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1 Introduction

In Type IIA superstring theory compactified on a Calabi-Yau manifold Y , a series of F-

terms in the d = 4, N = 2 effective supergravity action are known to be exactly computable.

Originally discovered from the topological string side [1] and identified as certain physical

superstring amplitudes [2], they were later reinterpreted by Gopakumar and Vafa [3, 4]

using the space-time effective theory and lifting to M-theory. The latter approach was

recently reexamined in [5].

In terms of N = 2 superspace, the interactions that are computed by the GV formula

are −i
∫

d4xd4θFg(X )(W2)g, where Wµν and X are Weyl and vector superfields. The

superfields used here naturally appear in the formulation of d = 4, N = 2 supergravity,

in which one first constructs superconformal gravity and then breaks the extra part of its

gauge supergroup (dilatations, special conformal transformations, special supersymmetries

and SU(2) × U(1) R-symmetry) by explicitly choosing a certain gauge slice. The relevant

concepts will be briefly reviewed in section 2.

The interactions Fg have been the subject of multiple studies both in physical and

mathematical literature. One of the interesting physical applications of these higher-

derivative F-terms is that they encode corrections to the area law for the macroscopic
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entropy of supersymmetric black holes [6–10]; such corrections are crucial for the match

with the microscopic counting of states performed in string theory [11, 12]. The mathe-

matical interest of these objects originates from the fact that they are identified with the

topological string free energies (in the large-volume limit, to decouple the holomorphic

anomaly), which encode the Gromov-Witten invariants.

The Gopakumar-Vafa formula gives an expression for Fg coefficients in terms of the

spectrum of BPS states in M-theory compactified on Y × S1, where S1 is the M-theory

circle. This provides a remarkable bridge between the topological string and the M-theory,

which can serve to transfer ideas in both directions. Mathematically, it reinterprets the

non-integral Gromov-Witten invariants in terms of integral BPS invariants (for a recent

paper discussing it in a more general context of symplectic geometry see [13]). Physically,

it demonstrates that the BPS spectrum of the M-theory on Calabi-Yau can in principle be

determined from the Gromov-Witten invariants. Direct computation of the BPS spectrum

in M-theory is a hard problem — it involves finding the low-energy spectrum of M2-branes

wrapped on holomorphic curves, which is a simple task only for a single membrane on a

smooth curve, while for the more general configurations, the membrane theory becomes

strongly coupled.

The space-time derivation of the GV formula is based on computing the contribution

to the Wilsonian effective action due to 5d particles winding the M-theory circle. Moreover,

only trajectories with non-zero winding number have to be considered. Trajectories with

zero winding number naively give an ultraviolet-divergent contribution, but as is explained

in [5], this contribution should be regarded as part of the 5d effective action and need not

be calculated. Only a few terms in the 5d effective action are actually relevant to the GV

formula, and these terms are known because of their relation to anomalies.

As emphasized in [5], BPS states that are massive in five dimensions are more naturally

treated as particles in deriving their contribution to the GV formula, while those that are

massless (or anomalously light) in five dimensions are more naturally treated as fields.

Particle-based and field theory computations were performed in [5], but the field theory

computation left a gap, which we will treat here.

The field theory computation in [5] was based on turning on a constant graviphoton

background, as suggested in [3, 4], summing over Kaluza-Klein harmonics, and reducing

to Schwinger’s computation of the effective action of a charged particle in a 4d magnetic

field. (It is also necessary, technically, to perturb slightly away from a flat metric on R4.)

This method works nicely for Fg with g ≥ 2, but for g ≤ 1, there are two problems. One

problem is that the sum over Kaluza-Klein harmonics that is supposed to determine F1 is

divergent, and from a 4d point of view it is not clear how to regularize it properly. One

would expect a similar divergence in the Kaluza-Klein sum for F0, but actually there is an

additional problem for F0: it does not contribute to the effective action in the background

considered in [5], so to determine it one would need to perform a one-loop computation in

a less convenient background.

On the other hand, to compute F0 and F1, there is no need to turn on a graviphoton

background. F0 contributes to the kinetic energy of the scalar fields in vector multiplets,

and F1 contributes a Weyl squared interaction. So F0 and F1 can be computed by cal-
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culating one-loop contributions to the scalar and graviton two-point functions. There is

then no need to turn on a graviphoton background, and that being so, there is also no

advantage to expanding in KK harmonics. The purpose of the KK expansion had been

that this simplifies the one-loop computation in the presence of a graviphoton field.

Instead, the two-point functions can be naturally computed directly in five dimensions.

The advantage of this is that there is no problem with ultraviolet divergences: any ultravio-

let divergence would be a five-dimensional integral of some local, gauge-invariant operator,

and as explained in [5], terms of this form do not contribute to Fg. Even better, the compu-

tation of the two-point functions can be expressed as a sum over 5d trajectories of various

winding numbers, and the appropriate elimination of UV divergences is accomplished by

just throwing away the contribution of winding number 0.

In section 2, we briefly review relevant facts about supergravity. In section 3, we discuss

some properties of the F-terms we are computing and constrain the expected form of the

answers for F0 and F1 based on symmetries. In section 4, we describe the 1-loop computa-

tion of F0, emphasizing a subtle point in the relation between the deformation of the Kahler

metric for the vector multiplet scalars and the deformation of F0. In section 5, we describe

the 1-loop computation of F1. Then some related discussions are added in section 6.

2 5d and 4d supergravities with 8 supercharges

2.1 5d supergravity coupled to U(1) vector multiplets

The full and detailed construction of 5d supergravity can be found in [14]. Here we outline

the main features that will be relevant for us. We use the notations and conventions of [5].

The U(1) vector multiplet in 5d has a gauge field, a real scalar and a spinor. The phys-

ical scalars are described by n constrained scalars hI , I = 1 . . . n satisfying the constraint:

CIJKhIhJhK = 1, (2.1)

where CIJK is a symmetric constant real tensor. In the case of Calabi-Yau compactifications

of M-theory, these hI parametrize the Kahler cone of the Calabi-Yau Y , and the tensor

CIJK = 1
6

∫
Y ωI ∧ ωJ ∧ ωK contains intersection numbers (here ωI are a basis in a degree-

(1, 1) cohomology). One also introduces hI = CIJKhJhK and aIJ = −3CIJKhK + 9
2hIhJ .

