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Coatings are applied to structural components for several various reasons, such to protect against erosion
or corrosion, as thermal barrier coatings, or to increase the energy dissipation. As determining the mate-
rial properties of such coatings from homogeneous specimens is often difficult, it is sometimes necessary
to conduct testing on coated specimens, with the properties of the coating then to be extracted from the
results of testing. A methodology for doing this is given here. While applicable to other materials, the
properties of such coatings as ceramics, metallics, or compounds to be applied to rotating and static com-
ponents of gas turbines are of special interest. Such materials present a special challenge as the mechan-
ical properties have generally been found to display a strong dependence on the amplitude of cyclic
strain. Application of the methodology requires careful measurement of specimen dimensions, weights,
natural frequencies, and system loss factors before and after coating. From these, the storage (Young’s)
modulus, the loss modulus, and the loss factor can be extracted. The methodology is demonstrated
through the use of data taken on flat specimens of titanium with plasma-sprayed coatings of NiCrAlY
and a titania–alumina blend ceramic, vibrating in a cantilever mode.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In the ideal test for the determination of the mechanical prop-
erties of a coating material a specimen of a macroscopically homo-
geneous material would be subjected to a spatially uniform stress
or strain and temperature. In this case, the energies dissipated and
stored per unit volume would be simply the total energy dissipated
per cycle of a fully reversed oscillation and the peak energy stored
during that cycle, each divided by the volume. In many cases, how-
ever, the testing of homogeneous specimens is not possible. The
material may flow (creep), or it may be of such brittleness that
fractures at support points preclude valid tests. The alternative is
to apply the coating to a substrate specimen of known properties
and then extract the properties of the coating from the measured
response of the system.

An ASTM standard (ASTM, 2005) has been adopted for deter-
mining the damping properties of coatings. It provides for a coating
applied to one or both sides of a cantilever beam, or for the coating
material applied as the core of a sandwich beam. However, the test
methodology and procedures for extracting properties from the
system response are applicable only if the coating material is
ll rights reserved.
linear, i.e. if the mechanical properties (modulus and loss factor)
are independent of vibratory amplitude.

The extraction of the material properties of the coating from sys-
tem measurements is more challenging when the observed
response is that of a non-linear system, i.e., when the natural fre-
quencies and system loss factors show a dependence on the ampli-
tude of the cyclic strain. An extensive treatment of the problem of
extracting material damping properties of non-linear materials
from macroscopically uniform specimens subjected to non-uni-
form distributions of cyclically applied stress has been given by
Lazan (1968).

Material properties to be considered here are the storage mod-
ulus and loss modulus of the coating material, defined respectively
on the basis of the energy stored and dissipated in a unit volume of
material subjected to a uniform state of strain during a complete
cycle of fully reversed oscillation. Knowledge of the material stor-
age modulus is necessary if natural frequencies and response
amplitudes of objects to be coated are to be evaluated during
design; knowledge of a material damping measure is necessary if
the amplitudes of responses at resonance are to be predicted.
Although the loss factor is often used as the measure of the inher-
ent damping ability of a material, the loss modulus (the product of
loss factor and storage modulus) is the more relevant measure as
the response of structures with thin free-layer coatings is driven
by the value of this parameter.
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We will consider here procedures for determining the ampli-
tude-dependent material properties of a macroscopically uniform
coating applied at uniform thickness over both sides of a beam
from comparisons of the system response (resonant frequencies
and system loss factors) before and after application of the
coating.

2. Methodology: storage modulus

2.1. Formulation

The change in resonant frequency of a beam resulting from
application of a coating provides a means of estimating the storage
modulus of the coating. We first write the Rayleigh quotients,
x2 = U/K, for the frequencies of the coated (x = 2pf) and uncoated
(x0 = 2pfo) systems in terms of the maximum strain energies, U,
and maximum kinetic energies, K. The ratio of the Rayleigh quo-
tients then gives

f 2

f 2
o
¼ x2

x2
o
¼ UCoated=KCoated

UB=KB
¼ 1þ UC=UB

1þ KC=KB
¼ 1þ RSE

1þ 2tqC=ðhqBÞ
ð1Þ

where C and B denote properties of the coating alone and of the bare
beam, respectively. The masses per unit area (the products of thick-
ness and density) can be determined by weighing and measuring
before and after application of the coating. The use of Eq. (1) with
observed frequencies at common values of test temperature and
reference strains enables the extraction of a strain energy ratio,
RSE = UC/UB, at each value of cyclic strain amplitude and
temperature

RSE ¼
f 2

f 2
0

1þ 2tqC

hqB

� �
� 1 ð2Þ

If the substrate beam is linear (i.e. amplitude independent) but the
modulus of the coating is amplitude-dependent, the ratio of ener-
gies stored in coating and substrate will vary with the value of max-
imum strain at which the frequencies are observed. Such changes in
the strain energy ratio with strain provide a means of evaluating the
storage modulus of the coating material.

The need for high quality measurements of frequencies, densi-
ties, and thicknesses is evident. In particular, the thickness ratio,
t/h must be such that errors in measurements and uncertainties
in the determination of the factors in the right hand side of Eq.
(2) do not negate the validity of the determined strain energy
ratios.

If the coating were linear (i.e. an amplitude-independent stor-
age modulus), the mode shape for a beam of thickness h, fully cov-
ered with a uniform thickness (t) of a linear coating would be the
same as that of the uncoated beam. With the assumption that the
coating is quite thin, or nearly linear, the mode shape of the coated
beam may be approximated by that of the uncoated beam. The
strain energies of the coating and the substrate beam can then
be evaluated from the mode shape for the nth mode, expressed
in terms of the local amplitude of strain at the beam-coating inter-
face, en(x). For a coating of uniform thickness, fully covering both
sides of a beam of width W, modulus, EB, and uniform thickness,
the strain energy ratio is

RSE ¼
UC

UB
¼

2W
R

Coating
E1C ðeÞ

2 e2ðx; zÞdxdz

W
R

Beam
EB
2 e2ðx; zÞdxdz

¼
EEðemaxÞ

R h=2þt
h=2 ð2z

h Þ
2dz

R L
0 e2

nðxÞdx
EB
2

R h=2
�h=2ð2z

h Þ
2dz

R L
0 e2

nðxÞdx
ð3Þ

The last integrals in the numerator and denominator, being identi-
cal, cancel in consequence of the assumption of a common mode
shape for the coated and uncoated beams. Note that the energy
stored in each unit volume of the coating is taken as E1Ce2/2, where
the strain is the local amplitude and the modulus is presumed to be
an amplitude-dependent secant modulus.

