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The extracellular matrix in the kidney: a source of
novel non-invasive biomarkers of kidney fibrosis?
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Abstract

Interstitial fibrosis is the common endpoint of end-stage chronic kidney disease (CKD) leading to kidney failure. The
clinical course of many renal diseases, and thereby of CKD, is highly variable. One of the major challenges in
deciding which treatment approach is best suited for a patient but also in the development of new treatments is
the lack of markers able to identify and stratify patients with stable versus progressive disease. At the moment renal
biopsy is the only means of diagnosing renal interstitial fibrosis. Novel biomarkers should improve diagnosis of a
disease, estimate its prognosis and assess the response to treatment, all in a non-invasive manner. Existing markers
of CKD do not fully and specifically address these requirements and in particular do not specifically reflect renal
fibrosis. The aim of this review is to give an insight of the involvement of the extracellular matrix (ECM) proteins in
kidney diseases and as a source of potential novel biomarkers of renal fibrosis. In particular the use of the protein
fingerprint technology, that identifies neo-epitopes of ECM proteins generated by proteolytic cleavage by proteases
or other post-translational modifications, might identify such novel biomarkers of renal fibrosis.
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Review
Renal fibrosis is the principal pathological process under-
lying the progression of chronic kidney disease (CKD) and
finally leading to end-stage renal disease (ESRD). For pa-
tients progressing to ESRD the mortality levels exceed
those of some malignancies. This devastating condition is
not only a major problem for the lives of patients, but also
an economic burden for the health system.. The US Renal
Data System, USRDS 2013 Annual Data Report estimated
that 14% of the adult population in the USA had CKD and
the costs for CKD patients older than 65 reached over
$ 45 billion [1]. Patients with ESRD require lifelong dialysis
and the only possible treatment is kidney transplant.
Renal and in particular interstitial fibrosis is a common

feature of CKD, regardless of the etiology of the primary
disease. Interstitial fibrosis is the strongest indicator of
disease progression, even when the primary disease is of
glomerular origin [2]. Therapies for renal fibrosis with
proven efficacy in clinical settings currently do not exist.
The challenge in finding anti-fibrotic therapies is partly
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due to the need of long and expensive clinical trials, as the
currently used clinical endpoints require long study dura-
tions and a large number of patients [3]. The development
of novel, non-invasive, fibrosis-specific biomarkers, reflect-
ing morphological tissue changes at early stages and pre-
dicting the evolution of renal fibrosis, would be of great
importance. Such biomarkers would facilitate clinical
studies with experimentally established drugs targeting
profibrotic molecules and could identify patients that need
to be treated at the right moment.
The PubMed database was searched to identify arti-

cles on renal fibrosis using the following keywords:
renal fibrosis, extracellular matrix (ECM), CKD, bio-
markers, collagen, proteoglycans, glomerular basement
membrane, mesangium and matrix metalloproteinase
(MMP), as Medical Subject Headings (MeSH). The refer-
ence lists of identified papers were also used for further
search. Each author further selected key publications
based on their personal knowledge on the topic of bio-
markers for renal fibrosis. Only full-text articles written
in English were included and the focus was placed on
studies published within the last three years.
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Mechanisms of renal fibrosis
Renal fibrosis, that is, the accumulation and dysregulated
remodelling of ECM, can affect all major compartments
of the kidney being termed glomerulosclerosis in the
glomeruli, tubulointerstitial fibrosis in the tubulointersti-
tium and arterio- and arteriolosclerosis in the vascula-
ture. At a certain point, virtually all renal cells are
involved in fibrosis [4]. The description of the cellular
and molecular mechanisms of kidney fibrosis is beyond
the scope of this review and has already been thoroughly
discussed by others [5-7]. We will focus on the mecha-
nisms related to ECM accumulation and remodelling in
renal fibrosis as a potentially relevant source of novel
biomarkers for renal fibrosis.
Figure 1 Progression of renal interstitial fibrosis. Fibrogenesis starts wi
host defense response. When this response becomes uncontrolled and sus
inflammation does not resolve and can create the optimal microenvironme
Renal fibrosis is the result of a failed wound healing
process that occurs after an initial insult. The patho-
physiology of renal fibrosis can be divided into four
phases: 1) cellular activation and injury phase or priming;
2) fibrogenic signalling phase or activation; 3) fibrogenic
phase or execution; and 4) destructive phase or progres-
sion. Figure 1 describes the different phases of tubular
interstitial fibrosis and some of the cells and molecules
that intervene in the process. These phases can be best
studied and differentiated in animal models, in which a
disease stimulus is often applied at a single time-point so
that the injury and the progression are synchronized. In
most, if not all, human diseases this is not the case and, to
a variable and yet not defined extent, all phases can be
th an initial tissue injury that causes inflammation as the physiological
tains itself with continuous production of chemotactic cytokines,
nt for tissue fibrogenesis.
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observed at the same time. Various mediators of renal
fibrosis have been described, such as the prototypical
profibrotic molecules transforming growth factor beta 1
(TGF-β1) and platelet-derived growth factor (PDGF),
which will not be discussed in detail here [8,9]. Among
the effectors causing a pathological matrix accumula-
tion, plasminogen activator inhibitor-1 (PAI-1), which is
induced by TGF-β, was shown to modulate fibrosis via
effects on cell migration, matrix turnover and macrophage
infiltration [10]. The role of this effector in kidney fibrosis
has been described elsewhere [11]. Even though many
cell types in the kidney are able to produce ECM, (myo-)
fibroblasts in the interstitium and mesangial cells in the
glomeruli are considered the main cellular mediators of
interstitial fibrosis and glomerulosclerosis, respectively
[2,12]. In the kidney, myofibroblasts can originate from
different sources, the most important being resident
interstitial fibroblasts in the cortex and pericytes in the
medulla. Other sources seem to contribute to a lesser
and varying extent to the pool of myofibroblasts and in-
clude endothelial cells (via endothelial-to-mesenchymal
transition), tubular epithelial cells (via epithelial-to-
mesenchymal transition) and fibrocytes [2,12,13].
Fibronectin is the first ECM protein that is deposited