In the Calabi-Yau case, aIJ = 1
4

∫
Y ωI ∧∗ωJ is a natural metric on the Kahler cone. When

pulled back on the hypersurface defined by (2.1), this metric defines the kinetic energy of

physical scalars. In addition to n constrained scalars hI , there are also n gauge fields V I ,

I = 1 . . . n. One specific linear combination of the field strengths, namely T =
∑n

I=1 hIdV
I ,

is a graviphoton of the supergravity multiplet. So in total, adding corresponding fermions,

we have a supergravity multiplet and n− 1 vector multiplets.

Of course, in the case of the Calabi-Yau compactification of 11d supergravity, there

are also hypermultiplets present (see [15]), but including them does not change much.

The bosonic part of the action can be written as:

S=

∫ [
1

2
R(5) +

3

2
CIJKhI∂MhJ∂MhK−

1

4
aIJ(dV I ·dV J)

]
Vol− 1

2
CIJKV I∧dV J∧dV K , (2.2)

where Vol is a volume form on spacetime.
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2.2 4d supergravity coupled to U(1) vector multiplets

The formulation of 4d Poincare supergravity that we rely on is based on superconformal

gravity, which is gauge-equivalent to Poincare supergravity in the sense that partial gauge

fixing of the superconformal theory gives Poincare supergravity. This naturally comes with

an N = 2 superspace. Chirtal superfields of weight 2 under dilations can be considered as

possible F-terms in the superspace action of conformal supergravity. Given some superspace

interaction, say an F-term
∫

d4xd4θΦ, to find the corresponding terms in the Poincare

supergravity action, one has to not only integrate over Grassmann coordinates θ, but also

impose all gauge-fixing constraints that reduce the superconformal gauge group to the

super Poincare.

Two superconformal matter multiplets, the compensators, disappear in this gauge-

fixing. One usually chooses a vector multiplet and a hypermultiplet for this role (see [16]

for details). Thus to build an N = 2 Poincare supergravity coupled to n vector multiplets,

one starts with N = 2 superconformal gravity coupled to n + 1 vector multiplets and 1

hypermultiplet.

An N = 2 vector multiplet in 4d contains a complex scalar, a vector and a doublet

of spinors. Such multiplets are described by reduced chiral superfields XΛ, Λ = 0 . . . n

(see [17–19]), whose lowest components XΛ are complex scalars, while the highest compo-

nents are −1
6(εijθ

i
σµνθj)2DµD

µX
Λ

and involve derivatives of complex conjugate scalars

(because of the non-holomorphic constraint satisfied by reduced chiral superfields). Cou-

pling of vector multiplets is described by the holomorphic prepotential F0(X ) (see [16]),

which has to be homogeneous of degree 2 to define a term in the Lagrangian of conformal

supergravity:

− i
∫

d4xd4θF0(X ) + c.c. (2.3)

One introduces the usual notations FΛ = ∂F0/∂X
Λ, FΛΣ = ∂2F0/(∂X

Λ∂XΣ) etc. Another

useful notation is:

NΛΣ = 2ImFΛΣ. (2.4)

Superspace expression (2.3) implies the kinetic term for conformal scalars:∫
d4x
√
gNΛΣDµX

ΛDµX
Σ
, (2.5)

where the derivatives are covariant with respect to the superconformal gauge group. In

order to get the kinetic energy of scalars of Poincare supergravity, one has to use a gauge

condition which fixes dilatational symmetry of conformal supergravity. This usually has a

form of some constraint on the superconformal scalars XΛ. The freedom to perform local

dilatations in conformal supergravity corresponds to the freedom to Weyl-rescale metric in

Poincare supergravity. The standard gauge choice [16], which guarantees that the Poincare

theory emerges written in the Einstein frame, is

NΛΣX
ΛX

Σ
= −1. (2.6)
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It is usually supplemented by the U(1) R-symmetry gauge, which we pick as iX0 > 0. A

convenient choice of independent holomorphic scalars is:

ZI =
XI

X0
, I = 1 . . . n. (2.7)

The standard gauge choice (2.6) implies the following expression for |X0|2 in terms of

other fields:

|X0|2 =
1

Y
, Y = −NΛΣZ

ΛZ
Σ
. (2.8)

In this case, the kinetic energy takes the form:

Y −1MIJ∂µZ
I∂µZ

J
, MIJ = NIJ − (NIΛX

Λ
)(NJΣX

Σ), (2.9)

and Y −1MIJ is actually a Kahler metric:

Y −1MIJ =
∂

∂ZI
∂

∂Z
J

lnY. (2.10)

For completeness, we also write expression for the kinetic term of the gauge fields. It

is independent of the dilatational gauge and is given by:

− i

4
NΛΣF

Λ+
µν F

Σ+µν + c.c., (2.11)

where FΛ+
µν are the self-dual parts of the field strengths of the elementary gauge fields AΛ

µ ,

and N is a scalar-dependent matrix:

NΛΣ = FΛΣ + i
(NX)Λ(NX)Σ

(X,NX)
. (2.12)

2.3 Reduction from 5d to 4d

Kaluza-Klein reduction of the 5d supergravity of section 2.1 gives N = 2 supergravity in 4d,

which can be described in terms of the fields of section 2.2. As was shown in [5], only F0 and

F1 interactions can arise in this way. However, F1 requires inclusion of higher-derivative

terms in the 5d action. If we start from the action with no more than 2 derivatives in 5d,

we will get only the classical prepotential in 4d:

Fcl
0 = −1

2

CIJKXIXJXK

X0
. (2.13)

If the index µ represents 4d coordinates and the fifth coordinate (along the circle) is

y, the 5d metric in the Kaluza-Klein reduction takes the form:

ds2 = e−σgµνdxµdxν + e2σ(dy +Bµdxµ)2. (2.14)

Let the 5d vectors have non-zero holonomies in the circle direction V I
y = αI . The

following field redefinitions relate 5d vectors V I
M , I = 1 . . . n and 5d scalars hI to the 4d

– 5 –



J
H
E
P
0
5
(
2
0
1
5
)
0
8
9

vectors AΛ, Λ = 0 . . . n and 4d scalars ZI :

AIµ = V I
µ − αIBµ,

A0
µ = −Bµ,

ZI = αI + ieσhI . (2.15)

We do not discuss reduction in the fermionic sector, as the formulas are more complicated

and are not needed in this paper. More details can be found in appendix A of [5]. Another

reference on dimensional reduction of this particular supergravity is [20].