For convenience, the true, or amplitude-dependent value of
coating storage modulus, E1C (e) has been expressed in terms of
an effective value, EE(emax), defined by

EEðemaxÞ
Z

Vol
e2dv �

Z
Vol

E1CðeÞe2dv ð4Þ

This is not a local (material) modulus, but is rather a global or mean
value, an average weighted for the range of strains in the coating
with a particular strain distribution and maximum amplitude of
the interface strain, emax. Amplitude-dependent values of this effec-
tive modulus may then be evaluated from Eq. (3), with values of the
strain energy ratio found from the observed frequencies and Eq. (2):

EEðemaxÞ ¼ RSEðemaxÞ
hEB

6tTð2; t=hÞ ð5Þ

The variation in strain through the coating thickness in Eq. (3) has
been accounted for by the evaluation for N = 2 of the quantity

TðN; t=hÞ � 1
t

Z h=2þt

h=2

2z
h

� �N

dz ¼ h
2t

1
N þ 1

fð1þ 2t=hÞNþ1 � 1g ð6Þ

The relative simplicity of the process for obtaining this measure of
coating stiffness is a consequence of the use of a beam fully coated
on both sides. Tests conducted for the purpose of determining
material properties have also been performed with beams coated
only over a short segment in a region of high strain (Patsias et al.,
2004a; Tassini et al., 2006; Reed, 2007) In such cases, the mode
shape changes markedly when the coating is applied, and the ratio
of kinetic energies does not take the simple form as in Eq. (1), nor
does the strain energy ratio take the simple form of Eq. (3).

Once values of the effective modulus EE(emax) have been deter-
mined for a range of amplitudes of maximum strain, the true value
of the local or material modulus E1C(e) can then be extracted by
solving Eq. (4), an integral equation. One approach to this is to as-
sume an appropriate functional form for E1C(e), with the necessary
parameters for that form to be found by using in Eq. (4) the actual
strain distribution together with values of the effective modulus,
EE(emax) determined from the measured values of frequency.

2.2. A polynomial representation of the storage modulus

Let it be assumed that the strain dependence of the true mate-
rial storage modulus can be adequately represented by a few terms
of a polynomial

E1CðeÞ ¼
XM

m¼0

Emem ð7Þ

and that the effective or mean value, as extracted from test data
with Eqs. (2) and (5) can be represented by a polynomial of similar
form

EEðemaxÞ ¼
XP

p¼0

Apep
max ð8Þ

With the assumption that the presence of the coating influences the
maximum amplitude of the cyclic strain but not the distribution, the
strain throughout the substrate beam and the coating as found from
the curvature is

eðx; zÞ ¼ Czo2XnðxÞ=ox2 ð9Þ

where Xn (x) is the distribution of transverse displacements in one
of the normal modes of a Bernoullli–Euler beam (Timoshenko,
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1955). If both surfaces are coated at the same uniform thickness, the
neutral axis (z = 0) is at the geometric center of the beam. Substitu-
tion of Eqs. (7) and (8) with these strains into both sides of Eq. (4)
gives thatXP

p¼0

Apep
maxTð2; t=hÞe2

max

Z L

0

enðxÞ
emax

� �2

dx

¼
XM

m¼0

EmTð2þm; t=hÞe2þm
max

Z L

0

enðxÞ
emax

� �2þm

dx ð10Þ

It is convenient to define an integral to be evaluated numerically
from the mode shapes as

IðN;nÞ � 1
L

Z L

0

enðxÞ
emax

� �N

dx ¼
Z 1

0

Xn00ðx=LÞ
X 00nðmaxÞ

� �N

dðx=LÞ ð11Þ

By taking the same number of terms in the expansions for the effec-
tive and true modulus (M=P) and using the integrals defined in Eqs.
(6) and (11), the coefficients for Eq. (7) are found to be related those
from Eq. (8) by

Em ¼ Am
Tð2; t=hÞIð2;nÞ

Tð2þm; t=hÞIð2þm; nÞ ð12Þ

Values of the thickness integral, Eq. (6), are given in Fig. 1a for sev-
eral values of t/h.

As cantilever beams are most frequently used in such tests, it is
of particular interest to consider values of the function I(N, n) for
this boundary condition. The integral I(2,n) has value of 1/4 for
any mode of a cantilever beam; values for other choices of
N = 2 + m as found by numerical integration of Eq. (11) with
Simpson’s rule and 101 integration points are shown in Fig. 1b.
Values for the second and higher modes are very similar, but nota-
bly less than those for the first mode.

Values for the ratio of coefficients, Em/Am, as computed from Eq.
(12) for the first several terms of the expansion for each of several
modes with several ratios of coating to substrate thicknesses, are
all found to be greater than one. This indicates that the strain at
which the true modulus has some particular value E1C is always
less than the maximum strain emax at which the effective modulus,
EE, has that same value.

A quick estimate of the true value of the material storage mod-
ulus may be obtained. The most representative maximum coating
strain is the mid-plane value

eðxÞ ¼ ð1þ t=hÞenðxÞ ð13Þ
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Fig. 1. Geometric factors for coated beams. (a) Dimensionl
Substitution of Eqs. (12) and (13) into Eq. (7) then gives the true
modulus, as a function of the representative strain, of

E1CðeÞ ¼
XM

m¼0

Am
Ið2;nÞTð2; t=hÞ

Ið2þm;nÞTð2þm; t=hÞ ½emaxð1þ t=hÞ�m

¼
XM

m¼0

AmðamemaxÞm ð14Þ

This suggests that the material modulus at local strain e can be con-
structed from the effective modulus by replacing the maximum
strain in each term of the expansion by a scaled strain, amemax,
where

am ¼ ð1þ t=hÞðEm=AmÞ1=m ð15Þ

Values by which the maximum strains must be multiplied to create
the relationship between true modulus and the strain e0 (i.e. 1/am)
are given in Table 1 for the first several coefficients for each of sev-
eral modes (n) and thickness ratios (t/h). Average values of coeffi-
cients for terms m = 1 � 4 are also given. It is of interest that
individual values of the coefficients 1/am, vary only slightly from
the average values, and that the average values for modes 2–4 differ
only slightly from a common value of 0.665. Values for higher
modes (not shown) are nearly identical to the values given for mode
4. Thus, a quick estimate of the storage modulus of the coating can
be obtained from the effective modulus determined from tests in
cantilever mode 2 or higher with

E1CðeÞ ffi EEf1:50emaxg ð16Þ
2.2.1. An alternative evaluation
An alternative means of determining the coefficients for the

expansion of the true material storage modulus from the mean
or effective values is to use an adaptation of the concept of the vol-
ume-strain integral as employed by Lazan (1968). After substitut-
ing the expansions for the true and effective modulus into Eq. (4)
with the volume element written as dzdS, substituting the strain
distribution for the nth mode from Eq. (9) and then using Eq. (6),
the result is