in fibrogenesis [14]. It activates integrins, functions as a
fibroblast chemoattractant and co-localizes with collagen
formation. This triggers the production of a large variety
of ECM proteins, discussed below [7]. The synthesis,
deposition and degradation of different ECM proteins,
their post-translational modifications, together with the
induction of proteases and protease inhibitors and other
ECM remodelling enzymes (for example tissue transglu-
taminase) contribute to the development of irreversible
fibrosis [7].
Diagnosis of renal fibrosis
At present, kidney biopsy is the only method to detect
renal fibrosis. It is an invasive procedure with possible
complications. The extent of interstitial fibrosis in kidney
biopsy is most often reported in a semi-quantitative man-
ner and has several intrinsic limitations, mainly due to
sampling error and to intra- and inter-observer variability
[15]. Imaging techniques, such as ultrasound, can show
signs of corticomedullary differentiation, which is a sen-
sitive but not specific marker of CKD; it can moreover
show the size of the kidneys, the presence of cysts and
solid lesions, urinary obstruction or scars but it cannot
diagnose the presence of ongoing interstitial or glom-
erular fibrogenesis [16]. Another imaging technique that
is attracting increasing interest is the magnetic resonance
elastography (MRE), already used in the hepatic field to
detect liver fibrosis [17]. MRE can non-invasively sample
tissue stiffness in vivo, and its possible use in renal fibrosis
is under evaluation [18]. At the moment, there are no
specific molecular imaging modalities for renal fibrosis.
Serological and urinary markers can rapidly change

following a physiological or pathological event, and are
therefore dynamic. Here we will discuss established, de-
veloping and potential serological and urinary markers
of renal fibrosis.

Chronic kidney disease (CKD) biomarkers
In the last decade, there has been intense interest and
effort in finding novel predictive biomarkers for the
diagnosis and prognosis of CKD. Several molecules in-
volved in kidney function, signalling and structure have
been evaluated as potential markers for CKD [19]. The
only markers currently accepted and used in clinical
practice for the diagnosis and prognosis of CKD are
markers of loss of kidney function. The most widely
used are the estimated glomerular filtration rate (eGFR)
[20], serum creatinine, blood urea nitrogen (BUN) [21]
and albuminuria or proteinuria [22]. Cystatin C [23] and
β-trace protein [24] have been proposed as an alternative
to creatinine to estimate the GFR. These markers indicate
impaired renal function but have no disease specificity,
and detectable changes in their concentration come after
the biological changes in the organ causing the functional
impairment.
Molecules involved in inflammation or in signalling

leading to the onset of fibrosis have been studied as pos-
sible markers for renal fibrosis. Some of these molecules
belong to the panel of urinary biomarkers proposed by the
Predictive Safety Testing Consortium (PSTC) for the de-
tection of drug-induced kidney toxicity [25]. Even though
the purpose of these markers is to detect an acute re-
sponse to the injury, some are also being evaluated as early
markers of CKD and progression towards ESRD. These
molecules include: C-reactive protein (CRP), tumor necro-
sis factor receptor II (TNFRII), TGF-β1 and pentraxin-3
as cytokines involved in the development of CKD; asym-
metric dimethylarginine (ADMA) as a marker of endo-
thelial dysfunction and consequent kidney damage [26];
fibroblast growth factor-23 (FGF-23), adiponectin and
apolipoprotein A-IV as metabolic factors involved in the
regulation of kidney metabolism; and gamma-glutamyl
transpeptidase (GGT) as molecules involved in oxida-
tive stress, which can contribute to CKD pathogenesis.
Endostatin, the N-terminal portion of collagen type
XVIII, is a potent anti-angiogenic factor which has been
recently evaluated as a marker of CKD. A significant
elevation of endostatin in plasma of patients with CKD
following disease severity compared to controls without
CKD was observed [27]. Except FGF-23, all the other
markers are not kidney-specific and require further
evaluation in larger clinical cohorts to confirm their
potential (reviewed thoroughly elsewhere [19]). FGF-23
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is currently one of the most promising markers for
CKD. This phosphaturic hormone is increased in serum
in a physiological adaptation to the hyperphosphatemia
that arises when the GFR decreases below 25 ml/min/
1.73 m2 [28]. Several studies demonstrated the potential
of FGF-23 as a marker of mortality in dialysis patients
[29], initiation of chronic dialysis [30], CKD progression
[31,32], cardiovascular disease [30], cardiovascular mor-
tality [32] or all-cause mortality [30,32].
Kidney-specific molecules are more likely to specifically