By the classical dimensional reduction of 5d supergravity, as described above, we get

d = 4, N = 2 supergravity in the standard gauge NΛΣX
ΛX

Σ
= −1, so that

Y = 4e3σ. (2.16)

3 Some properties of Fg

3.1 Shift symmetries

As was explained in [5], the 4d effective action should be invariant under the shift symme-

tries αI → αI + nI , where nI ∈ Z, I = 1 . . . n. This is evident because the only physical

effect of holonomies αI is through the factor e2πiqIα
I

which is acquired by the particle of

charge {qI} winding once around the circle. Indeed, if one considers a certain amplitude

in a 4d theory, this amplitude is represented (in a particle description) as a sum over tra-

jectories of particles, some of which can wind the extra circular dimension and thus can

acquire such a factor. Thus all physical answers in 4d depend only on e2πiαI and should

be invariant under αI → αI + nI . This is equivalent to the symmetry:

ZI → ZI + nI . (3.1)

The shift symmetries are especially familiar from the Type IIA point of view. Indeed,

from this point of view, αI are just the periods of the B-field on the homology two-

cycles of the Calabi-Yau Y . Since the B-field enters the path integral through the factor

exp
(
i
∫

ΣB
)
, where Σ is a string worldsheet, shifting (appropriately normalized) periods

by integers changes nothing. Indeed, for the string worldsheet which wraps some homology

two-cycle Σ with charges qI , we have exp
(
i
∫

ΣB
)

= exp
(
2πiqIα

I
)
, which is invariant under

αI → αI + nI .

Yet another way to say this is to note that the αI are 4-dimensional axion-like scalars,

and the shift-symmetries are the leftover of their Peccei-Quinn symmetries broken by the

worldsheet instantons [21]. These worldsheet instantons are precisely the ones described by

the topological string and are given by the string worldsheets wrapping holomorphic curves

in the Calabi-Yau Y (and these are, of course, the same objects that are described, from

the M-theory side, by the GV formula). Every pair of an instanton and an anti-instanton

generates the potential for the αI proportional to e2πiqIα
I

+ e−2πiqIα
I

= 2 cos(2πqIα
I).

The Peccei-Quinn symmetries, which are given by arbitrary constant shifts of the αI , get

broken down to the discrete shift symmetries (3.1) due to this potential.
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Now we can use the shift symmetries to obtain some restrictions on how the quantum

corrections to Fg depend on the scalars ZI . We note that the only way the 5d BPS

miultiplet action will depend on αI and hI is through the linear combinations qIα
I and

qIh
I (as we will see in section 4). Thus, due to holomorphy, the quantum correction to Fg

should be a function of qIZ
I . From shift symmetries, it actually should be a a function of

e2πiqIZ
I
. Thus we conclude that the general form of the contribution of one BPS multiplet

to Fg, which we will usually denote by Fq
g , is:

Fq
g =

(
X0
)2−2g∑

k>0

ck,ge
2πikqIZ

I
, (3.2)

where we did not allow negative values of k, as the contribution ∝ e−2πkM , M = qIh
I > 0

should decay faster for more massive particles, rather than exponentially grow (the k < 0

terms would actually have ZI replaced by Z
I

and would contribute to the F-terms of the

opposite chirality).

3.2 Constraints on Fg from parity

M-theory has a discrete symmetry which is often called “parity” and is a combination of

some orientation reversing diffeomorphism in 11d and a sign change of the 3-form gauge

field C. This symmetry descends in an obvious way to the symmetry of the 5d action (2.2),

and then to 4 dimensions as well. The fields AIµ and αI , which originate from the 11d C-

field, get an extra minus sign, while the field A0
µ, which is a Kaluza-Klein gauge field, does

not. So, to summarize, the 4d supergravity we obtain should be invariant under the parity

defined as an orientation reversal combined with the following:

AIµ → −AIµ,
A0
µ → A0

µ,

ReZI ≡ αI → −αI . (3.3)

How does it constrain the form of Fg? Since d = 4, N = 2 supergravity written in a

given metric frame lifts in a unique way to the conformal supergravity, the parity symmetry

also lifts there. It can then be extended to the symmetry of the superspace action. Since

parity switches chiralities, we can conclude that the two terms of the form:

− i
∫

d4θFg(X )W2g + i

∫
d4θFg(X )W2g

(3.4)

are switched by parity, where the second term is the complex conjugate of the first and θ are

superspace coordinates of opposite chirality. This means, in particular, that for all g ≥ 0,

−iFg(X) goes into iFg(X) under parity. We are working in the gauge where iX0 > 0,

and so if we consider the non-homogeneous function F̂g(Z) = (X0)2g−2Fg(X), we also find

that parity complex conjugates iF̂g(Z).

Now, since parity multiplies αI by −1, it means that all terms F̂g(Z) in the GV formula

go to −F̂g(Z) under αI → −αI . This implies that they should be imaginary at αI = 0.1

In particular, ck,g in (3.2) are imaginary. We will use it soon.

1For analytic Fg(Z), these two conditions are actually equivalent.
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4 Computation of F0

Now we consider a light massive hypermultiplet coupled to the 5d supergravity (2.2) which

has enough scalars hI (we will explain this requirement in section 4.2.1). For the purposes

of one-loop computation, the global geometry of space parametrized by scalars in the

hypermultiplet is irrelevant. So, this multiplet can be described by a pair of complex scalars

zi, i = 1, 2 and a Dirac spinor Ψ in 5d. The quadratic action on the flat background with

no gauge fields turned on is:

Sh =

∫
d5x

(
2∑
i=1

(−|∂zi|2 −M2|zi|2) + Ψ
c/∂Ψ−MΨ

c
Ψ

)
. (4.1)

We want to determine its contribution to the term F0 in the 4d effective superpotential.

Our strategy is to determine first its contribution to the 4d Kahler metric on the vector

multiplets moduli space, and then, since this metric is encoded in F0, to reconstruct the

hypermultiplet contribution to F0.

To find the contribution to the Kahler metric, we need to compute the effective action

governing fluctuations of vector multiplet scalars on the flat background R3,1 × S1, which

is the simplest possible background consistent with our problem.

Let us describe the precise setup. Note first that the expected answer has a known

form (3.2), in which we only have to determine the constants ck,g. To do this, we can

choose any convenient values for the background fields. One such field is the radius of

the M-theory circle eσ, and we should choose some value for it. In [5], the computation

was done in the large radius limit. This was the case because, in the particle computation

performed there, one was integrating out particles that were not point-like. They were

given by wrapped M2-branes and thus had some internal structure. But the computation

was done in the approximation in which those particles were treated as point-like, which

made sense only if the characteristic size of their trajectories — the radius of the M-theory

circle which they wound — was much larger than the particle size.

In the current paper, we are doing the field theory computation, so the question of

whether the particles are point-like or not becomes hidden behind the question of appli-

cability of the field theory description. And, as was already noted in the introduction, we

assume the field theory description to be valid for the massless or very light multiplets.

