i=1 Ai) = t andNEP(F)−NEP(F1) =
∑n−1

k=1 ak.
This requires that F is F̃ .

If an ≥ 2, let F2 = (A1, . . . , An−1, An − {x}), which is a (t, n; a1, . . . , an−1, an − 1)-family, by
induction hypothesis,NEP(F2) ≥

∑
1≤i<j≤n−1 aiaj+

∑n−1
k=1 ak(an−1) andNEP(F2) =

∑
1≤i<j≤n−1 aiaj+∑n−1

k=1 ak(an − 1) implies that F2 is a strict (t, n; a1, . . . , an−1, an − 1)-family such that |


i∈I Ai| = t
for any |I| ≥ 2. Similarly, the exclusive pairs of F2 are also exclusive for F , |

n−1
i=1 Ai − An| ≥

∑n−1
i=1 ai,

and each element y in
n−1

i=1 Ai − An is exclusive with x for F and {x, y} is different from any exclusive
pair of F2. Therefore,

NEP(F) ≥

−
1≤i<j≤n−1

aiaj +
n−1−
k=1

ak(an − 1) +

n−1−
k=1

ak =

−
1≤i<j≤n

aiaj.

Similarly,NEP(F) =
∑

1≤i<j≤n aiaj implies that F2 must be a strict (t, n; a1, . . . , an−1, an−1)-family
such that |


i∈I Ai| = t for any |I| ≥ 2. Since Ix = {n}, it is obvious that F is F̃ . �

5. The conclusion about N(F)

By Theorems 2–5, we can easily arrive at the following conclusion.

Theorem 6. M(t, n; a1, . . . , an) = U(t, n; a1, . . . , an) and F̃ is the only (t, n; a1, . . . , an)-family F with
N(F) = M(t, n; a1, . . . , an) for t ≥ 2.

Applying Theorem 6 to (t, n)-family, we immediately prove Conjecture 1.
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