reflect renal injury. Such molecules include podocyte-
specific proteins nephrin, podocin and podocalyxin as
urinary markers of glomerular damage [33,34]. Following
the same rationale, neutrophil gelatinase-associated lipoca-
lin (NGAL) [35], kidney injury molecule-1 (KIM-1) [36,37],
N-acetyl-beta-D-glucosaminidase (NAG) and liver-type
fatty acid-binding protein (L-FABP) [38-41] can be markers
of tubular damage, as these are proteins expressed in the
tubules that can be released in serum or urine following
tubular damage. Both NGAL and KIM-1 are well-known
markers of acute kidney injury and their potential as diag-
nostic and prognostic markers of CKD has been evaluated
in various studies and reviewed in detail elsewhere [19].
NGAL was shown to be increased in serum and/or urine of
patients suffering from different kidney diseases, for ex-
ample in patients with IgA nephropathy (IgAN), various
glomerulonephritis, autosomal dominant polycystic kidney
disease (ADPKD), pediatric lupus nephritis and CKD from
a range of etiologies, and to differentiate between CKD
stages [19,42]. NGAL might be a good marker for tubuloin-
terstitial injury in CKD, and might identify progression of
the disease. It has to be mentioned though, that the results
are not consistent in all studies [35,43,44]. Urinary KIM-1
levels were associated with the outcome of incident CKD
or rapidly declining kidney function in the Multi-Ethnic
Study of Atherosclerosis (MESA) cohort [44]. Other studies
[41,43,44] showed a good potential for KIM-1 as a diag-
nostic marker for CKD and even as a marker of efficacy of
intervention. However, as for many other markers, con-
firmation in long-term observational studies using larger
populations is still required [19,43]. First hints suggest that
cytokeratin 18, which can be released into urine and circu-
lation following renal epithelial cell death, might also be a
novel marker of CKD. Serological and urinary concentra-
tion levels of total cytokeratin 18 measured in CKD pa-
tients could separate patients with advanced CKD from
patients with mild disease and healthy controls [45]. All
these molecules have been evaluated for their association
with impaired kidney function, but they are not directly
linked to fibrosis, that is, to the deposition and remodel-
ling of ECM. The tubular damage markers are not com-
pletely specific for the kidneys, as many of these proteins
are also involved in other diseases, as for example NGAL
(also known as lipocalin-2) in the liver.
In the search for specific biomarkers of kidney fibrosis,
the ECM proteome is a large source of new potential
targets. Only a few of these proteins have been analyzed
as diagnostic and prognostic markers, despite their in-
volvement in renal fibrosis that has been proven. A good
biomarker should reflect the presence of renal fibrosis
and be linked to an outcome (decline in eGFR, renal
failure, death). The ideal biomarker should be detected
non-invasively and should be able to predict the pro-
gression of the disease and/or the response to a treat-
ment in a more sensitive and specific manner compared
to standard parameters.
The following sections give an overview on involvement

of renal ECM proteins and proteases in renal fibrosis and
their potential utility as diagnostic or prognostic markers
of renal fibrosis.

The extracellular matrix (ECM) of the kidney
The ECM is a very dynamic, highly charged structure
which acts both as a support structure for the cells and as
an active component in cell signalling [46]. It is composed
of collagens, glycoproteins and elastin molecules which
form a complex network interacting with each other and
with the surrounding cells. Proteases, for example MMPs
and their inhibitors, are responsible for maintaining the
equilibrium between formation and degradation of ECM
proteins. In the kidney cortex, the ECM is present in ana-
tomically distinct areas with different functions depending
on its molecular components:

1. in the glomeruli

a. glomerular basement membrane
b. Bowman’s capsule
c. mesangial ECM

2. in the tubulointerstitium
a. tubular basement membrane (in part segment-

specific)
b. peritubular capillary basement membrane
c. interstitial ECM

3. in larger vessels
a. within the vessels (lamina elastica interna and

externa)
b. around the vessels (adventitia of arteries and

veins)

Medullary interstitial ECM is physiologically more
prominent compared to the cortical interstitial ECM,
steadily increasing in quantity in the direction from
outer to inner medulla/papilla. The functional consequence
of this difference is yet unclear. The hilar region, renal pel-
vis (for example suburothelial basement membrane) and
renal capsule are also composed of ECM. The contribu-
tion and remodelling of ECM in these specific anatomical
locations in renal fibrosis are not well-studied.
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The next paragraphs describe the proteins that compose
the renal ECM in healthy state and those involved in the
onset of fibrosis, with particular focus on those that can
be a source of new biomarkers. A comprehensive list of
experimental evidence for ECM proteins being involved in
renal fibrosis, derived from both pre-clinical and clinical
studies, is included in Additional file 1: Table S1.