Also, we know how the holomorphic answer (3.2) depends on the radius, and we know that

the coefficients ck,g do not depend on it. Therefore, once we have the action (4.1) and know

what to compute, we are free to pick any convenient value for the radius. For simplicity,

we set it equal to 1, that is eσ = 1. We also do not switch on holonomies, αI = 0. We

allow the 5d scalars hI to depend on the point of R3,1, while they still should be invariant

under translations along S1. Since the mass of the BPS particle in 5d is expressed through

its charges qI in the following way (see [5]):

M =
∑
I

qIh
I , (4.2)

M(x) is allowed to fluctuate around its constant background value M , with fluctuations

depending only on the point of R3,1. Now, to determine the Kahler metric deformation, we
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need to find a term in the effective action which is quadratic in M(x) and has precisely two

derivatives. Since the effective action is Seff = −i ln
∫
DziDΨeiSh , and we are looking for

δ2Seff

δM(x)δM(y)

∣∣∣
M=const

, (4.3)

it is clear that all we need to compute is a connected two-point function of the mass terms:

− i

〈(
2M

∑
i

|zi|2 + Ψ
c
Ψ

)(
2M

∑
i

|zi|2 + Ψ
c
Ψ

)〉
conn

, (4.4)

and then, in the momentum space representation with an external momentum p, to extract

the p2-part of the answer. This will give the one-loop Kahler metric deformation due to

the light hypermultipet.

After we calculate the Kahler metric deformation, we will have to reconstruct the

prepotential deformation from it. We use notation cl and q to distinguish classical and

one-loop parts, so for example the full prepotential is F0 = Fcl
0 + Fq

0 , were the classical

part is given by (2.13). The Kahler metric deformation is written in terms of the scalars

ZI = XI/X0 of Poincare supergravity. However, F0(X) is a function of conformal scalars

XΛ, so to reconstruct it, we should know the expression of X0 in terms of ZI and Z
I
.

Reconstructing F0 includes some subtleties, which we will discuss in detail later, after the

two-point function computation.

4.1 The two-point function computation

We proceed to compute (4.4) here. First of all, we need to know the relevant Green’s

functions on R3,1 × S1. Let xµ be coordinates on R3,1 and y ∈ [0, 2π] be a coordinate on

S1. If G0(x, y) and D0(x, y) are the Green’s functions for bosons and fermions respectively

on R4,1, i.e. they satisfy:

(∂2 −M2)G0(x, y) = δ(4)(x)δ(y),

(/∂ −M)D0(x, y) = δ(4)(x)δ(y), (4.5)

then the Green’s functions on R3,1 × S1 are just:

G(x, y) =
∑
k∈Z

G0(x, y + 2πk),

D(x, y) =
∑
k∈Z

D0(x, y + 2πk). (4.6)

Then (4.4) gives:

−8iM2G(x1−x2, y1−y2)G(x2−x1, y2−y1)+iTr
[
D(x1−x2, y1−y2)D(x2−x1, y2−y1)

]
, (4.7)

where (x1, y1) and (x2, y2) are the space-time points where the two mass terms are inserted.

If K(x1, y1;x2, y2) is the expression (4.7), then the term in the effective action is∫
d4x1dy1d4x2dy2K(x1, y1;x2, y2)M(x1)M(x2). (4.8)
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Figure 1. The two-point function of mass terms. Internal lines are labeled by the 4d momentum

and the winding number.

We note that since M(x) is independent of the circle direction y, we can integrate (4.7) over

y1 and y2, or over y ≡ y1 − y2 and y2. Another obvious step is to pass to the momentum

representation for the R3,1 directions. Now we have∫
dy1dy2K(x1, y1;x2, y2) =

∫
d4p

(2π)4
K(p)eip(x1−x2), (4.9)

and this K(p) is given by

K(p) = −2πi

∫ 2π

0
dy

∫
d4q

(2π)4

(
8M2G(q, y)G(q−p,−y)−Tr

[
D(q, y)D(q−p,−y)

])
. (4.10)

If we substitute (4.6), this becomes:

K(p) =− 2πi
∑
k1,k2

∫ 2π

0
dy

∫
d4q

(2π)4

(
8M2G0(q, y − 2πk1)G0(q − p,−y − 2πk2)

− Tr
[
D0(q, y − 2πk1)D0(q − p,−y − 2πk2)

])
. (4.11)

This quantity is represented by the Feynman diagram on figure 1, where scalars and bosons

run inside the loop, and we label internal lines of the loop by the corresponding 4d mo-

mentum and the winding number k. It is clear from the picture that k1 + k2 plays the role

of the total winding number of the particle as it circles the loop in the diagram. Another

way to see it is to reintroduce non-zero constant holonomies αI . These would just shift

the momentum in the circle direction by w → w + qIα
I and contribute an overall factor

e−iqIα
Iy both in G0(p, y) and D0(p, y). Then, in the above expression for K(p), the only

effect of holonomies would be to introduce an overall factor e2πi(k1+k2)qIα
I
, thus showing

that k1 + k2 is indeed interpreted as the total winding number of the loop.

We need explicit expressions for G0 and D0 in a “mixed” representation, where mo-

mentum is used for the xµ directions and position coordinate is used for the y direction.

It is easy to find that:

D0(p, y) =

∫ ∞
−∞

dw

2π
eiwy

M−i/p−iwΓ5

p2+w2+M2
=

M − i/p
2
√
p2+M2

e−|y|
√
p2+M2

+
Sign(y)

2
Γ5e−|y|

√
p2+M2

,

G0(p, y) =

∫ ∞
−∞

dw

2π
eiwy

1

p2 + w2 +M2
=
e−|y|
√
p2+M2

2
√
p2 +M2

. (4.12)
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Substituting this into our expression for K(p), computing traces of gamma matrices and

considering a given fixed k = k1 + k2, we get

− 2πi
∑

k1+k2=k

∫ 2π

0
dy

∫
d4q

(2π)4

(
M2 + q2 − pq√

q2 +M2
√

(q − p)2 +M2

+ Sign(y − 2πk1)Sign(y + 2πk2)

)
e−|y−2πk1|

√
q2+M2−|y+2πk2|

√
(q−p)2+M2

. (4.13)

For this computation and for the computation in the next section, we need the following

two formulas:∫ 2π

0
dy

∑
k1+k2=k

e−|y−2πk1|A−|y+2πk2|B =
e−2π|k|A + e−2π|k|B

A+B
+
e−2π|k|B − e−2π|k|A

A−B
, (4.14)