XP

p¼0

Apep
maxtTð2; t=hÞ

Z S

0
e2

ndS¼
XM

m¼0

EmtTð2þm; t=hÞ
Z S

0
e2þm

n dS ð17Þ

After making a change in variable of integration with S now being
the area at which the surface strain is less than en
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Table 1
Strain-scaling factors for determining the coating modulus.

n t/h m = 0 m = 1 m = 2 m = 3 m = 4 Ave

2 0.05 1 0.6481 0.6685 0.6857 0.7012 0.676
3 0.05 1 0.6330 0.6518 0.6677 0.6818 0.659
4 0.05 1 0.6237 0.6408 0.6552 0.6680 0.647
2 0.1 1 0.6507 0.6718 0.6898 0.7061 0.680
3 0.1 1 0.6355 0.6550 0.6716 0.6865 0.662
4 0.1 1 0.6261 0.6440 0.6591 0.6726 0.650
2 0.15 1 0.6544 0.6766 0.6956 0.7129 0.685
3 0.15 1 0.6391 0.6597 0.6773 0.6932 0.667
4 0.15 1 0.6297 0.6486 0.6646 0.6791 0.656
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XP

p¼0

Apep
maxTð2; :t=hÞ

Z emax

0
e2

n
dS
den

den

¼
XM

m¼0

EmTð2þm; t=hÞ
Z emax

0
e2þm

n
dS
den

den ð18Þ

An area-strain function, S/S0 = f(en/emax), analogous to Lazan’s
(1968) volume-strain function can then be introduced to represent
the faction of the total surface area at which the strain is less than
some fraction en/emax of the maximum surface strain for the nth
mode

XP

p¼0

Apepþ2
maxTð2; t=hÞS0

Z 1

0

en

emax

� �2 dS=S0

den=demax
d

en

emax

� �

¼
XM

m¼0

EmTð2þm; t=hÞe2þm
max S0

Z 1

0

en

emax

� �2þm dS=S0

den=demax
d

en

emax

� �
ð19Þ

Values of the area-strain function, S/S0 are shown in Fig. 2 for the
first several modes of a cantilever beam, as obtained by evaluating
the surface strain at 201 equally spaced points on the surface. The
histogram for higher modes is nearly identical to that of mode 4.
A linear approximation for modes 2–4 is also shown as the dashed
line.

In principle, values of the function S/S0 could be evaluated
numerically and applied in Eq. (19) so as to relate the material
modulus, E1C to the effective modulus, EE. However, the resulting
requirement to evaluate the derivatives from such numerical val-
ues would likely introduce considerable uncertainty. In the case
of the first cantilever mode and lower modes of a free-free beam,
a low order polynomial approximation might suffice. But in the
case of the cantilever beam, the abrupt variations seen in Fig. 2
would necessitate the use of a large number of terms in order to
obtain an adequate representation. However, in the case of
cantilever modes 2 and higher, the area strain histogram of Fig. 2
is quite well approximated by the simple relationship
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Fig. 2. Histograms of the strain distribution, cantilever modes.
S=S0 ¼ cðe=emaxÞ for e=emax < b ¼ 1=c ð20aÞ
S=S0 ¼ bc ¼ 1 for e=emax > b ¼ 1=c ð20bÞ

The average slope c = 1/b for the histograms of modes 2 and higher
is found to be 1.150, with differences between modes being only
0.1%. Upon substitution into Eq. (19), integrating, and then taking
the same number of terms in both expansions (M = P), the coeffi-
cients of the expansion for the true modulus, Eq. (7), are found to
be related to those for the effective modulus by

Em ¼ Am
Tð2:t=hÞ

Tðmþ 2:t=hÞ
3þm
3bm ð21Þ

The resulting values of the ratios of the coefficients, Em/Am, while
not identical, are similar to those computed from Eq. (12). The same
process as used previously may again be used to deduce strain scal-
ing factors for obtaining an approximate value of the material mod-
ulus directly from the effective modulus. In this case, the factors, as
introduced with Eq. (15) become

am ¼
ð1þ t=hÞ

b
Tð2; t=hÞ

Tðmþ 2; t=hÞ
3þm

3

� �1=m

ð22Þ

Values of 1/am, analogous to those of Table 1, are shown in Table 2.
The average value for the first four terms and all thicknesses is
0.685, in quite good agreement with that obtained (0.665) by inte-
gration of the strain distributions.

The ratio T(2,t/h)/T(m + 2,t/h) is quite well approximated by 1/
(1+t/h)m for lower values of m. Using this in Eq. (22) gives an aver-
age scaling factor of 0.679 for all modes and thickness ratios, sug-
gesting that the material storage modulus at strain e be estimated
as the effective or average modulus at a strain of emax = 1.47e.

2.3. Summary

Values of the storage modulus for a non-linear coating (ampli-
tude dependent values) can be extracted by comparing the fre-
quencies of beams with and without coatings of uniform
thickness applied to both sides of the beams. Two methods were
given for extracting the true storage modulus from an average or
effective value; and it was found that a suitable estimate of the
coating modulus at a strain e can be found from the average or
effective modulus at a strain of about 150% of the strain of interest.

3. Methodology: loss modulus

3.1. Formulation

Amplitude-dependent coating dissipation gives rise to system
loss factors varying with amplitude. If the loss factors are to deter-
mined from the decay of free vibrations, this may be satisfactorily
accounted for by determining the decrement over a small number
of cycles (Patsias et al., 2004b). But if the loss factors are to be
determined from the frequency response function at constant
amplitude of excitation, compensation for the influence of the
amplitude dependence on the observed values must be made. A
methodology for doing this is given in an appendix.

