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Abstract We investigate the behavior of energy-moment-
um tensor correlators in holographic N = 4 super Yang–
Mills plasma, taking finite coupling corrections into account.
In the thermal limit we determine the flow of quasinormal
modes as a function of the ’t Hooft coupling. Then we use
a specific model of holographic thermalization to study the
deviation of the spectral densities from their thermal limit in
an out-of-equilibrium situation. The main focus lies on the
thermalization pattern with which the plasma constituents
approach their thermal distribution as the coupling con-
stant decreases from the infinite coupling limit. All obtained
results point towards the weakening of the usual top-down
thermalization pattern.

1 Introduction

Understanding the complicated field dynamics in a heavy
ion collision presents a difficult challenge to QCD theorists.
Experiments at RHIC and the LHC point towards the con-
clusion that the quark gluon plasma (QGP) created in heavy
ion collisions behaves as a strongly coupled, nearly perfect,
liquid [1,2] rather than a weakly interacting gas of quarks
and gluons. The strongly coupled nature of the created mat-
ter has made the gauge/gravity duality one of the standard
tools in describing QGP physics [3,4], supplementing tradi-
tional approaches such as perturbation theory or lattice gauge
theory.

In its original form the gauge gravity duality relates
supergravity on five-dimensional asymptotically anti deSit-
ter space time (AdS) to strongly coupled N = 4 super Yang
Mills (SYM) theory living on the boundary of the AdS space.
Although SYM is very different from QCD in its vacuum
state, it shares many features with QCD in the deconfined
phase, such as a finite screening length, Debye screening
and broken supersymmetry.
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One particularly useful development is the application of
the duality to out-of-equilibrium systems by mapping the
thermalization process to black hole formation in asymptoti-
cally AdS space. This has led to the insight that fluid dynam-
ics becomes a good approximation rather quickly, but this
does not mean that the system is isotropic or thermal [5–9].

A particularly important challenge in an out-of-equilibri-
um system is to identify the thermalization pattern with which
the plasma constituents of different energies approach their
thermal distribution. On the weakly coupled side classical
calculations have shown that the thermalization process is of
the bottom-up type, i.e. low energetic modes reach thermal
equilibrium first, with inelastic scattering processes being
the driving mechanism behind it [10]. In the early stages
many soft gluons are emitted which form a thermal bath very
quickly and then draw energy from the hard modes. Recently
this picture got supported by numerical simulations [11]. In
[12] an alternative proposal was made: the thermalization
process is driven by instabilities which isotropize the momen-
tum distributions more rapidly than scattering processes.1 On
the contrary, holographic calculations in the infinite coupling
limit always point towards top-down thermalization, where
the high energetic modes reach equilibrium first, indicating
a probable transition between the two behaviors at interme-
diate coupling [14–17].

Evaluating non-local observables such as two point func-
tions in a time dependent thermalizing system is an extremely
challenging but important task, since they allow one to see
how different energy/length scales approach thermal equi-
librium. One strategy was worked out in [15] where it was
shown how fluctuations created near the horizon and dissi-
pation come to a balance to satisfy a generalized fluctuation
dissipation theorem. For a different approach to generalize
the fluctuation dissipation theorem see [18]. Non equilib-
rium generalizations of spectral functions and occupation
numbers were introduced in [19,20]. Complementary quan-

1 See also [13].

123

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Springer - Publisher Connector

https://core.ac.uk/display/81217832?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2727 Page 2 of 11 Eur. Phys. J. C (2014) 74:2727

tities of interest are entanglement entropy and Wilson loops
[21,22].

A particularly useful model, due to its simplicity is the
collapsing shell model, where the thermalization process is
mapped to the collapse of a spherical shell of matter and
the subsequent formation of a black hole [16,23–36]. In the
limit where the shell’s motion is slow compared to the other
scales of interest this model was used to study the approach
of the spectral density to equilibrium for the components
of the energy momentum tensor in [37] and for dileptons
and photons in [38,39].2 All these studies show the usual
top-down thermalization pattern. In addition in [45] the vir-
tuality dependence of the photons was taken into account,
showing that on-shell photons are last to thermalize, consis-
tent with the conclusions from other models of holographic
thermalization [46,47].