∫ 2π

0
dy

∑
k1+k2=k

e−|y−2πk1|A−|y+2πk2|BSign(y − 2πk1)Sign(y + 2πk2)

=
e−2π|k|A + e−2π|k|B

A+B
− e−2π|k|B − e−2π|k|A

A−B
. (4.15)

Applying them to (4.13), we get:

− 2πi

∫
d4q

(2π)4

[
M2 + q2 − pq√

q2 +M2
√

(q − p)2 +M2
×(

e−2π|k|
√

(q−p)2+M2 − e−2π|k|
√
q2+M2√

q2 +M2 −
√

(q − p)2 +M2
+
e−2π|k|

√
q2+M2

+ e−2π|k|
√

(q−p)2+M2√
q2 +M2 +

√
(q − p)2 +M2

)

− e−2π|k|
√

(q−p)2+M2 − e−2π|k|
√
q2+M2√

q2 +M2 −
√

(q − p)2 +M2
+
e−2π|k|

√
q2+M2

+ e−2π|k|
√

(q−p)2+M2√
q2 +M2 +

√
(q − p)2 +M2

]
. (4.16)

This expression is perfectly convergent for k 6= 0 and we are going to compute it

shortly, but first let us say a few words about k = 0.

A digression about k = 0. The case k = 0 corresponds, in the particle language, to

the contribution of closed trajectories that do not have any net winding number. Such

trajectories in R4 × S1 can be lifted to closed trajectories in R5. Thus the k = 0 term

should be understood as a contribution to the 5d effective action. It then contributes

to the 4d effective action through the classical dimensional reduction. As was explained

in [5], only two F-terms can receive contributions from the classical dimensional reduction.

Those are precisely the F0 and F1 that are being studied in this paper. The F1 term will be

discussed in the next section, while for the prepotential F0, the only possible contributions

from dimensional reduction originate from the 5d action (for supergravity with vector

multiplets) with no more than 2 derivatives. Such an action in 5d is completely fixed by

supersymmetry in terms of the coefficients CIJK (see [20]). Dimensional reduction then

gives the prepotential (2.13) in 4d depending on these coefficients. So the only possibility

for the k = 0 contribution to affect the F0 term in 4d is to shift the values of CIJK in the 5d

effective action. This does not happen. One way to see it is to note that the 5d action has a
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Chern-Simons term CIJKV
I ∧dV J ∧dV K . It gives rise to the term CIJKα

IF J ∧F J in the

4d action, where αI = V I
y are holonomies along the circle. Any quantum computation will

depend on holonomies through the combination e2πiαI , and thus the term CIJKα
IF J ∧F J

cannot be shifted.2

Back to the computation. Now, for k 6= 0, we want to Taylor expand the integrand

in (4.16) and pick out the p2-term in the expansion. Schematically, there will be two kinds

of terms: ∫
d4q

(2π)4

[
f1(q2)p2 + f2(q2)(pq)2

]
. (4.17)

In this type of integral one usually performs a Wick rotation q0 = −iq4, and then notes

that, due to the spherical symmetry, qµqν can be replaced by q2

4 ηµν . After that, we have:

− i
∫

d4qE
(2π)4

[
f1(q2

E) + f2(q2
E)q2

E/4
]
p2
E . (4.18)

By going to spherical coordinates and recalling that the volume of the unit 3-sphere is 2π2,

one has to compute:

− iπ

(2π)3

∫ ∞
0

q3dq
[
f1(q2) + f2(q2)q2/4

]
p2. (4.19)

By applying this to (4.16) (after Taylor expansion), we get the following expression at the

p2-order:

− π

(2π)2
p2

∫ ∞
0

q3dq

[
e−2π|k|

√
M2+q2q2

(
3 + 4π2k2M2 + 4π2k2q2 + 6π|k|

√
M2 + q2

)
8 (M2 + q2)5/2

− e−2π|k|
√
M2+q2

(M2 + q2)3/2
− 2π|k|e−2π|k|

√
M2+q2

M2 + q2

]
. (4.20)

By an obvious change of variables x =
√
M2 + q2, this is transformed into:

− π

(2π)2
p2

∫ ∞
M

dxx(x2−M2)

[
e−2|k|πx (x2−M2

) (
3 + 4π2k2M2 + 6π|k|x+ 4π2k2

(
x2−M2

))
8x5

− 2π|k|e−2π|k|x

x2
− e−2π|k|x

x3

]
, (4.21)

which gives:

πe−2π|k|M

(2π)3|k|
p2. (4.22)

We sum this over k 6= 0 (k and −k pair up) and get the corresponding kinetic term

deformation in coordinate space:

− 1

2

∞∑
k=1

e−2πkM

(2π)2k
∂µM(x)∂µM(x) = −1

2

∞∑
k=1

e−2πkM

(2π)2k
qIqJ∂µh

I∂µhJ . (4.23)

2From the string theory side, the values of CIJK are given by the string three-point amplitudes on a

sphere S2 with one insertion of the NS-NS vertex operator corresponding to the scalar αI and two inservions

from the R-R sector corresponding to the field strengths F Iµν (see [22]).
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4.2 Reconstructing F0

Now we aim to reconstruct the expression for F0 from the Kahler metric deformation

we have computed. An important observation one should make first is that the one-

loop quantum corrections also include contributions to the effective action that describe

couplings of the vector multiplets scalars ZI to the scalar curvature R. That is, effective

supergravity emerges written in a non-Einstein frame. If we denote the corresponding one-

loop contribution as 1
2φ(Z,Z)R, then the part of the Lagrangian density including also

kinetic energy of scalars, written at the point with zero holonomies αI = 0, is:

1

2
(1 + φ(Z,Z))R+

3

2
CIJKhI∂µhJ∂µhK −

1

2

∞∑
k=1

e−2πkM

(2π)2k
qIqJ∂µh

I∂µhJ . (4.24)

We could find this φ(Z,Z) by similarly computing the two-point function of some scalar ZI

with the metric. However, there is no need to do it as the structure of N = 2 supergravity

determines this function in terms of the quantities we have already calculated, as we will

see soon.

We want to compare the deformed metric on scalars in (4.24) with the formulas from

the section 2.2, namely with the general expression for the Kahler metric (2.9) in the

Einstein frame. However, since the action (4.24) is written in a non-Einstein frame, we

have to rescale metric first, writing the action in the Einstein frame:

1

2
R+

3

2
(1 + φ(Z,Z))−1CIJKhI∂µhJ∂µhK −

1

2
(1 + φ(Z,Z))−1

∞∑
k=1

e−2πkM

(2π)2k
qIqJ∂µh

I∂µhJ .