Glomerular basement membrane (GBM)
The glomerular basement membrane (GBM) is thicker
compared to most other basement membranes. It contains
four main macromolecules: laminin, collagen type IV,
nidogen and heparan sulphate proteoglycans. The main
function of the GBM is to act as a charge- and size-
selective filtration barrier between the vascular system
and the urinary space.
Laminin is secreted as an αβγ heterotrimer (α5, β2

and γ1 laminins are present in the mature GBM [47]),
which forms a network required to maintain the base-
ment membrane integrity. Mutations of the laminin
genes can lead to kidney diseases, for example mice with
a hypomorphic mutation in the gene for the laminin α5
subunit develop polycystic kidney disease [48]; a null
mutation of the gene for the laminin α4 subunit can
cause progressive glomerular and tubulointerstitial fibro-
sis [49]; and truncation or severe missense mutations in
the gene for the laminin β2 subunit can cause Pierson
syndrome, characterized by premature death from renal
failure [47].
Collagen type IV is composed by three α chains that

fold in a triple helix and, by binding with other collagen
type IV molecules, form the meshwork conformation
typical of the basement membrane. The α3(IV), α4(IV)
and α5(IV) chains are the most expressed in the adult
GBM [50]. Mutations in the gene for the α5 chain of
collagen type IV cause the X-linked Alport syndrome in
humans, a rare genetic disease characterized by progres-
sive glomerular injury. Mutations in the genes for the α3
and α4 chains can cause autosomal recessive and auto-
somal dominant Alport syndrome and thin basement
membrane nephropathy. Collagen type IV is also the tar-
get of two autoimmune diseases affecting the kidney:
Goodpasture’s syndrome and Alport post-transplantation
disease. Both diseases are characterized by autoantibodies
attacking the GBM and causing rapidly progressive glom-
erulonephritis [47]. Knock-out mice for the gene for the
α3 chain and for the α5 chain of collagen type IV are
widely used as murine models of autosomal and X-linked
Alport syndrome, respectively [51,52]. Increased collagen
type IV expression was described in chronic transplant
nephropathy using immunohistochemistry [53]. The
distribution of up-regulated collagen type IV was uni-
form in the GBM, in the mesangium and in the intersti-
tium. Collagen type IV was also used in experimental
animal studies as a marker of glomerular sclerosis and
interstitial fibrosis [8,54].
Elevated urinary concentration levels of collagen type IV

have been associated with the decline of renal function in
patients with type 1 [55] and type 2 diabetes [56,57], but
also in non-diabetic nephropathies, such as membranous
nephropathy and anti-neutrophil cytoplasmic antibody
(ANCA)-associated glomerulonephritis [58]. Specifically,
type 1 diabetic nephropathy (DN) patients with elevated
urinary collagen type IV to creatinine ratio (T4C) but
normal albumin to creatinine ratio (ACR) declined more
rapidly in eGFR than patients with normal T4C [55]. In
type 2 diabetic patients, increased collagen type IV urine
excretion was associated with the severity of morpho-
logical alterations in fibrosis, albeit no direct relationship
with the content of collagen type IV in the kidney could
be observed [56]. Another study in type 2 diabetic patients
with normoalbuminuria and microalbuminuria found
an inverse correlation between urinary collagen type IV
excretion and the outcome annual decline of eGFR, but
no correlation with progression to advanced diabetic
nephropathy was found [57]. In a study on biopsy-proven
membranous nephropathy and ANCA-associated glomer-
ulonephritis [58] elevated levels of urinary collagen type
IV were correlated with urinary proteins, urinary NAG
and selectivity index. Different results were observed in a
urinary peptidome study performed in type I diabetic pa-
tients. Patients with progressive early function decline
showed a decreased expression of fragments of collagen
type IV (α1 chain) compared with control subjects with
stable renal function [59]. These results suggest that
urinary collagen type IV might be a promising additive
biomarker in patients with diabetic nephropathy and
further clinical studies are eagerly awaited.
The transmembrane collagen type XVII has been

recently identified in the GBM. Its deficiency causes
effacement of podocyte foot processes, therefore it
might be involved in the attachment of the podocyte to
the GBM [60]. Nidogen 1 and 2 bind to collagen type
IV and laminin separately. Although nidogens have a
role in the basement membrane formation, experimen-
tal evidence showed that they are not strictly required
for GBM formation [61]. Agrin is the major heparan
sulphate proteoglycan of the GBM in healthy kidneys,
while perlecan is an abundant component of other
basement membranes [62]. Perlecan expression levels
are increased in the glomeruli of IgAN patients and
correlate with a lower urinary albumin excretion, sug-
gesting that perlecan could be a marker of slower pro-
gression of the disease, and therefore of better outcome
[63]. Perlecan and agrin, as all the heparan sulphate
proteoglycans, have highly negatively charged glycosami-
noglycans (GAGs), assumed to contribute to the negative
charge of the basement membrane [61]. Interestingly,
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several studies showed that lack of perlecan and agrin
does not lead to proteinuria, even though it affects the
negative charge of the GBM [64-66].