Due to its simplicity the collapsing shell model, in the
quasi-static limit, even allows one to include the first order
string corrections to the supergravity action and leave the
infinite coupling limit. In [48] the leading order string cor-
rections to the photon spectral density [49,50] were general-
ized to an out-of-equilibrium situation, showing indications
that the usual top-down thermalization pattern shifts towards
bottom-up when finite coupling corrections are included.
This observation was strengthened by a quasinormal mode
(QNM) analysis at finite coupling in [45]. As the coupling
constant is decreased the tower of poles bends towards the
real axis, also showing a weakening of the top-down pattern.
It still needs to be investigated if the observed change of the
spectral density in the collapsing shell model and the bend-
ing of the QNM spectrum is intrinsic to photons or of more
general validity.

In [51] the AdS-Vaidya solution was used to investigate
the thermalization time scale for non-local observables in
SU(N) N = 4 SYM theory at finite coupling using geo-
metric probes in the bulk. Interestingly, there the UV modes
thermalize faster and the IR modes slower if the coupling
constant is decreased from the infinite coupling limit. The
authors speculate that the difference between their analysis
and the one for photons [48,45] originates from the fact that
in order to study current correlators, it is necessary to include
the Ramond–Ramond five form field strength in the O(α′3)
corrections, which produce very large corrections to observ-
ables associated with electric charge transport. We will say
more about this in the conclusions.

The goal of this paper is to shed light on the above issues by
studying energy-momentum tensor correlators of a N = 4
SYM plasma and their approach to thermal equilibrium at
finite coupling in the collapsing shell model. In the infinite
coupling limit the correlators were first studied in [52–54]

2 For the effect of anisotropies on the photon production and shear
viscosity see [40–44].

and to next-to-leading order in a strong coupling expansion
in [55,56]. The leading order corrections in inverse powers
of numbers of colors, Nc, was computed in [57,58]. Finite
coupling effects on jet quenching were worked out in [59,60].
The out-of-equilibrium dynamics using the collapsing shell
model at infinite coupling was considered in [37]. In the paper
at hand we fill the missing gap by analyzing the flow of the
quasinormal mode spectrum as a function of the coupling
constant as well as the approach of the spectral density to its
thermal value at finite coupling in the collapsing shell model.

The paper is organized as follows. In Sect. 2 we will review
the collapsing shell model and introduce the finite coupling
corrections. After that we outline the main parts of the calcu-
lation in Sect. 3 and present the results for the quasinormal
modes and the spectral densities in Sect. 4. In Sect. 5 we draw
our conclusions.

2 Setup

2.1 The collapsing shell model

Our aim is to use the collapsing shell model introduced in
[23,24] to gain insights into the thermalization process of a
strongly coupled N = 4 SYM plasma via the gravitational
collapse of a spherically symmetric shell of matter in anti
deSitter space. On the field theory this corresponds to the
preparation of an excited state through the injection of energy
and the subsequent evolution towards thermal equilibrium.

Following Birkhoff’s theorem, outside the shell the back-
ground is given by a black hole solution, whereas inside the
shell the metric is given by its zero temperature counterpart.
The five-dimensional AdS metric is given by

ds2 = r2
h

L2u

[
f (u)dt2 + dx2 + dy2 + dz2

]
+ L2

4u2 f (u)
du2,

(1)

where

f (u) =
{

f+(u) = 1 − u2, for u > us

f−(u) = 1, for u < us
, (2)

and u ≡ r2
h /r2 is a dimensionless coordinate where the

boundary is located at u = 0 and the horizon at u = 1.
From now on the index ‘−’ denotes the inside and ‘+’ the
outside space time of the shell and we set the curvature radius
of AdS to L = 1.

The shell can be described by the action for a membrane
[37]:

Sm = −p
∫

d4σ
√− det gi j , (3)

where gi j is the induced metric on the brane and p is the
only parameter that characterizes the membrane. Due to the
discontinuity of the time coordinate in the above metric, fields
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living in the above background have to be matched across the
shell using the Israel matching conditions given by

[Ki j ] = κ2
5 p

3
gi j , (4)

where [Ki j ] = K +
i j − K −

i j is the extrinsic curvature and κ2
5 =

8πG5 is Newtons constant in the Einstein frame.3 From the
above equation the trajectory of the shell is determined.

Physical initial conditions for the shell, that could be a
good approximation for heavy ion collisions, are determined
through the relation of the holographic coordinate with the
temperature rh = T π and the saturation scale rs = Qsπ

together with a vanishing initial velocity [32]. For LHC these
values are T ∼ 400 MeV and Qs ∼ 1.23 GeV.