(4.25)

Keeping only the first order corrections, we find:

− 3

2
φ(Z,Z)CIJKhI∂µhJ∂µhK −

1

2

∞∑
k=1

e−2πkM

(2π)2k
qIqJ∂µh

I∂µhJ , (4.26)

which is the desired Kahler metric deformation. We want to compare it with the deforma-

tion of (2.9) under F0 = Fcl
0 + Fq

0 , where Fcl
0 is the classical prepotential (2.13). Such a

prepotential deformation results in NΛΣ = N cl
ΛΣ + Nq

ΛΣ and, through the gauge condition

NΛΣX
ΛX

Σ
= −1, in the deformation of the expression for X0 in terms of other scalars. It

is straightforward to find the first order correction of (2.9) at αI = 0 and eσ = 1:

1

4
Nq
IJ∂µh

I∂µhJ +
1

4
(Nq

IJh
IhJ +Nq

00)
3

2
CIJKhI∂µhJ∂µhK . (4.27)

Recalling the general expression for Fq
0 (3.2) deduced from shift symmetries, one can further

write this as:

− 2π2∂µM∂µM
∑
k>0

k2Im (ck,0)e−2πkM

+

(
2πM

∑
k>0

k Im (ck,0)e−2πkM +
∑
k>0

Im (ck,0)e−2πkM

)
3

2
CIJKhI∂µhJ∂µhK , (4.28)

– 13 –



J
H
E
P
0
5
(
2
0
1
5
)
0
8
9

where we used M = qIh
I . We now want to equate this to the result of the one-loop

calculation given in (4.26). Also, it is useful to realize that at αI = 0, the function φ(Z,Z)

is really a function φ(M) of M = qIh
I only, simply because it is a one-loop effect due to

the particle of mass M . Equating (4.26) with (4.28) and slightly rearranging, we get:

2π2∂µM∂µM
∑
k>0

k2

(
Im (ck,0)− 1

(2π)4k3

)
e−2πkM

=

(
φ(M) + 2πM

∑
k>0

k Im (ck,0)e−2πkM+
∑
k>0

Im (ck,0)e−2πkM

)
3

2
CIJKhI∂µhJ∂µhK , (4.29)

which is the equation for the unknown coefficients ck,0 and the unknown function φ(M).

When written in such a way and if there are enough scalars hI in the theory, one can show3

that the only possible way to satisfy it is to set both sides to zero. Recalling that ck,0 are

imaginary due to parity, this gives:

ck,0 =
i

(2π)4k3
,

φ(M) = −
∑
k>0

M

(2π)3k2
e−2πkM −

∑
k>0

1

(2π)4k3
e−2πkM . (4.30)

With such values of ck,0, we get:

Fq
0 =

i

(2π)4

(
X0
)2 ∞∑

k=1

1

k3
e2πikqIZ

I
, (4.31)

which agrees with the GV formula as claimed in [5]. It is now also obvious that for αI 6= 0,

the expression for φ(Z,Z) is:

φ(Z,Z) = −Nq
ΛΣX

ΛX
Σ

= −1

4
e−3σNq

ΛΣZ
ΛZ

Σ
. (4.32)

3If there are enough scalars, one can find such a constant (i.e. independent of the space-time point)

infinitesimal variation δhI that CIJKδhI∂µhJ∂µhK is non-zero, while δM = qIδh
I = 0. Of course, constraint

CIJKhIhJhK = 1 defining the hypersurface Mh should be preserved too. Under such a variation in hI ,

the equation (4.29) should be preserved. But since δM = 0, the only term whose variation is non-zero

is CIJKhI∂µhJ∂µhK . Thus the expression in parenthesis by which it is multiplied should be zero for the

equation to hold, which immediately implies (4.30). There are b2(Y ) scalars hI , I = 1 . . . b2(Y ), where

b2(Y ) is a second Betti number of Y . To have “enough scalars”, we can take b2(Y ) ≥ 4. To show this,

put ∂µh
I = aµδh

I , i.e. assume that the gradient is parallel to the variation that we are seeking with some

proportionality factor aµ such that aµa
µ 6= 0 (we can obviously do that). The fact that CIJKhIhJhK = 1

is preserved means that δhI is tangent to Mh. Also, as mentioned above, we have qIδh
I = 0. Also, we

want CIJKδhI∂µhJ∂µhK = aµa
µCIJKδhIδhJδhK 6= 0. When b2(Y ) ≥ 4, the tangent space to Mh is at

least three-dimensional, and qIδh
I = 0 gives a subspace of dimension at least two. In such a space, we can

clearly find such δhI that a single condition CIJKδhIδhJδhK 6= 0 is satisfied, and this is the variation we

need, so b2(Y ) ≥ 4 is enough. However, in subsection 4.2.1 we will explain that the answer we get is valid

for any b2(Y ).
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4.2.1 The case of arbitrary b2(Y )

In the derivation of (4.30), we used the assumption that there are enough scalars, namely

that b2(Y ) ≥ 4, as explained in the footnote 3. However, there exist Calabi-Yau spaces

with b2(Y ) < 4. For example, the quintic threefold has b2(Y ) = 1, which is the minimal

possible value. In fact, the case of b2(Y ) = 1 seems to be even more problematic, because

the 5d theory obtained by compactification on such a manifold has no vector multiplets

and so no corresponding scalars. But our approach was to compute the Kahler metric for

those scalars, so their existence was essential.

A possible way around is that the formula (4.31), describing the contribution of a

single 5d hypermultiplet to F0, is universal and holds for any b2(Y ). Once we know that

the corresponding 5d BPS multiplet exists, this formula gives the answer irrespective of

how big or small b2(Y ) is. For b2(Y ) ≥ 4, this already follows from our derivation, but for

the cases of small b2(Y ), one has to give a separate argument.

To do this, notice that we could set up a different computation of F0. Namely, we

could use the kinetic energy of gauge fields. It has two good properties. One is that it is

Weyl-invariant, so rescaling the metric into the Einstein frame would not affect the one-

loop deformation of the kinetic term (unlike it was for scalars in (4.24)–(4.26)). Another is

that the matrix of couplings (2.12) does not depend on the dilatational gauge, i.e. on the

expression for X0, so that the gauge fields kinetic term deformation is directly related to

Nq
ΛΣ. So we could just compute the two-point function of 5d gauge fields (they exist for all

b2(Y ), unlike scalars), and get Fq
0 out of it directly. A disadvantage of such an approach

is that it seems to be much more technically involved than what we have done here, and

one would also need to know how to couple the minimal action (4.1) to gauge fields in a

proper supersymmetric way. That is why we have chosen scalars for the computation. But

it would clearly depend only on the properties of the 5d hypermultiplet, and not on b2(Y ).