Mesangial ECM
The mesangial ECM provides structural support for the
glomerular capillary convolute, connecting with the extra-
glomerular mesangium at the vascular pole. It has a role
in cell-matrix signalling in a bidirectional manner. Dysreg-
ulation of this cell-matrix signalling plays a role in a wide
range of glomerular diseases [67], such as IgAN [68] and
DN [69]. Mesangial ECM differs substantially from GBM,
and its composition allows larger molecules to pass to the
mesangium. In physiological conditions its major compo-
nents are fibronectin, collagen type IV (α1 and α2 chains,
but not α3 and α5), collagen type V, laminin A, B1 and B2,
chondroitin sulphate and heparan sulphate proteoglycans
(perlecan, collagen type XVIII and bamacan, but not
agrin) and nidogen [47,67]. The small proteoglycans dec-
orin, biglycan, fibromodulin and lumican are weakly
expressed in the mesangial matrix and rather localized in
the tubular interstitium [70]. Under pathological condi-
tions, decorin and biglycan were shown to be up-regulated
in glomeruli [63]. Consistently, elevation of collagen type
IV was also reported in several studies with humans and
rodent models where protein localization and both protein
and mRNA levels were assessed [69,71-73].
Typical scar collagen type I is de novo expressed in

glomerulosclerosis, and by inhibiting its accumulation, a
reduction in the extent of glomerulosclerosis was obtained
in a model of DN [74]. MMPs play an important role in
the homeostasis of the mesangial matrix, for example
alterations on MMP function were shown to be linked
to light chain diseases [75].
At the moment it is unclear whether glomerular ECM

(either GBM or mesangium) might provide specific bio-
markers of glomerular injury.

Interstitial ECM
The renal interstitial matrix is normally composed by
collagen type I, III, V, VI, VII and XV, both sulphated
and non-sulphated glycosaminoglycans, glycoproteins and
polysaccharides. During fibrosis, the formation of scar
tissue in the interstitial space is the result of the excessive
accumulation of ECM components.

Collagens
Collagens constitute the main structural element of the
interstitial ECM, providing tensile strength, regulating
cell adhesion, support, chemotaxis, cell migration and
tissue development [76]. Collagen type I and III are
known to be deposited in early stages during renal
fibrosis [73,77,78].
Collagen type I accumulates in fibrotic glomeruli,
tubulointerstitial space and arterial walls in pathological
conditions, co-localizing with decorin and biglycan [79].
Collagen type I accumulation in fibrosis, as many other
ECM molecules, is both due to decreased degradation
and elevated synthesis [14,69]. Urinary proteome ana-
lyses could differentiate DN patients from healthy indi-
viduals and patients with other chronic kidney diseases
[80]. Among the proteins differentially expressed, frag-
ments of collagen type I were significantly less present
in the urine of DN patients. The authors suggested that
this indicated a decreased collagen proteolysis, probably
due to cross-linking rendering the collagens resistant to
proteolytic cleavage or to increased protease inhibitor
expression [80].
In physiological conditions collagen type III is normally

expressed at low levels in the interstitium, and it is un-
detectable in glomeruli. However, during fibrosis the ex-
pression levels are increased in the interstitium and in the
glomeruli, as shown by immunohistochemical analysis on
human renal biopsies using antibodies against the collagen
type III N-terminal pro-peptide (PIIINP) [81].
PIIINP was detected in high concentrations in urine and

serum of patients with various renal diseases [81-83].
Urinary PIIINP (and collagen IV) levels were elevated in
patients with various nephropathies and correlated with
the extent of interstitial fibrosis in kidney biopsies [81].
The urinary PIIINP to creatinine ratio (uPIIINP/Cr) was
evaluated in kidney transplant patients and correlated
with the extent of interstitial fibrosis [82]. Furthermore,
in another study on patients with different CKD stages
subjected to kidney biopsy, uPIIINP/Cr correlated with
serum creatinine, eGFR and CKD stage as well as with
the extent of fibrosis evaluated in the biopsies [83].
Elevation of collagen type V and VI in kidney fibrotic

tissue has been reported in various studies [69,84].
Conversely, decreased concentrations of collagen type
V (α1 chain) were observed in a urinary peptidome of
patients with type 1 DN with early renal function decline
[59]. Although different types of collagen are highly up-
regulated in renal fibrosis, so far only PIIINP and collagen
type IV have been analyzed as potential biomarkers. Both
are among the most promising specific markers reflecting
renal fibrosis.