We, however, are not going to treat the dynamical process
but work in the quasi-static approximation, where the motion
of the shell is slow compared to the other scales of interest and
only take snapshots of the shell at certain positions. See the
appendix for the exact relation when the quasi-static approx-
imation holds. This condition, however, breaks down at the
latest stages of the collapse as can be seen by comparing
the Penrose diagram for the black hole space time with the
collapsing shell diagram [32].

When the quasi-static approximation is applicable, the
matching conditions simplify considerably and explicit cal-
culations in frequency space are possible. In this case the
discontinuity of the time coordinate implies that the frequen-
cies measured inside and outside the shell are related through
[37]

ω− = ω+√
fs

= ω√
fs

, fs = f+(us). (5)

The subscript s denotes the position of the shell at u = us.
The matching conditions at the shell for metric perturbations
of the form

gμν → gμν + hμν, (6)

have been worked out for all the relevant components in [37].
For example for the xy component they are

h−
xy

∣∣
us

= √
fsh

+
xy

∣∣
us

, (7)

∂uh−
xy + 2κ2

5 p

3u
h−

xy

∣∣
us

= fs∂uh+
xy

∣∣
us

. (8)

2.2 Finite coupling corrections

In order to leave the strict λ = ∞ limit the leading order
string corrections to type IIB supergravity have to be included
and this is accounted for by the action [61,62]

3 In our numerical calculations we always set κ2
5 p = 1.

SIIB = 1

2κ10

∫
d10x

√−g

[
R10 − 1

2
(∂φ)2

− 1

4.5! (F5)
2 + · · · + γ e− 3

2 φC4
]

(9)

where γ ≡ 1
8ζ(3)λ− 3

2 . F5 is the five form field strength and
φ is the dilaton. The C4 term is proportional to the fourth
power of the Weyl tensor,

C4 = ChmnkC pmnqC rsp
h Cq

rsk + 1

2
ChkmnC pqmnC rsp

h Cq
rsk .

(10)

The γ -corrected AdS black hole metric derived from the
above action can be written as [62–64]

ds2
10 = g5mndxmdxn + c4dΩ2

5

= −c1dt2 + c2dx2 + c3du2 + c4dΩ2
5 , (11)

where the coefficients ci = ci (u) only depend on the dimen-
sionless holographic coordinate u = r2

h /r2 and dΩ2
5 is the

metric of a five-dimensional unit sphere. The solution can be
written explicitly as

c1 = r2
h

u
f (u)ea(u)− 10

3 ν(u),

c2 = r2
h

u
e− 10

3 ν(u),

c3 = 1

4u f (u)
eb(u)− 10

3 ν(u)

c4 = e2ν(u)

(12)

with f (u) given in (2) and

a(u) = −15γ (5u2 + 5u4 − 3u6),

b(u) = 15γ (5u2 + 5u4 − 19u6),

ν(u) = γ
15

32
u4(1 + u2).

(13)

The γ -corrected relation between rh and the field theory tem-
perature reads rh = πT/(1 + 15γ ). Note that the vacuum
solution of AdS does not receive γ -corrections [65]. In the
next section we will calculate the spectral densities for the
different channels of the energy-momentum tensor obtained
from the above metric.

3 Spectral density

In order to see how the plasma constituents approach ther-
mal equilibrium we study the spectral densities of various
energy-momentum tensor components by considering lin-
earized perturbations of the five-dimensional metric,

gμν → gμν + hμν, (14)
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where the linear perturbations hμν correspond to the energy-
momentum tensor of the field theory. Following [54] the met-
ric perturbations can be combined into three gauge invariant
fields Zs representing the three symmetry channels, namely
spin 0 (sound channel), spin 1 (shear channel) and spin 2
(scalar channel).

Going to momentum space we look at fluctuations of the
form

hμν(t, x, u) =
∫

d4k

(2π)4 e−iωt+iqxhμν(u). (15)

In the following it will be convenient to introduce the dimen-
sionless quantities

ω̂ = ω

2πT
, q̂ = q

2πT
. (16)

Deriving the equations of motion for the different sym-
metry channels is a lengthy and tedious exercise which has
been performed in the literature before [55,56,66]. There-
fore we shall only describe the main points of the derivation
here and guide the interested reader to the relevant references
for further details. We will extend the solutions obtained in
the hydrodynamic limit [55,56,66] to arbitrary momenta and
energies.