Existence of such an alternative computation establishes our claim that (4.31) provides a

universal answer.

5 Computation of F1

Now we consider the same light hypermultiplet as in (4.1), but here we determine its

contribution to F1. The term F1 gives rise to a variety of interactions in the 4d effective

action, and every one of them can potentially be used to set up a computation of F1. We

find the following term:

(ImF1)R2 ≡ (ImF1)RµνλρR
µνλρ (5.1)

to be the most useful for this purpose. This term can be understood as a response to a

small metric perturbation. Thus, it can be computed from the two-point function of the

symmetric stress-energy tensor of the action (4.1). We consider a small metric perturbation

around the flat 4d Minkowski background (the R3,1 part of R3,1 × S1):

gµν = ηµν + hµν , (5.2)
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and we assume no metric perturbations in the circle direction. That is, the metric remains

ds2 = gµνdxµdxν + dy2. With the TT-gauge condition:

hµµ = 0

∂µh
µν = 0, (5.3)

we have: R2 = ∂λ∂σh
µν∂λ∂σhµν +O(h3). So we will compute the following interaction:

8(ImF1)hµν(∂2)2hµν . (5.4)

If TMN is a symmetric stress-energy tensor of (4.1), then for small perturbations hµν of

the metric, the leading order contribution to (ImF1)R2 at one loop comes from:

1

4

∫
d5xd5y〈Tµν(x)Tλρ(y)〉hµν(x)hλρ(y). (5.5)

The useful relation to extract the one-loop answer Fq
1 is:∫

d5x1d5x2〈Tµν(x1)Tλρ(x2)〉hµν(x1)hλρ(x2) = −64i

∫
d4x(ImFq

1 )hµν(∂2)2hµν + . . . , (5.6)

where the ellipsis stands for terms with the wrong number of derivatives.

5.1 The two-point function computation

The symmetric stress-energy tensor is

Tµν = −2
∑
i

zi
(←−
∂ (µ
−→
∂ ν)

)
zi +

1

2
Ψ
c
(
γ(µ
−→
∂ ν) − γ(µ

←−
∂ ν)

)
Ψ− ηµνL. (5.7)

Formula (5.6) implies that, due to the tracelessness of hµν , the ηµνL term in the expression

for Tµν is unimportant.

Since the leading contribution to RµνλρR
µνλρ is proportional to (�h)2, we need to find

the (p2)2-order term of the 〈TµνTλρ〉 two-point function. We identify the contribution of

bosons first:

8×2π

∫ 2π

0
dy

∫
d4p

(2π)4
hµν(−p)hλρ(p)

∫
d4q

(2π)4
(q−p)µqνqλ(q−p)ρG(q, y)G(q−p,−y). (5.8)

Because of ∂µh
µν = 0, we have pµhµν(p) = 0, and so the important part is:

8× 2π

∫ 2π

0
dy

∫
d4p

(2π)4
hµν(−p)hλρ(p)

∫
d4q

(2π)4
qµqνqλqρG(q, y)G(q − p,−y). (5.9)

The contribution of fermions is:

1

4

∫
d4p

(2π)4
hµν(−p)hλρ(p)

×
∫

d4q

(2π)4
Tr
{

(γ(µqν) − γ(µ(p− q)ν))D(q, y)(γ(λ(q − p)ρ) + γ(λqρ))D(q − p,−y)
}
, (5.10)
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And for the same reason, pµhµν = 0, the relevant part is:∫
d4p

(2π)4
hµν(−p)hλρ(p)

∫
d4q

(2π)4
Tr {γµqνD(q, y)γλqρD(q − p,−y)} . (5.11)

So, we have to find the (p2)2-term of this expression:

2π

∫ 2π

0
dy

∫
d4q

(2π)4

[
8qµqνqλqρG(q, y)G(q − p,−y) + Tr

{
γ(µqν)D(q, y)γ(λqρ)D(q − p,−y)

}]
.

(5.12)

The following steps are as in the F0 case. We have:

2π
∑
k1,k2

∫ 2π

0
dy

∫
d4q

(2π)4

[
8qµqνqλqρG0(q, y − 2πk1)G0(q − p,−y − 2πk2)

+ Tr
{
γ(µqν)D0(q, y − 2πk1)γ(λqρ)D0(q − p,−y − 2πk2)

} ]
, (5.13)

and for given k1 + k2 = k, we get:

2π
∑

k1+k2=k

∫ 2π

0
dy

∫
d4q

(2π)4

[
2qµqνqλqρ√

q2 +M2
√

(q − p)2 +M2

+
M2q(νgµ)(λqρ)√

q2+M2
√

(q−p)2 +M2
−
qµqν(q − p)(λqρ) + (q − p)(µqν)qλqρ − q(q − p)q(νgµ)(λqρ)√

q2 +M2
√

(q − p)2 +M2

+ q(νgµ)(λqρ)Sign(y − 2πk1)Sign(y+2πk2)

]
e−|y−2πk1|

√
q2+M2−|y+2πk2|

√
(q−p)2+M2

. (5.14)

We throw away terms proportional to pµ, pν , pλ or pρ, and get:

2π
∑

k1+k2=k

∫ 2π

0
dy

∫
d4q

(2π)4

[
(M2 + q(q − p))q(νgµ)(λqρ)√
q2 +M2

√
(q − p)2 +M2

(5.15)

+ q(νgµ)(λqρ)Sign(y − 2πk1)Sign(y + 2πk2)

]
e−|y−2πk1|

√
q2+M2−|y+2πk2|

√
(q−p)2+M2

.

Computing the sums and integrating over y using the formulas (4.14) and (4.15), we find:

2π

∫
d4q

(2π)4

[
(M2 + q(q − p))q(νgµ)(λqρ)√
q2 +M2

√
(q − p)2 +M2

× (5.16)(
e−2π|k|

√
(q−p)2+M2 − e−2π|k|

√
q2+M2√

q2 +M2 −
√

(q − p)2 +M2
+
e−2π|k|

√
q2+M2

+ e−2π|k|
√

(q−p)2+M2√
q2 +M2 +

√
(q − p)2 +M2

)

+ q(νgµ)(λqρ)

(
−e
−2π|k|

√
(q−p)2+M2−e−2π|k|

√
q2+M2√

q2 +M2 −
√

(q − p)2 +M2
+
e−2π|k|

√
q2+M2

+e−2π|k|
√

(q−p)2+M2√
q2 +M2 +

√
(q − p)2 +M2

)]
.