Glycoproteins
Fibronectin is an adhesive glycoprotein involved in the
organization of the ECM. Its accumulation is one of the
first events during renal fibrosis [14]. It was shown to
be up-regulated in many animal models and in human
CKD [69,71,73,78,85].
Thrombospondin-1 (TSP-1) is an adhesive glycoprotein

involved in fibroblast proliferation and migration [86]. It
was shown to be up-regulated before the disease onset,
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and correlated with the degree of tubulointerstitial fibrosis
in three different rat models of renal fibrosis. TSP-1 was
observed to be transiently expressed at early fibrosis
stages, suggesting a possible role as a mediator of intersti-
tial fibrosis via activation of TGF-β [69,86].
Proteoglycans are a subgroup of glycoproteins with a

high content of carbohydrates, which fill the majority of
the renal extracellular interstitial space. They have a wide
variety of functions, such as hydration, force-resistance
and growth factor binding [87]. The latter is important in
renal fibrosis as proteoglycans act as a reservoir of profi-
brotic growth factors, such as the latent forms of TGF-β
or FGF-2 [5].
Decorin, biglycan and fibromodulin are small leucine-

rich proteoglycans (SLRPs), which act as potent regulators
of TGF-β [62,88]. Decorin and biglycan also have an
important role in collagen fibrillogenesis. In healthy
adult renal tissue, decorin and biglycan are expressed in
the tubulointerstitium and weakly in the glomeruli [69].
However, during progressive renal scarring an increased
expression of decorin and biglycan was observed in vari-
ous experimental models of renal injury and in humans
[79,84,85,89-91]. Specifically, in the unilateral ureteral ob-
struction (UUO) model, tubular biglycan up-regulation
was observed before macrophage infiltration, indicating
that biglycan could act as an initiator and regulator of
inflammation in the kidney [89]. Biglycan and decorin
expression was also found to be highly up-regulated in
the glomeruli of IgAN patients, indicating a potential
role in this glomerular disease [63]. Decorin has well-
known anti-fibrotic properties: it neutralizes TGF-β activity
by interfering with its signalling; it exerts an anti-apoptotic
activity on tubular epithelial and endothelial cells; and can
induce fibrillin-1 expression, by binding the insulin-like
growth factor type I (IGF-I) receptor [92]. Its use as an
anti-fibrotic molecule has been shown in a rat model of
glomerulonephritis [93].
Hyaluronan is a high molecular weight glycosaminogly-

can formed by the repetition of disaccharides composed
by N-acetylglucosamine and glucuronic acid [62]. It has
the ability to bind to a variety of proteoglycans and to cell
receptors acting as a signalling molecule. In a healthy hu-
man kidney, hyaluronan is very little expressed. However,
during progressive kidney disease, it accumulates in the
cortical interstitium and may potentiate interstitial inflam-
mation by stimulating the recruitment of monocytes to
the interstitial space [5]. Elevated levels of hyaluronan in
renal tissue were reported in several kidney diseases in
both rat models, for example ischemia-reperfusion injury,
and human diseases, for example DN, renal transplant
rejection and kidney stone formation [94].
Versican is a chondroitin sulphate proteoglycan, the

largest member of the modular proteoglycans, with an
important role in maintaining the integrity of the ECM
by interacting with hyaluronan [89,95]. In healthy renal
tissue, versican is found expressed in the tubulointersti-
tium and the blood vessels, but not in the glomeruli [96].
In patients with different proteinuric nephropathies, versi-
can expression was increased in areas with marked tubu-
lointerstitial fibrosis, suggesting that versican may have an
important role during CKD progression [97]. Most of
the above mentioned glycoproteins undergo significant
regulation during kidney fibrosis. Still, no data exist on
their potential as renal biomarkers.

Matrix metalloproteinases (MMPs) and other proteases
The enzymes playing a central role in matrix remodelling
are metalloproteinases. Metalloproteinases are synthesized
in kidneys and have an important function in maintaining
the homeostasis of the ECM. The main families of metallo-
proteinases are MMPs, a disintegrin and metalloproteinase
(ADAM) proteins and a disintegrin and metalloproteinase
with thrombospondin motifs (ADAMTS). The role of AD-
AMs and ADAMTS is only starting to emerge and will
not be discussed here [98-103]. Serine proteases (plasmin
and cathepsin G) and cysteine proteases (cathepsins B, H
and L) can also contribute to the degradation of ECM
components at neutral pH [104].