3.1 Scalar channel

The EoM for the scalar channel is obtained by considering
the metric fluctuations hxy . It is convenient to introduce a
field

Z1 = gxx hxy = u

r2
h

hxy . (17)

By expanding this field to linear order in γ ,

Z1 = Z1,0 + γ Z1,1 + O(γ 2) (18)

the EoM for the scalar channel takes the compact form [66]

Z ′′
1 − u2 + 1

u f
Z ′

1 + ω2 − q̂2 f

u f 2 Z1 (19)

= −1

4
γ

[
(3171u4 + 3840q̂2u3 + 2306u2 − 600)u Z ′

1,0

+
(

u

f 2

(
600ω̂2 − 300q̂2 + 50u + (3456q̂2 − 2856ω̂2)u2

+768u3q̂4 + (2136ω̂2 − 6560q̂2)u4 − (768q̂4 + 275)u5

+3404q̂2u6 + 225u7

)
− 30

ω̂2 − q̂2 f

u f 2

)
Z1,0

]
, (20)

where the right hand side only depends on the zeroth order
solution. Note that we have an additional term of O(γ ) (the
last term) in the above equation compared to [66]. This comes
from the fact that we defined the dimensionless quantities ω̂

and q̂ with respect to the γ -corrected temperature T and not
T0 = rh/π as in [66].

3.2 Shear channel

Following [54,56], the shear channel is defined by the metric
fluctuations

{htx , hzx , hxu}. (21)

Using the gauge condition hxu = 0 and introducing Htx =
uhtx/(πT )2 and Hxz = uhxz/(πT )2 one can define the
shear channel gauge invariant combination

Z2 = q Htx + ωHxz, (22)

for which one obtains a decoupled second order differential
equation for Z2 to O(γ ) upon introducing

Z2 = Z2,0 + γ Z2,1 + O(γ 2). (23)

The equation of motion for the shear channel to O(γ ) is given
by

Z ′′
2 + 1 + u2

u f
Z ′

2 + ω̂ − q̂ f

u f 2 Z2 + γ J2(Z2,0)
u2

f

+γ
30(ω̂ − q̂ f )

u f 2 Z2,0 = 0, (24)

The source term γ J2 is of O(γ ) and depends only on
the zeroth order solution Z2,0 and derivatives thereof. The
explicit form of this lengthy expression can be found in [56].

3.3 Sound channel

In order to investigate the sound channel we look at metric
perturbations of the form

{htt , htz, h, hzz, huu, htu, hzu}, (25)

where h = ∑
α=x,y hαα is a singlet. After the equations of

motion have been derived for the above perturbations, the
gauge conditions

ttu = hzu = huu = 0 (26)

are imposed. In the sound channel there is a subtlety in con-
structing the gauge invariants due to the non-constant warp
factor in front of the unit five sphere. See [56,67] for a
detailed analysis of this issue. It turns out that after introduc-
ing ĥt t = ĉ1 Htt , ĥt z = ĉ2 Htz, ĥ = ĉ2 H and ĥzz = ĉ2 Hzz

the gauge invariant for the sound channel is given by

Z3 = 4
q

ω
Htz + 2Hzz − H

(
1 − q2

ω2

ĉ′
1ĉ1

ĉ′
2ĉ2

)
+ 2

q2

ω2

ĉ2
1

ĉ2
2

Htt ,

(27)

where ĉi = c5/3
4 ci . After introducing

Z3 = Z3,0 + γ Z3,1 + O(γ 2), (28)
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the equation of motion for this gauge invariant takes the form
[56,66]

0 = Z ′
3 − q̂2(2u2 − 3 − 3u4) + 3(1 + u2)ω̂2

u f (q̂2(u2 − 3) + 3ω̂2)
Z ′

3

+ 1

u f 2(q̂2(u2 − 3) + 3ω̂2)

[
hq4(3 − 4u2 + u4) + 3ω̂4

+q̂2(−6ω̂2 + 4u2(u3 − u + ω̂2))

]
Z3

−γ J3(Z3,0)
u2

f
+ γ

30(ω̂ − q̂ f )

u f 2 Z3,0. (29)

Again, we are not showing the lengthy expression for the
source term J3, which only depends on the zeroth order solu-
tion and can be found in [56,66]. As before, there is an addi-
tional term appearing in the equation of motion due to the
different convention of the dimensionless quantities ω̂ and q̂ .