Given that credible data for the system loss factors of a beam
with and without coating can be obtained, the total energy
Table 2
Approximate strain-scaling factors for determining the coating modulus.

n t/h m = 0 m = 1 m = 2 m = 3 m = 4 Average

n P 2 0.05 1 0.653 0.674 0.691 0.705 0.681
n P 2 0.1 1 0.655 0.678 0.695 0.710 0.684
n P 2 0.15 1 0.659 0.682 0.701 0.717 0.690
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dissipated in the coating, DC, can be determined. The system loss
factor, gS, is related to the energies dissipated and the energies
stored in the coated and uncoated beams (UC and UB, respectively)
by the definition:

gSðemaxÞ �
DC þ DB

2pðUC þ UBÞ
¼ DCðemaxÞ

2pUBð1þ RSEÞ
þ DBðemaxÞ

2pUBð1þ RSEÞ
ð23Þ

RSE is the strain energy ratio of Eq. (3) and the reference strain is the
maximum value at the beam-coating interface. The energy dissi-
pated by all means other than the coating, denoted DB, includes
air damping, beam damping, grip losses, etc. Assuming once again
that the presence of the coating does not affect the mode shape, this
dissipated energy can be evaluated from an observed loss factor for
the uncoated beam vibrating in the same mode at the same maxi-
mum amplitude of surface strain

gBðemaxÞ ¼
DBðemaxÞ

2pUB
ð24Þ

After substitution of Eq. (24) into Eq. (23)

DCðemaxÞ ¼ 2p½ð1þ RSEÞgSðemaxÞ � gBðemaxÞ�UB ð25Þ

If the substrate beam is assumed to be linear with energy, UB, stored
is as in the denominator of Eq. (3)

UB ¼WhLEBIð2;nÞe2
max=6 ð26Þ

Let D(e) denote the unit damping capacity, i.e., the energy dissi-
pated per cycle by a unit volume of material subjected to a fully
reversed strain of amplitude e. The total energy dissipated, DC, in
the coating volume V0 with non-uniform distribution of strain
amplitudes is, for a maximum strain emax at the beam-coating
interface

DCðemaxÞ ¼
Z

V0

DðeÞdvol ð27Þ

Extracting the unit damping function for the material requires the
numerical solution of this integral equation, given numerical values
of the total energy dissipated at numerous values of the maximum
strain. But if an appropriate functional form for the dependence of
the unit damping on the local amplitude of cyclic strain can be as-
sumed, such parameters as are required for the assumed form may
be evaluated from the system data.

The process is analogous to that used in the extraction of the
amplitude dependent storage modulus from values of the effective
modulus determined from test data, Eq. (4).

3.2. A polynomial representation of the loss modulus

We assume that the experimentally determined loss factors
(after correction for the influence of the non-linearity on the mea-
surement) can be adequately represented in terms of the maxi-
mum strain at the beam-coating interface by a polynomial of
modest order. Noting that the strain energy ratio as determined
from Eq. (2) is also generally a function of the maximum strain,
we let

½ð1þ RSEÞgSðemaxÞ � gBðemaxÞ� ¼
XR

r¼0

Crer
max ð28Þ

We also assume that the unit damping of the material can be writ-
ten in a similar form

DðeÞ ¼
XQ

q¼0

Dqeq ð29Þ
After substitution of Eqs. 25, 28 and 29; the strain distribution for
the nth mode from Eq. (9); and the integrals defined in Eqs. (6)
and (11) into Eq. (27)

2pWhLEB
Ið2; nÞ

6

XR

r¼0

Crerþ2
max ¼ 2WtL

XQ

q¼0

Dqeq
maxTðq; t=hÞIðq;nÞ ð30Þ

The coefficients D1 and D2 are seen to be zero. After renumbering
the index in the right hand sum (q = r + 2,Q = R + 2), the coefficients
for the expansion of the unit damping are

Drþ2 ¼
ph
6t

EB
Ið2;nÞ

Tðr þ 2; t=hÞIðr þ 2;nÞCr ðr P 0Þ ð31Þ

The customary definition of the loss modulus as the imaginary part
of a complex modulus is not strictly applicable to non-linear mate-
rials as the concept of a complex modulus is based on the presump-
tion of harmonic values of both stress and strain, an attribute of a
linear system. But an energy-based definition is applicable to both
linear and non-linear materials, and in the latter case is consistent
with the customary definition as the imaginary part of a complex
modulus. Thus, we define the loss modulus of a material in terms
of the energy dissipated in a unit volume at uniform strain e, or

E2CðeÞ �
DðeÞ
pe2 ð32Þ

from which

E2CðeÞ¼
1
p
XQ

q¼2

Dqeq�2¼1
p
XR

r¼0

Drþ2er¼EB
h
6t

XR

r¼0

Ið2;nÞ
Tðrþ2;t=hÞIðrþ2;nÞCrer ð33Þ

where the coefficients Cr of Eq. (28) are found from experimentally
determined values of the loss factor with and without coating, Eq.
(28), using the amplitude-dependent strain energy ratios deter-
mined from measured frequencies.

3.2.1. An alternative evaluation
As was done in the extraction of the material storage modulus

from the average values, a change in variable of integration in
Eq. (27) may be used to relate the coefficients for the expansion
of the unit damping (and then the loss modulus) to those obtained
from an expansion of the observed loss factors. Eq. (27) becomes:

DCðemaxÞ ¼
Z
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Z
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ð34Þ

After substitution of the same approximation to the area strain inte-
gral (Eq. (20)) as was used previously into the right-hand side of Eq.
(34), integrating, and then substituting Eqs. 25, 26, and 28 into the
left-hand side

2p
6

WhLEBIð2;nÞe2
max

XR

r¼0

Crer
max ¼ 2

XQ

q¼0

Dqeq
maxtTðq; t=hÞS0

bq

qþ1
ð35Þ

After setting S0 = WL, q = r + 2, and Q = R + 2; there results that
D0 = D1 = 0 and

Drþ2 ¼
p
6

h
t

EB
Ið2; nÞ

Tðr þ 2; t=hÞ
r þ 3
brþ2 Cr ðr P 0Þ ð36Þ

Coefficients for the expansion obtained with this approximation,
again using an average slope c = 1.15 = 1/b, differ slightly than those
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obtained from Eq. (35), but by less by about 1%, 2%, 9%, 11% and 13%
for the first five values of r.

3.3. Discussion

The total energy dissipated in a coating during a fully
reversed cycle of strain amplitude emax, can be determined from
system loss factors measured either from the decay of a free
vibration or from the frequency response function in forced
vibration. If the beam is fully covered, it is necessary in either
case that the range of strain amplitudes be somewhat higher
than the strains at which material properties are desired. As
may be inferred Fig. 2, about 80% of the coating volume on a
beam vibrating in the second or higher cantilever beam never
experiences strains above about 2/3 of the maximum value. As
the system damping at emax is only slightly influenced by the
material damping at strains above (about) 2/3 of that value,
material properties at high strains are not well represented in
the data obtained and therefore can not be extracted with high
resolution. As it is the highest order terms in the polynomial
of Eq. (28), and consequently of Eq. (33), that are (relatively)
the most sensitive to measured values at higher strains, it is crit-
ical that the lowest order polynomial adequately capturing the
results be used.