MMPs and tissue inhibitors of metalloproteinases (TIMPs)
MMPs are zinc-dependent enzymes involved in ECM
remodelling, which play a central role in tissue homeo-
stasis. There are 23 MMPs in humans [105] and at least
ten of them are expressed in the kidney (MMP-1, -2, -3,
-9, -13, -14, -24, -25, -27 and -28) [106]. MMP-12 was
thought not to be expressed in the kidney even though
some experimental results in an animal model suggest
the opposite [107]. MMPs were hypothesized to be anti-
fibrotic due to their function as ECM degradation en-
zymes. Increasing evidence suggests that MMPs have a
more complex role in renal fibrosis [4,108,109]. For ex-
ample, MMP-9-mediated degradation of collagens creates
collagen fragments, which possess chemotactic properties
for neutrophils and are able to stimulate MMP-9 produc-
tion. Apart from their action on ECM components, MMPs
are also known to modulate growth factors and their re-
ceptors (TGF-β, FGF-R1), adhesion molecules (integrins
and cadherins) [109], cytokines and chemokines. Conse-
quently, MMPs are involved in several processes aside
from ECM remodelling, such as destruction of the base-
ment membrane, angiogenesis, cell migration and cell
apoptosis, some being pro- and some anti-fibrotic de-
pending on the context [4,109,110]. MMPs are inhibited
permanently by degradation or temporarily by tissue in-
hibitors of metalloproteinases (TIMPs). A balance be-
tween MMP and TIMP activity is essential for ECM
homeostasis [109]. Among the four TIMPs that have
been identified in vertebrates, TIMP-1, -2 and -3 are
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expressed in the kidney [106]. Increased mRNA and
protein levels of TIMP-1 were reported in several human
and rodent models of different renal diseases, suggesting
that TIMP-1 might be involved in the early events during
the progression of renal diseases [5,73,109]. TIMP-2 has
also been shown to be elevated in various rat models of
renal disease [73]. The exact localization and temporal
expression of MMPs in the human kidney is still not
completely understood [108]. Most of the data on MMP
expression derive from animal models of kidney dis-
eases (Additional file 1: Table S1). MMP-2 and MMP-9
are known to be involved in the proteolysis of collagen
type IV, which accumulates in the basement membranes,
for example in early stages of DN. MMP-2 and MMP-9
expression and activity were up-regulated in different ani-
mal models of renal fibrosis [69,91,109,111,112], but were
decreased in cases of DN in both humans and rats
[69,113]. Changes in MMP-2 and MMP-9 activity might
therefore influence the ECM composition causing renal
damage at early stages of DN [106]. However, another
study showed that urinary levels of MMP-9, together with
collagen type IV, were elevated in type 2 DN patients with
macroalbuminuria [114]. MMP-3 expression and activity
during DN was decreased in both humans and rats [69].
MMP-7 is not expressed in healthy human kidneys but
was found in epithelial cells and atrophic tubules in pa-
tients with ADPKD and in a mouse model of acute renal
tubule injury and chronic progressive renal fibrosis [115].
Some of the contrasting results, particularly in regards to
MMP-2 and MMP-9, can be explained by the impossibility
to distinguish between the active and the inactive form
of the protease with the commercially available assays.
Figure 2 Neo-epitope markers for ECM remodelling. a) Neo-epitopes o
provide more information than the measurement of total collagen type I. b
ECM proteins by specific proteases. ECM, extracellular matrix.
In many cases the findings are based on up- or down-
regulated expression of MMP genes, which do not ne-
cessarily translate into an increased presence of active
proteases. This is the main limitation in the use of
MMPs and TIMPs as markers of renal fibrosis. Given
the functional complexity of the MMPs, it is likely that
they themselves might not be suitable biomarkers of
renal fibrosis.

Protein fingerprint technology
A highly regulated equilibrium between synthesis and
degradation of ECM proteins is required to maintain
tissue homeostasis. A disruption of this equilibrium is
at the base of pathological processes such as fibrosis
[104]. The measurement of the ECM remodelling rate,
represented by end-products of ECM proteins in the
biological fluids [116], can give an indication on the dis-
ease activity and progression. The peptides generated by
specific protein degradation by MMPs or other proteases
involved in a specific disease provide a unique fingerprint
for a particular disease [117]. This approach is called pro-
tein fingerprint (Figure 2a). Compared to measurement of
the intact/whole protein, the measurement of such modi-
fied ‘fingerprint’ peptides are likely to be more sensitive
markers of pathology. This is because only the action
of a specific protease (or other post-translational mod-
ifications) on a specific protein that is accumulated in
a particular diseased tissue can generate the new N- or
C-terminal, namely the neo-epitope.
The peptides originating from the protease-mediated

degradation of the ECM may be small enough to be re-
leased in circulation or urine. There they can be detected
f collagen type I generated by different post-translational modifications
) Formation of detectable neo-epitopes generated by cleavage of
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by antibodies raised specifically to react against the
neo-epitope (Figure 2b). Other post-translational modifi-
cations, for example isomerization, citrullination, glycosyla-
tion and cross-linking can also originate from neo-epitopes
to be used for protein fingerprint [118], but will be not
discussed here. Markers reflecting ECM remodelling can
not only identify and quantify a pathological process
within the organ of interest, but can potentially describe
the disease activity. This might for example help to segre-
gate the patients that progress faster with the disease.
Markers reflecting the disrupted ECM turnover might de-
tect tissue modifications, which happen in the first stages
of the disease when the pathological process can possibly
still be reversed.
As outlined above, surprisingly very little data exists

on the use of ECM, the principal underlying structure of
fibrotic tissue, as a source of biomarkers of renal fibrosis.
Such biomarkers could identify the early modifications
that lead to renal fibrosis and could allow early treatment,
helping in the resolution of fibrosis. Figure 3 illustrates the
possible advantages of markers of structural changes over
markers of loss of kidney function.
Neo-epitopes of different types of collagen (type I, II,