3.4 Solving the EoMs

We are now going to solve the equations of motion and deter-
mine the corresponding spectral densities. The Eqs. (19), (24)
and (29) have singular points at u = ±1, 0. In the near hori-
zon limit, u → 1, the indicial exponents are given by ∓iω̂/2,
where the minus sign corresponds to the infalling mode and
the plus sign to the outgoing mode. In thermal equilibrium,
i.e. in the black hole background, one chooses the infalling
boundary condition because classically nothing can escape
from a black hole. However, in the presence of a shell the
solution is a linear combination of the ingoing and outgoing
modes,

Zs,+ = c−Zs,in + c+Zs,out, (30)

where s = 1, 2, 3 and the coefficients c± are determined by
the matching conditions specified below. In order to solve the
EoMs (19), (24), and (29) numerically we make the following
ansatz for the ingoing and outgoing modes:

Zs, in
out

(u) = (1 − u)±
i ω̂
2

(
Z (0)

s, in
out

(u) + γ Z (1)
s, in

out
(u) + O(γ 2)

)
,

(31)

where Z (0,1)
s,in,out is regular at the horizon u = 1 and normalized

to Z (0,1)
s,in,out(u = 1) = 1. We then integrate numerically from

the horizon to the boundary.
This solution has to be matched to the zero temperature

solution inside the shell. At zero temperature there are no
γ -corrections at leading order and therefore we can make
use of the results obtained in [37], where it was shown that
the inside solution for all channels is given in terms of the
Hankel function of the first kind,

Zs,−(u) = u H (2)
1

(
2
√

u

(
ω̂√
f γ
s

− q̂

))
. (32)

The factor f γ
s enters by matching the inside frequency to the

outside frequency via (5):

ω− = ω√
f γ
s

, f γ
s = f (us)e

a(us)− 10
3 ν(u), (33)

and is the only source of γ -corrections for the inside solution,
which thus takes the form

Zs,−(u) = Z (0)
s,−(u) + γ Z (1)

s,− + O(γ 2), (34)

and can be obtained by a simple expansion of the Hankel
function given in (32).

The matching conditions for all channels have the compact
form [37]

Zs,− = Zs,+, (35a)

Z ′
s,− =

√
f γ
s Z ′

s,+, (35b)

and they lead to the ratio

c−(us)

c+(us)
= − Zs,in∂u Zs,− −

√
f γ
s Zs,−∂u Zs,in

Zs,out∂u Zs,− −
√

f γ
s Zs,−∂u Zs,out

∣∣∣∣
u=us

= C0 + γ C1 + O(γ 2), (36)

where all the γ -corrections have to be taken into account.
This ratio, in particular the parametric dependence of C0 and
C1 on the frequency, will play an important role for the ther-
malization pattern. Having solved for the ingoing and out-
going modes the retarded correlator for the gauge invariants
can be calculated via standard AdS/CFT techniques [52,53],
which produce

Gs(ω̂, q̂, us, γ )) = −π2 N 2
c T 4

(
1 − 15

2
γ

)(
Z ′′

s,+
2Zs,+

) ∣∣∣∣
u=0

= −π2 N 2
c T 4

(
1 − 15

2
γ

)

×
⎛
⎜⎝χ(ω̂, q̂)s,th

1 + c−
c+

Z ′′
s,out

Z ′′
s,in

1 + c−
c+

Zs,out
Zs,in

⎞
⎟⎠
∣∣∣∣
u=0

,

(37)

where we have dropped the contact terms and χs,th is the
thermal spectral density. All quantities have to be expanded
consistently to linear order in γ . The relations between the
retarded correlators of transverse stress, momentum density
and energy density with the gauge invariant correlators are
given by [54]

Gxy,xy = 1

2
G1,

Gtx,t x = 1

2

q̂2

ω̂2 − q̂2 G2,

Gtt,t t = 2

3

q̂4

(ω̂2 − q̂2)2 G3.

(38)
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The spectral density is defined as the imaginary part of the
retarded correlator,

χμν,ρσ (ω̂, q̂, usγ ) = −2 ImGμν,ρσ (ω̂, q̂, us, γ ). (39)

To see how thermal equilibrium is approached it is instruc-
tive to look at the relative deviation of the spectral density
from its thermal equilibrium value:

Rs(ω̂, q̂, us, γ ) = χs(ω̂, q̂, us, γ ) − χs,th(ω̂, q̂, γ )

χs,th(ω̂, q̂, γ )
. (40)

This ratio is does not get altered by the relation for the sym-
metry channels with the retarded correlators (38), therefore
we also use the shorthand notation χs = −2 ImGs.