As the first cantilever and free-free modes have more uniform
strain distributions than do the higher cantilever modes, the use
of such data might enable the reliable extraction of material prop-
erties at slightly higher fractions of the maximum test strain. How-
ever, the use of these modes introduces such other challenges as
accounting for high air damping and providing a low-loss suspen-
sion, respectively.

4. Justification for polynomial representations

While the representation of the loss and storage moduli of a
coating in terms of polynomials is arbitrary, some justification
for this choice can be found by noting that such relationships are
consistent with a generalization of a well-known hypothetical
stress–strain relationship for non-linear materials. Using a slightly
different notation, Davidenkov (1938) related the instantaneous
stress, ri, to the instantaneous strain by writing:

riðeiÞ þ r ¼ E½ðei þ eÞ � bðei þ eÞP � for dri=dt > 0 ð37aÞ
r� riðeiÞ ¼ E½ðe� eiÞ � bðe� eiÞP � for dri=dt < 0 ð37bÞ

where e is the maximum amplitude of strain and r is the maximum
amplitude of stress in a fully reversed cycle. The amplitude-depen-
dent secant modulus is then obtained from the first of these evalu-
ated at ei = e or the second at ei = �e. Either gives that:

EðeÞ ¼ r
e
¼ E½1� bð2eÞP�1� ð38Þ

As Eqs. (37) form a closed hysteresis loop, the energy dissipated
per cycle may be obtained by subtracting the lower branch stress
of Eq. (37b) from the upper branch stress of Eq. (37a) and inte-
grating over �e < ei < e. The result, as computed by Pisarenko
(1955) is that

D ¼ Eb
P � 1
P þ 1

� �
2Pþ1ePþ1 ð39Þ

A discussion and interpretation of this stress–strain relationship has
been given (Lazan, 1968). Hysteresis loops formed with Eqs. (37)
have the pointed ends characteristic of such dissipative
mechanisms as plasticity and friction, rather than the (generally)
elliptical loops associated with viscoelastic dissipation. The pre-
dicted dissipation, Eq. (39), is consistent with Lazan’s finding that
the energy dissipated per cycle for a wide variety of structural
materials was proportional to the amplitude of cyclic stress raised
to a power between 2 and 3 (corresponding to 1 < P < 2) at low
stresses and larger, history-dependent, exponents at high stresses.

While many materials used as coatings also appear to dissipate
energy in proportion to a constant power of stress or strain at low
amplitudes (e < 100 ppm), at higher levels of strain the dissipation
is typically found to vary at a lower power or to diminish with
strain (Torvik, 2007). In consequence, a stress–strain law such as
that of Eqs. (37) with a single exponent generally is not adequate
for describing such materials at all levels of strain. However, a gen-
eralization is possible. Let

riðeiÞ þ r ¼ E½ðei þ eÞ �
XP

p¼1

bpðei þ eÞp� for dri=dt > 0 ð40aÞ

r� riðeiÞ ¼ E½ðe� eiÞ �
XP

p¼1

bpðe� eiÞp� for dri=dt < 0 ð40bÞ

The exponents in Eq. (40) may be integers, p, or chosen as more gen-
eral values, Pp. The Davidenkov relationships, Eqs. (37), are then the
special case for a single term with a power that need not be an
integer.

A secant modulus results from using the first of these to evaluate
the ratio r/e. And, by choosing E0 = E(1 � b1) and Em = �E(2)mbm + 1

for m P 1, the result with integer values of m is equivalent to the
empirical form of Eq. (7)

EðeÞ ¼ E 1�
XP

p¼1

bpð2eÞp�1

" #
�
XP�1

m¼0

Emem ð41Þ

The energy dissipation during a fully reversed cycle of maximum
amplitude e may again be found by subtracting the stress at the
lower branch of Eq. (40) from that on the upper and integrating over
�e 6 ei 6 e. The result is that

D ¼
Z e

�e
½rUðeiÞ � rUðeiÞ�dei ¼ E

XP

p¼1

bp
p� 1
pþ 1

ð2eÞpþ1 ð42Þ

Thus, the assumed polynomial expansion for the energy dissipated
per cycle, Eq. (29), is also consistent with a stress–strain relation-
ship of the form given in Eq. (40). The loss modulus defined as in
Eq. (32) is then

E2ðeÞ ¼
E
p
XP

p¼1

4bp
p� 1
pþ 1

ð2eÞp�1 ¼ E
p
XP�1

r¼0

4brþ1
r

r þ 2
ð2eÞr ð43Þ

A polynomial representation of a true logarithmic decrement
(d � pg � pE2/E1) was also been used (Ustinov et al., 2007) to ex-
tract an amplitude-dependent material damping property from
observed decrements of a tapered titanium beam coated with
vapor-deposited Co–20%Fe, vibrating in the first cantilever mode.
In this work, however, the strain distribution was taken as that of
a statically-loaded cantilever and the storage modulus of the coat-
ing was assumed to be independent of strain amplitude.

5. Example: a ceramic coating

5.1. Test procedures, parameters, and data

Flat strip specimens of 2.29 mm (0.090 in.) Ti–6Al–4V were first
air plasma-sprayed on both sides with a bond coat of NiCrAlY,
nominally 0.076 mm (0.003 in.) thick, and then with a coating,
nominally 0.254 mm (0.010 in.) of a titania–alumina blend cera-
mic. Specimens were 19 mm (0.75 in.) wide and of a total length
of 254 mm (10 in.). Coatings were applied over a 203 mm (8 in.)
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test section, leaving an uncoated length for gripping. Specimens
were weighed and measured before and after each application of
coating to determine the masses per unit area, as are required
for the application of Eq. (2).

Specimens were mounted on a large shaker and excited at var-
ious constant levels of base acceleration, with frequency slowly
swept downwards through resonance from above. Testing was
conducted in the second, third and fourth cantilever bending
modes with decreasing levels of the constant base acceleration.
Specimen responses (velocities at an interior maximum of dis-
placement, appropriate to the mode) were observed with a laser
vibrometer and converted to a common reference strain, the value
of strain at the beam-coating interface at the root. The resonant
frequency was taken as the frequency of maximum response and
system loss factors were extracted from the frequency response
function by vibrometer software. Additional details of the test
apparatus and test procedures are given elsewhere (Torvik et al.,
2007).

Resonant frequencies and system loss factors were measured
for the bare beams, for the same beams after applying the bond
coat, and again after applying the ceramic. As satisfactory consis-
tency was found between results obtained with four specimens
tested in the three modes (Hansel, 2008), only data obtained in
the 3rd cantilever bending mode with two of the specimens
(#214 and #216) are used here. Resonant frequencies measured
for the beams with bond coat only, and after addition of the tita-
nia–alumina blend coating are shown in Fig. 3.