III, IV, V and VI collagen), proteoglycans (biglycan and
versican) and elastin have already proven to be biomarkers
of connective tissue diseases, such as osteoarthritis [119]
or organ fibrosis, in both animal models and clinical
studies [120-130].
Experimental evidence in well-characterized animal

models showed that neo-epitope fragments of collagen
type I (C1M), III (C3M), IV (C4M) and V (C5M), biglycan
(BGM) MMP-mediated degradation, and of collagen type
III (Pro-C3), IV (P4NP 7S) and V (P5NP) formation were
markers of liver fibrosis [120,126-129,131]. These markers
(except BGM) also showed a promising potential for
Figure 3 Biomarkers of ECM remodelling may identify
molecular processes occurring in the early phases of
fibrogenesis, giving the opportunity for early intervention in
stages in which the disease is still reversible. The development
of fibrosis is schematically indicated as linear for simplicity. ECM,
extracellular matrix.
monitoring the efficacy of the treatment with statins in an
experimental model of liver fibrosis [132]. C3M was ele-
vated in urine of mice treated with bleomycin to induce
skin fibrosis compared to the controls, showing a potential
use of this marker in skin fibrosis [125].
Clinical studies showed that the markers BGM, elastin

MMP-generated neo-epitope fragment (ELM) C1M, C3M,
C4M C5M, collagen type VI MMP-generated neo-epitope
fragment (C6M), Pro-C3 and P4NP 7S were associated
with portal hypertension in patients with cirrhosis, reflect-
ing the degree of liver dysfunction [123]. A marker of
MMP-mediated versican degradation (VCANM) was el-
evated in plasma of patients suffering from different
cardiovascular diseases [130]. Promising clinical results
were also obtained in lung fibrosis: the previously men-
tioned ELM [124] C1M, C3M, C4M, C5M and C6M
[121] could separate patients affected by chronic obstruct-
ive pulmonary disease (COPD) and idiopathic pulmonary
fibrosis (IPF) from healthy individuals in a small observa-
tional cohort.
As the mechanisms of kidney, liver and lung fibrosis

share common features and involve similar ECM proteins,
the successful biomarkers identified in these pre-clinical
and clinical studies are also likely to prove valuable in
renal fibrosis, as a first study in kidney patients suggests.
Plasma levels of P4NP 7S were significantly associated
with mortality in ESRD patients undergoing hemodialysis
[122]. Specifically, the patients in the highest quartile of
P4NP 7S plasma levels had an increased risk of death
compared to the patients in the other quartiles. The high
plasma levels of this marker were considered a sign of ac-
celerated systemic fibrosis in ESRD patients with the worst
prognosis. These results confirm the high value of collagen
type IV as a prognostic marker in kidney diseases demon-
strated by the previously described studies. The before
mentioned results were obtained in urine and using an
assay based on polyclonal antibodies, while in this study,
an assay using a specific monoclonal antibody for the α1
chain of the P4NP 7S domain of collagen type IV was used
to detect collagen type IV in plasma [133].
The main limitation of this technique in kidneys is that

neo-epitope peptides coming from organs other than
kidneys can also contribute to the pool of neo-epitopes
detected in serum or plasma. Urine is a more suitable
matrix to find protein fragments originating in the kid-
ney. However, the detection of protein fragments in
urine can be biased by the altered GFR during the late
stages of CKD: lower or higher levels of the markers
cannot be a result of lower or higher remodelling, but of
impaired excretion. Furthermore, the urinary concen-
tration of the markers can be altered by non-selective
proteinuria in proteinuric kidney disease. The picture is
further complicated by the frequent presence of co-
morbidities affecting other organs in the presence of
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kidney diseases, or even causing kidney diseases in the
first place.
The challenge to identify a disease- and/or organ-specific

and sensitive biomarker for renal fibrosis might be met
by narrowing the selection of neo-epitopes to ECM pro-
tein or protein isoforms that are most exclusively
expressed in kidneys and the action of a protease whose
expression is up-regulated specifically during the patho-
genesis of renal fibrosis.

Conclusions
The identification of reliable biomarkers for early diagno-
sis and prognosis of renal fibrosis is of paramount import-
ance. The perfect biomarker for kidney fibrosis should be
non-invasive, specific, involved in the mechanisms of fi-
brosis, with low (or no) background in healthy individuals
and able to reflect treatment effects. Several molecules im-
plicated in the mechanisms of fibrosis have been proposed
as biomarkers, but none of them have been validated and
accepted in clinical practice yet. In this review we have
proposed a new perspective, introducing the possible
use of ECM protein fingerprint as a source of novel bio-
markers for renal fibrosis.

Additional file

Additional file 1: Table S1. Pre-clinical and clinical experimental
evidence of involvement of extracellular matrix (ECM) protein and
proteases in kidney disease [14,53,55-59,63,69-73,77-79,83-86,90,94,97,
99-101,112,113,115,134-154].
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