4 Results

After describing the main parts of our computation we are
now ready to discuss the corresponding results. We will start
by analyzing the quasinormal mode spectrum of the different
channels obtained from the thermal correlators and investi-
gate the flow of the poles as a function of the coupling. After
that we will use the collapsing shell model to analyze the
spectral densities and their approach to thermal equilibrium
at finite coupling.

4.1 Quasinormal mode spectrum

Quasinormal modes characterize the response of the system
to infinitesimal external perturbations and are the strong cou-
pling equivalent to quasiparticles and branch cuts at weak
coupling [68,69]. They are solutions to linearized fluctua-
tions of some bulk field obeying incoming boundary condi-
tions at the horizon and Dirichlet boundary conditions at the
boundary. They appear as poles of the corresponding retarded
Green’s function and have the generic form

ωn(q) = Mn(q) − iΓn(q), (41)

where q is the three momentum of the mode, Mn and Γn

correspond to the mass and the decay rate of the excitation,
respectively.

For gravitational perturbations the QNM spectrum was
first obtained in the infinite coupling limit in [54,70] and the
diffusion poles in the hydrodynamic limit at finite coupling
were worked out in [56,66]. We are extending the existing
analysis and study the flow of the tower of QNM obtained in
[54] as a function of the ’t Hooft coupling λ.

In order to solve for the QNM spectrum we make a Frobe-
nius ansatz for the ingoing modes,

Z (0)
s,in(u, ω) =

N∑
n=0

as,n(ω)(1 − u)n (42)

Z (1)
s,in(u, ω) =

N∑
n=0

bs,n(ω)(1 − u)n, (43)

and solve recursively for the coefficients as,n and bs,n by
plugging the expansion into the equations of motion (19),
(29), and (24), while the parameter N is chosen large enough
such that the behavior of both functions is stable. We then
make the ansatz for the frequencies, ω = ω0 + γω1 and
solve numerically for the zeros of Zs,in(0, ω) = Z (0)

s,in(0, ω)+
γ Z (1)

s,in(0, ω) = 0.
The results for the flow of the QNMs is displayed in Fig. 1

for the scalar, in Fig. 2 for the shear and in Fig. 3 for the sound
channel. In all channels a clear trend is visible. As the cou-
pling constant is lowered from the λ = ∞ limit the imaginary
part of ωn increases rapidly, lowering the decay rate of the
excitation. There is also a strong dependence on the index n:
Higher energetic excitations show a stronger dependence on
the coupling with a larger shift towards the real axis. These
results point towards a weakening of the usual top-down ther-
malization pattern, in accordance with the results found in
[45], where an equivalent calculation for the R-current cor-
relator was performed. It should be noted, though, that the
strong coupling expansion can only be trusted fully if the

Fig. 1 The flow of the QNM in the scalar channel for q = 0 (left) and q = 2πT (right) as a function of λ. The dashed lines are drawn to illustrate
the bending of the tower of QNM towards the real axis as the coupling constant decreases
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Fig. 2 The flow of the QNM in the shear channel for q = 0 (left) and q = 2πT (right)

Fig. 3 The flow of the QNM in the sound channel for q = 0 (left) and q = 2πT (right)

Fig. 4 Left The spectral density for λ = ∞ in equilibrium (dotted lines) and out of equilibrium for us = 0.5. Right The relative deviation of the
spectral density for λ = ∞, c = 8/9, 5/9, 0 (from large to small amplitudes) and us = 0.5

relative deviation of the poles from the λ = ∞ limit is small,
which clearly is not the case for all displayed poles.

4.2 Thermalization of the spectral density

Next the behavior of the spectral density and its deviation
from the thermal limit in the collapsing shell model is inves-
tigated. To this end we parameterize the momentum of the
plasma constituents by q = c ω. For c = 0 the constituents
of the plasma are at rest, while for c = 1 they move with the
speed of light.