The moduli of the beams without bond coat as computed with the
frequency equation for a Bernoulli–Euler beam using measured den-
sities, thicknesses, lengths, and frequencies at low strain were found
to be 111.4 and 111.1 GPa (16.15 and 16.12 Mpsi), in sufficient
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Fig. 4. System loss factors (uncorrected) of coated cantilever beams, mode 3. (a
agreement with handbook values for the modulus of Ti 6Al–4V as
to validate adequacy of the cantilever mounting.

As the mechanical properties of the ceramic alone were desired,
the properties of the titanium beam with the NiCrAlY bond coat
were used as the properties of the uncoated beam in Eqs. 2, 5,
28, and 33. Strains are given in units of microinches/inch or parts
per million (ppm). A significant increase in stiffness after applying
the ceramic coating is evident, as is a dramatic increase in the de-
gree of strain softening.

Observed system loss factors (before correction) for the beams
with bond coat only and with bond coat and the titania–alumina
blend coatings are shown in Fig. 4.

As system loss factors for the beam with bond coat alone were
found to be typically about 150% of that with the bare beams, the
greater part of the losses seen in Fig. 4a may be attributed to such
extraneous sources as air damping, grip losses, and the inherent
damping of the titanium substrate. Losses observed after the addi-
tion of the ceramic topcoat (Fig. 4b) are sufficiently larger than those
measured before (Fig. 4a) as to insure that the formation of the net
addition due to the coating, Eq. (25) would enable a valid extraction
of the energy dissipation due to the titania–alumina coating. How-
ever, the dissipation of plasma-sprayed ceramics is known (Patsias
and Williams, 2003; Patsias et al., 2004a,b) to exhibit a significant
degree of strain history. In consequence, the measurements at the
highest levels of strain (not having been preceded by tests at higher
strains) must be rejected as being unrepresentative. In this case, data
taken at maximum strains above (about) 450 were not be used in the
extraction of the damping properties of the material.

Specimen parameters required for the extraction of material
properties from the system level response are given in Table 3. Val-
ues of the beam thickness, h, given here are the total thicknesses of
BC+Tit 
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Table 3
Specimen parameters for extraction of material properties.

Specimen t-Coat (mm) t/h Mass ratio EB (GPa) T(2,t/h)

214 0.239 0.0966 0.1725 93.77 1.206
216 0.242 0.0977 0.1733 93.69 1.208
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the titanium beam and bond coat; the modulus is that of an equiv-
alent homogeneous beam having the frequency observed for the
beam with bond coat at low amplitude of strain.

5.2. Determination of the storage modulus

Resonant frequencies of the beam with bond coat alone (Fig. 3a)
were found to be well characterized by cubic polynomials. These
were used as the bare beam frequencies in Eq. (2) with the mass
ratios of Table 3 and the observed frequencies of the coated beam,
Fig. 3b, to compute the strain energy ratio at each level of test
strain. These are given in Fig. 5a and from these, values of the aver-
age or effective coating storage moduli shown in Fig. 5b were
determined from Eq. (5).

In the development of Eq. (5) it was assumed that the modulus of
the substrate beam was independent of amplitude. In the present
case, where the substrate beam included the bond coat, a small de-
crease in frequency with strain (Fig. 3a) is indicative of a slight
change in modulus. When significant, such changes can be ac-
counted for by adjusting the bare beam modulus in proportion to
changes in the square of the frequency. In the present case, however,
such changes were neglected here as accounting for this softening
would have influenced values for the storage and loss modulus of
the coating by less than 1/2%, even at the highest strains.

The effective or average moduli for the two specimens as shown
in Fig. 5b were found to be well characterized by fourth order poly-
nomials. Using these coefficients, the coefficients for the expansion
of the true or local value of the storage modulus were found from
Eq. (12). These, when used in the expansion for the storage modu-
lus, (Eq. (7), yield the solid lines of Fig. 6. Application of the approx-
imation of Eq. (16) to each computed value of the average of
effective modulus (Fig. 5b) produced the data points shown in
Fig. 6. As these are in remarkably good agreement with values
determined from the polynomial expansion (solid lines), the esti-
mation of the true or material storage modulus from the effective
or average modulus by expansion of the axis of strain appears to
provide a rapid and satisfactory estimate of the storage modulus
for coatings such as those considered here.

Estimates of the material storage modulus resulting from the
use of the approximation to the area-strain histogram, Fig. 2 and
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Fig. 5. Characteristics of titania–alumina blend coating (air plasma sp
Eq. (20), are not shown, as they differ from the data points given
only by a 2% change in the values of strain.

5.3. Determination of the loss modulus

Corrections to loss factors determined from bandwidth mea-
surements for systems with amplitude-dependent damping are
necessary (Torvik, 2003) because the loss factor at the amplitude
of the bandwidth frequencies is not the same as the loss factor at
the maximum amplitude. The methodology of the appendix was
used to apply the necessary corrections.

Observed system loss factors for the beam with bond coat alone
(Fig. 4a) were first fit with linear relationships, and then adjusted
so as to account for the damping non-linearity. Observed values
for the beam with bond coat and top coat (Fig. 4b) were fit with
fourth order polynomials and then adjusted for the damping
non-linearity. The corrected values of the loss factor (Fig. A1 of
the appendix) were then used with the strain energy ratios ob-
tained by fitting fourth order polynomials to the values given in
Fig. 5a to compute the net adjusted loss factors, Eq. (28). Results
for the two specimens are shown in Fig. 7.

These net adjusted loss factors were also found to be adequately
represented by fourth order polynomials. The coefficients are the
values of Cr for Eq. (28) and, when used with values of the functions
defined by Eqs. (6) and (11) and specimen parameters from Table
3, yield the coefficients for the expansion of Eq. (33). The resulting
loss modulus is shown in Fig. 8a. A material loss factor for the coat-
ing can then be formed from the ratio of loss to storage modulus
gC = E2C/E1C), giving the values shown in Fig. 8b.

Fig. 8a and b was developed using only test data (Fig. 4b) for
maximum strains below 450 ppm (corresponding to a local strain
of about 300 ppm) as the responses at higher strains were believed
to be influenced by strain history The slight increases seen in Fig. 8
above a local strain of 200 ppm may be a further consequence of
the history effect, or of the emergence of a dissipative mechanism
with different amplitude dependence. While the adequacy of the
methodology can be expected to be influenced by the specific
choice of the assumed functional form, and a choice other than
the polynomials used here might give slightly different results,
the presence of these same trends in the original test data (Figs.
3 and 4b) indicate that these are aspects of the material response,
rather than artifacts introduced by the process used for the extrac-
tion of material properties.