In Fig. 4 we show the scalar spectral density and its rela-
tive deviation in and off-equilibrium in the infinite coupling
limit for different values of c. We witness oscillations of the
off-equilibrium spectral densities around their equilibrium
values and as the shell approaches the horizon the amplitude
of the oscillations decreases.4 From this figure one can also
see that high energetic modes are closer to equilibrium than

4 Since we are working in the quasi-static approximation (by taking
only snapshots of the shell) and the effects of the shell location are
minor, we set the shell location in all our plots to the rather arbitrary
value us = 1/2.
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Fig. 5 The relative deviation of the spectral density, R1, in the scalar channel, for c = 0 (dashed black), c = 7/9 (solid blue), c = 8/9 (dotted
red), with the shell positioned at us = 0.5 and λ = 300 (left), λ = 100 (right)

Fig. 6 The relative deviation of the spectral density in the shear channel (left) and sound channel (right) for λ = 100 and us = 0.5. The color
coding is the same as in Fig. 5

the low energetic ones, showing the usual top-down thermal-
ization pattern with a dependence on the parameter c. The
smaller the value of c the closer the quantity R is to its equi-
librium value.

Now we are ready to investigate the finite coupling cor-
rections to the relative deviation of the spectral density. In
Fig. 5 the quantity R is displayed for the scalar channel for
two different values of the coupling constant for a fixed posi-
tion of the shell. For plasma constituents at rest, c = 0,
R approaches a constant for large frequencies. But as c is
increased, the fluctuation amplitude starts to grow at some
critical value of the frequency ωcrit , such that the higher ener-
getic modes are further away from their equilibrium value
than the low energetic ones, again indicating a weakening
of the usual top-down thermalization pattern. This fits nicely
into the picture obtained for the QNM where also the higher
energetic modes show a stronger dependence on the finite
coupling corrections. As the coupling constant is decreased
the change of the behavior shifts to lower ωcrit . The results are
again in accordance with the calculation for the spectral den-
sity of the R-current correlator [45]. Since the dependence of
the coupling constant is qualitatively the same in the shear
and sound channel, they are only shown for one value of the
coupling constant in Fig. 6.

Fig. 7 Imaginary part of C0 (dashed black) and γ (λ = 300)C1 (solid
blue) as a function of frequency at us = 0.5 and c = 8/9

The parametric change of the relative deviation of the
spectral density at finite coupling originates from the behav-
ior of C0 and C1 as defined in (36). As can be seen from
Fig. 7, C0 always approaches zero for large frequencies being
responsible for the top-down thermalization pattern at infi-
nite coupling. On the other hand, the amplitude of γ C1 is
constant for vanishing c and starts growing as c is increased.
It is the interplay between C0 and C1 that is responsible for
the observed pattern in R.

One might be worried about the above results since the
quasi-static approximation and the finite coupling expansion
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employed have finite regions of applicability. However, since
we are only taking snapshots and not treating the dynamical
problem, one can view the system as being very close to its
initial evolution where the motion of the shell is guaranteed
to be slow. After all, we are allowed to inject energy at an
arbitrary scale and set the initial velocity of the shell to zero.
In addition, from Fig. 7 one might conclude that the strong
coupling expansion breaks down once γ C1 becomes larger
than C0. This, however, is not the case since the finite cou-
pling corrections to the spectral density, which is the physical
quantity, are at most of the order of 10 %.

5 Conclusions

In the paper at hand we have studied the thermalization prop-
erties of an N = 4 SYM plasma at finite ’t Hooft coupling.
First we analyzed how the plasma reacts to linearized per-
turbations as a function of the coupling constant through a
QNM analysis. Then we studied the approach of the plasma
to thermal equilibrium using the collapsing shell model of
[24], working in the quasi-static approximation.

The flow of the QNM is depicted in Figs. 1, 2, and 3 and
show a clear trend. As the coupling constant is decreased
from the λ = ∞ limit the QNM bend upwards in the complex
frequency plane. The increase of the imaginary part shows,
according to Eq. (41), that finite coupling corrections increase
the life time of the excitations. In addition, higher energetic
modes show a stronger dependence on the coupling correc-
tions. We interpret this as a weakening of the usual top-down
thermalization pattern. This is in accordance with [45] where
a similar analysis was performed for virtual photons. This
analysis is particularly useful because it is independent of
the thermalization model being used and should therefore be
of more general validity.

In the collapsing shell model, the deviation of the spectral
density from its thermal limit was investigated. The results
displayed in Figs. 5 and 6 show that outside the limit of
infinite coupling, the UV modes are further away from their
thermal distribution than the IR modes, indicating a weaken-
ing of the top-down thermalization pattern. Both the spectral
density and the flow of the quasinormal modes show qual-
itatively the same pattern as observed for real and virtual
photons in [45], suggesting that the change in the thermal-
ization pattern is of more general validity.

The above observations seem, however, to be in direct
contradiction with a recent study of thermalization at finite
coupling using the Vaidya metric [51], where the UV modes
were seen to thermalize even slightly faster than in the infi-
nite coupling limit. One possible explanation for the discrep-
ancy between their work and the calculation for photons pre-
sented in [45] is an additional contribution of the Ramond–
Ramond five form field strength that has to be added to the

action if photons are considered [64]. The analysis presented
in this paper shows that the spectral density of the energy-
momentum tensor, to which this term does not contribute5,
exhibits the same behavior as the spectral density for photons.
Therefore the additional term for photons is not the source of
the discrepancy. Another important difference between the
calculation of [51] and the present one, as well as the one
of [45], is that the latter two use the quasi-static approxima-
tion, i.e. work in the limit of a slowly moving shell, while
the first employs the opposite Vaidya limit. In addition, the
correlation functions studied in [51] are all so-called geo-
metric probes, meaning that they are only sensitive to the
γ -corrected metric and one need not consider fluctuation
equations. Which of these differences explain(s) the observed
results remains, however, an open question, and this is a very
important topic for further investigation.

For other future directions, it will be important to go
beyond the case studied here, where we only take snapshots
of the system, and study the time evolution of the correla-
tors within the quasi-static approximation along the lines of
[32]. Of course, in the long run the goal is to consider finite
coupling corrections to spectral densities in a thermalizing
system without using the quasi-static approximation at all.
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Appendix: Quasi-static approximation

Here we are going to repeat the analysis of the applicability
of the quasi-static approximation of [32] for the metric per-
turbation hxy . The induced metric on the shell can be put into
the form

ds2
Σ = −dτ 2 + dx2

(z(τ ))2 , (44)

where z(τ ) is the position of the shell at some world sheet
time τ . Parameterizing (t±, z) = (t±(τ ), z(τ )), where u =
z2/z2

h it follows from the Israel matching conditions that [32]

5 In [57] it was shown that the Ramond–Ramond five form does not
contribute to the equations of motion in the shear channel and therefore
does not effect the spectral density. It is expected that the same also
holds for the other symmetry channels.
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ṫ− =
√

1 + ż2, ṫ+ =
√

f + ż2

f
, (45)

where · = d/dτ . The matching conditions for the metric
perturbations hxy (see also [37]) are

ż

f
∂t h

+
xy + f ṫ∂zh+

xy = ż∂t h
−
xy + ṫ∂zh−

xy, (46)

where all quantities are evaluated at the shells position. In
order for the quasi-static approximation to hold the inequal-
ities must be satisfied,

ż

f
ωh+

xy(ω) 	 f ṫ∂zh+
xy(ω) (47)

żω−h−
xy(ω−) 	 ṫ∂zh−

xy(w−) − 2κ2
5 p h−

xy

3z
. (48)

Using (7) and (45) we obtain for the first equation

żω 	
√

f ( f + ż2)
∂zh−

xy(ω/
√

fs)

h−
xy(ω/

√
fs)

. (49)

Now making use of the analytic inside solution in terms of
the Hankel function (32) and q = 0 the condition for the
quasi-static approximation becomes

ż 	
⎛
⎝−

2H (2)
0

(
2ωz√

f

)

2H (2)
0

(
2ωz√

f

) − 1

ωz

⎞
⎠
√

f ( f + ż2). (50)

Similarly for (48) we obtain

ż 	
⎛
⎝−

2H (2)
0

(
2ωz√

f

)

2H (2)
0

(
2ωz√

f

) − 1

ωz

⎞
⎠
√

f (1 + ż2) − 2κ2
5 p

3z2ω
f.

(51)

We will always place the shell at some initial position
zi , with vanishing initial velocity and then investigate the
spectral density at positions of the shell close enough to its
initial position and large enough frequencies such that the
quasi-static approximation holds. As discussed in [32], this
type of an initial condition may actually not be such a bad
approximation to the initial conditions in a real life heavy ion
collision, as one can view zi to be in a rough correspondence
with the saturation scale Qs.
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