5.4. An approximation for the loss modulus

A simplified procedure has been given elsewhere (Torvik et al.,
2007) for the extraction of the material loss modulus from
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observed system loss factors. In that case, the assumed functional
form for the damping was that of Eqs. (37), corresponding to a
Davidenkov stress–strain law with a single, non-integer exponent.
Eq. (33) then can be rewritten, after the substitution of Eq. (28), as

EC2ðeÞ ¼ EB
h

6tTð2; t=hÞ ½ð1þ RSEÞgSðemaxÞ � gBðemaxÞ�

� Tð2; t=hÞIð2;nÞ
Tðr þ 2; t=hÞIðr þ 2;nÞ

� �
ð43Þ

The last factor on the right represents the influence of the non-uni-
form distribution of strain and, for cantilever beams with typical
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Fig. 8. Material damping properties of a titania–alumin
coating/beam thickness ratios (�0.1), is about 1.1–1.3 at low strains
and approximately 1 at high values. As the factor for correcting the
observed system loss factors (gTrue/gApp of the appendix) typically
has values between 0.8 and 0.9 at low strains and nearly 1 at high,
the influence of these two factors are largely offsetting. As a result,
an estimate of a loss modulus from Eq. (43) using uncorrected sys-
tem loss factors and taking the last factor as unity does not give sig-
nificant error. Examples of the underestimates of the true loss
modulus resulting from this approximation are given in Table 4
for various values of the thickness ratio and r, the exponent when
a single term is used in Eq. (28) to approximate uncorrected system
loss factors.

Application of this simplified method to the data of Figs. 3 and 4
gave values of the loss modulus within 10% of values shown in
Fig. 8a.

5.5. Discussion

The material properties of a plasma-sprayed titania–alumina
blend ceramic at room temperature were extracted from the natu-
ral frequencies and system loss factors before and after applying
the ceramic to Ti–6Al–4V beams with a NiCrAlY bond coat. The
storage modulus, loss modulus and loss factors (Figs. 6, 8a and b)
obtained from two nominally identical specimens were found to
be in satisfactory agreement. The storage modulus diminished
with increasing amplitude of a fully reversed cyclic strain, whereas
the loss modulus and loss factor both showed a strong increase
with strain up to a critical value, and then diminished or became
(relatively) constant. These dependencies of material properties
on strain amplitude are characteristic of those seen in other plas-
ma-sprayed coatings (Torvik, 2007).

Testing was conducted on cantilever beams fully covered on
both sides and vibrating in the third cantilever bending mode. In
consequence, significant variations in strain occurred within the
coating material. At any given level of maximum strain about
80% of the coating volume is at strains below about 2/3 of this va-
lue. As observed frequencies and loss factors reflect the integrated
influence of all strains from zero to the maximum value, measured
values are only weakly influenced by the strains at the highest le-
vel. Moreover, the response of materials such as these is known to
be influenced by the prior loading history. Accordingly, even after
rejecting results from the highest test amplitudes, a lower level of
confidence must be assigned to values obtained at the higher levels
of strain. In particular, the results suggest an increase in loss mod-
ulus and loss factor at the higher strains of Fig. 8 and an increased
rate of diminution of the storage modulus, Fig. 6. It can not be said
with certainty if these are the consequences of a history effect, of
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Table 4
Potential underestimates of loss modulus with approximate method.

r 0 0.2 0.4 0.6 0.8 1

t/h = 0.05 0 3% 7% 11% 16% 22%
t/h = 0.1 0 2% 4% 8% 12% 17%
t/h = 0.15 0 1% 2% 5% 8% 11%
t/h = 0.2 0 0 0 2% 4% 5%
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the emergence and dominance of a different non-linear mecha-
nism with characteristically different amplitude dependence.

The assumed form used here (polynomials) appears to capture
well the amplitude dependence of the material properties of a plas-
ma-sprayed ceramic. However, for other non-linear materials with
characteristically different amplitude dependencies, other forms
may prove to be more appropriate.

The applicability of a method for obtaining an approximate va-
lue of the local or material storage (Young’s) modulus from the
average or effective modulus was also considered. Taking the
material modulus at strain e to be the same as the effective modu-
lus at stain emax = 1.5e was found to provide a very satisfactory esti-
mate. Thus, once the effective or average modulus is found, the
storage modulus of the material can be estimated by simply mul-
tiplying the abscissa by a factor of 2/3.

An abbreviated (single term) approximation for determining
the loss modulus was described. In using this, the influences of
the damping non-linearity on the system measure of damping
and on the impact of a non-uniform strain distribution in the coat-
ing were seen to be largely offsetting. For coatings of similar prop-
erties to that considered here, applied at thickness ratios of about
0.1, this approximation yields results within 10% of those obtained
by using the results of the more thorough analysis.

The nature of the amplitude dependence of the storage and loss
modulus for the plasma-sprayed titania–alumina blend ceramic
were found to be similar to that characteristic of other plasma-
sprayed ceramics. Values of both were found to be greater than
previously reported values for yttria-stabilized zirconia (Patsias
et al., 2004a,b) and alumina (Torvik et al., 2007). The storage mod-
ulus appears to be higher, but the loss modulus lower than values
reported for Rokide� (Patsias et al., 2004a,b) and magnesium alu-
minate spinel (Reed, 2007).

6. Summary and conclusions

A methodology suitable for extracting the material properties of
coatings applied on substrate beams has been presented. Two
intermediate quantifications of the observed response, an average
or effective modulus and a net adjusted loss factor, were intro-
duced and procedures for evaluating these from test system level
test data were given. As these represent global or integrated mea-
sures of the coating stiffness and damping, processes were also
given for extracting local or inherent material properties as func-
tions of local strain from these global measures. The methodology
requires the arbitrary choice of assumed functional forms for the
amplitude dependence of material stiffness and damping. Inte-
ger-order polynomials were chosen, and terms up to the fourth
power of the amplitude of strain were found to be adequate. Some
justification for this choice was found by noting that such forms
result from the generalization of an accepted stress–strain rela-
tionship for non-linear materials.

The methodology was applied to test data taken with a titania–
alumina blend ceramic, air plasma-sprayed on a titanium beam
with NiCrAlY bond coat. The nature of the amplitude dependencies
of both storage modulus and loss modulus were found to be similar
to that obtained with different methodologies and different mate-
rials. Abbreviated versions of the methodology for extracting prop-
erties from test data were also developed and found, for the test
data used here, to provide satisfactory approximations.

It should be noted that the application of this methodology is
predicated on the availability of high quality measurements of res-
onant or natural frequencies and system loss factors for the beams
with and without the coating, and that these be sufficiently differ-
ent. While the necessary thickness depends on coating properties,
for coatings such as that used here a thickness of about 5% of the
substrate thickness, fully covering both sides of the substrate
beam, is sufficient.

The primary limitation to the methodology given appears to be
the challenge of extracting material properties at strains much
above about 50% of the highest strain levels present in the system
level data. This is largely a consequence of the relatively low vol-
ume of the coating at high strain levels when applied to a cantile-
ver beam vibrating in a higher mode.
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Appendix. Influence of non-linearity on measures of system
damping

System damping is most typically determined either from the
rate of decay of amplitude in a free vibration or from the variation
of the amplitude of the response to an excitation at constant ampli-
tude with frequency slowly swept through a resonance. In the first
case (transient response), if the system stiffness is dependent on
amplitude the frequency of the response will vary slowly through-
out the decay, necessitating careful observations if the system stiff-
ness is to be evaluated from the changes in frequency. If the
measure of damping, e.g. the logarithmic decrement, is also depen-
dent on amplitude, values must be extracted from narrow time
windows if the amplitude dependence is to be captured accurately.
Signal filtering may be necessary and the use of the Hilbert trans-
form in the processing of the amplitude–time response has been
suggested (Patsias et al., 2004a,b) as a means of obtaining valid
measures of the amplitude dependence of system damping and
stiffness.

In the second case (frequency response function), if the stiff-
ness is amplitude-dependent a sine-sweep at constant excitation
may reveal a system instability at some levels of maximum re-
sponse. In such cases, observation of the complete frequency re-
sponse function is not possible, and the system damping can
not be evaluated from frequencies at the desired fraction of the
maximum response. At excitation levels near the onset of the
instability, rapid changes in response with changes in frequency
make an accurate observation of the frequency response function
difficult. Moreover, if the damping of the system is amplitude-
dependent, then the system loss factor as determined from the
half-power (or any other ratio) amplitude is not the true system
loss factor (Torvik, 2003) as the damping at the amplitude corre-
sponding to the bandwidth frequencies is not the same as the
system damping at maximum amplitude. If the system loss factor
increases with strain, bandwidth measurements lead to overesti-
mates of true values. Conversely, with loss factors diminishing
with strain (as occurs in ceramics coatings above a critical value
of strain), a bandwidth determination underestimates the true
system loss factor.
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Fig. A1. Apparent and true values of the system loss factor. (a) NiCrAlY bond coat on Ti–6Al–4V. (b) NiCrAlY bond coat and titania blend top coat.
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Let the response of a mildly non-linear system, such as an elastic
beam coated with a non-linear material having amplitude-depen-
dent stiffness and damping, be represented by a complex stiffness:

k� ¼ k0½1� jðAÞ� þ jk0gðAÞ ðA1Þ

where A is a measure of the maximum (resonant) response, typically
the maximum strain. Amplitude-dependent softening is represented
by positive values of j(A). g(A) is an amplitude dependent loss factor.
Although the response of a non-linear system to a harmonic excita-
tion can not be truly harmonic, we assume here that the dominant
portion of the response may be estimated from the complex ampli-
tude of response of an equivalent linear system to a harmonic excita-
tion F(t) = F0cosXt at any frequency ratio / = X/x0

X
xST
¼ 1
ð1� jðAÞ �u2Þ þ jgðAÞ ðA2Þ

where x0 is the undamped frequency at zero amplitude and xxt = F0/
k0. The dimensionless amplitude at resonance is simply 1/g(Ares).
The two frequencies away from resonance at which the amplitude
is some fraction r of the value at resonance are the roots of

jrXj
xST
¼ r

gðAresÞ
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� jðrAresÞ �u2Þ2 þ g2ðrAresÞ
q ðA3Þ

The difference between the values of /2 is independent of the pre-
sumed form of the stiffness non-linearity so that, if the two frequen-
cies are observable

u2
2 �u2

1 ¼ ðu2 �u1Þðu2 þu1Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðAresÞ

r

� �2

� g2ðrAresÞ

s
ðA4Þ

If bandwidth measurements are taken at the half-power point
(r = 1/

p
2), the frequency difference, f2 � f1, is the apparent band-

width, gAPP, which may be related to the true value by Eq. (A4). If
the damping is relatively light, and softening parameter modest,
j(Ares)	 1, the sum of the two normalized frequencies is very
nearly 2. The true loss factor at amplitude Ares is then related to
the apparent (observed) value at that amplitude and the true value
at the lower (half-power) amplitude by:

gðAresÞ ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½gAppðAresÞ�2 þ ½gðAres=

ffiffiffi
2
p
Þ�2

q
ðA5Þ

If the functional form of the true loss factor as a function of ampli-
tude is known, but with unknown parameters, it may be substituted
into Eq. (A5) and the necessary parameters extracted form the data.
This is quite simply done if the dependence of the loss factor on
amplitude is of a simple form, such as g(A) = g0Am. For m = 1, the
true loss factor is found to 0.8165 of the half-power bandwidth
determination at all strains (Torvik, 2003).
If the true system loss factor is assumed to have a more complex
form, such as a polynomial representation, coefficients for the
expansion may be obtained by the following process:

1. Obtain a polynomial fit to observed system loss factors. First
and fourth order polynomials, respectively, are found to be ade-
quate for data such as those of Fig. A1a and b.

2. Using coefficients for a polynomial fit to the apparent (observed)
system loss factor; evaluate the apparent loss factor at a number
of values of strain. The choice of strains en = 10(2)n/8 is useful, as
the half-power amplitude for any amplitude en is then simply
the amplitude at the strain corresponding to n � 4.

3. Estimate the loss factors for the first four values of strain as the
intercept value for measurements such as Fig. A1a or by
gTrue = 0.81645gApp when the amplitude dependence is nearly
linear at low strain, as in Fig. A1b.

4. For n P 4, use Eq. (A5) sequentially

gTrueðenÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
½fgAppðenÞg2 þ fgTrueðen�4Þg2�

r
ðA6Þ

This process was applied to the test data as given above in Fig. 4,
using only data taken for the ceramic at maximum strains trains
below 350 ppm, with the results shown in Fig. A1. Original data
points for both specimens are shown as points without lines; data
after correction for the damping non-linearity are given as the solid
lines. For the data from the beams with the ceramic top coat, the
influence of the non-linearity is seen to be the strongest in the
low-strain region where the loss factor increases with strain, and
relatively minor at the higher strains. As expected, when the
apparent loss factor increases with strain, it is an overestimate of
the true value, and when it diminishes with increasing strain, it
provides an underestimate.
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