Now we have to Taylor expand this to get an O(p4)-order contribution. We then integrate

over d4q at that order. We have to do the same tricks with Wick rotation and replacing
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products of qµ by symmetric combinations of ηµν :∫
d4q

(2π)4

[
f1(q2)qµqρ(p

2)2 + f2(q2)qµqρp
2(qp)2 + f3(q2)qµqρ(qp)

4
]
→

− i
∫

d4qE
(2π)4

[
f1(q2

E)
q2

4
ηµρ(p

2)2 + f2(q2
E)
q4

24
ηµρ(p

2)2 + f3(q2
E)
q6

64
ηµρ(p

2)2

]
+ . . . (5.17)

where the ellipsis represents terms that vanish upon contractions with hµνhλρ.

So, after Taylor expansion, we get:

− i(p
2)2

4π

∫ ∞
0
q3dq

[
3e−2|k|π

√
M2+q2M4q2

16 (M2 + q2)9/2
+
e−2|k|π

√
M2+q2k2M6π2q2

4 (M2 + q2)9/2
+
e−2|k|π

√
M2+q2M2q4

6 (M2 + q2)9/2

+
5e−2|k|π

√
M2+q2k2M4π2q4

12 (M2 + q2)9/2
+

73e−2|k|π
√
M2+q2q6

1536 (M2 + q2)9/2
+

77e−2|k|π
√
M2+q2k2M2π2q6

384 (M2 + q2)9/2

+
e−2|k|π

√
M2+q2k4M4π4q6

96 (M2 + q2)9/2
+

13e−2|k|π
√
M2+q2k2π2q8

384 (M2 + q2)9/2
+
e−2|k|π

√
M2+q2k4M2π4q8

48 (M2 + q2)9/2

+
e−2|k|π

√
M2+q2k4π4q10

96 (M2 + q2)9/2
+

3e−2|k|π
√
M2+q2 |k|M4πq2

8 (M2 + q2)4 +
e−2|k|π

√
M2+q2 |k|M2πq4

3 (M2 + q2)4

− e−2|k|π
√
M2+q2 |k|3M4π3q4

9 (M2 + q2)4 +
73e−2|k|π

√
M2+q2 |k|πq6

768 (M2 + q2)4 − 49e−2|k|π
√
M2+q2 |k|3M2π3q6

288 (M2 + q2)4

− 17e−2|k|π
√
M2+q2 |k|3π3q8

288 (M2 + q2)4

]
. (5.18)

Doing the same change of variables x =
√
M2 + q2 as before and integrating, we get:

− i(p
2)2

4π

e−2π|k|M

24π|k|
. (5.19)

Summing over k 6= 0 and using (5.6), we obtain:

ImFq
1 =

1

16π2

∞∑
k=1

e−2πkM

64× 3k
, (5.20)

so, using the fact that F1 is imaginary at αI = 0 and then extending by holomorphy:

Fq
1 =

1

16π2

∞∑
k=1

i

64× 3k
e2πikqIZ

I
. (5.21)

This is again compatible with [5].

A word about k = 0. Just as in the F0 case, the integral (5.18) is convergent only

for k 6= 0. The k = 0 part is again interpreted as a term in the effective action in 5d.

And this term then can or cannot contribute to F1 by the classical dimensional reduction.

In [5], it was shown that the only possible contribution to F1 from the classical dimensional
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reduction is of the form cI,2Z
I with real constants cI,2. So the only remaining question

one could ask here is whether the k = 0 part of the one-loop answer could contribute by

shifting the values of these cI,2.

The real part of F1 ∝ cI,2ZI enters the 4d interaction
∫
cI,2α

ITr(R∧R), which comes

from a Chern-Simons interaction in 5d of the form
∫
cI,2V

I ∧ Tr(R ∧ R). The imaginary

part of F1 corresponds to the 4d interaction
∫ √

gd4x cI,2h
IR2, which apparently lifts to

the 5d interaction of the form ∝
∫ √

Gd5x cI,2h
IR2. While the meaning of the latter

term is not entirely clear, the 5d Chern-Simons term actually looks familiar. As explained

in [5], it can be lifted even further, to the 11d action. Its 11d origin is an interaction
1

(2π)4

∫
C ∧

[
1

768(TrR2)2 − 1
192TrR4

]
(where the powers of R are with respect to the wedge

product). This interaction was discovered in [23] due to its role in the anomaly cancelation

in M-theory. This suggests that cI,2 cannot be shifted — one can run the same anomaly

argument in 5d to determine the values of cI,2. Another evidence that quantum corrections

cannot shift cI,2 appears if we turn on holonomies αI . We know that they appear in

a diagram computation only through the factors e2πikqIα
I
, which means that the term∫

cI,2α
ITr(R ∧ R) (which has to be generated at αI 6= 0 background) cannot be shifted.

Thus cI,2 is not actually shifted by the k = 0 part of the one-loop answer, and it is enough

to consider only k 6= 0 terms.

6 Discussion

We have computed the contribution of a single light hypermultiplet to F0 and F1. As was

explained in [5] and originally noticed in [3], to get a contribution from all of the massless

multiplets in the theory (that is, hypermultiplets, vector multiplets and the gravity multi-

plet), one just has to multiply the contribution of a massless hypermultiplet by −χ(Y )/2,

where χ(Y ) is Euler characteristic of the Calabi-Yau Y . The massless hypermultiplet

contribution is a massless limit of what we have computed here.

Note that the superparticle description, which was advocated in section 3 of [5] (and

which is a perfect choice for massive BPS multiplets), does not have a sensible massless

limit, even though in the answer one can formally take mass to zero. That is why the field

theoretic description was essential for the complete picture. For g ≥ 2, the field-theoretic

computation of Fg was described in section 4 of [5]. The field-theoretic computation of F0

and F1 is presented in this paper, thereby completing the physical treatment of the GV

formula. There are several other points we want to make.

One point is about possible improvements of our computation. One could try to

generalize the field theoretic derivation by finding an alternative and probably more natural

one. Notice that in [5], for g ≥ 2, one had to perform a Poisson resummation to bring

field-theoretic answer into a useful form, when it is presented as a sum over the winding

number k. But in the derivation we have for F0 and F1, we got the answer as a sum over

k without any Poisson resummation. Thus one could ask if it is possible to generalize the

approach we have taken here to g ≥ 2.

It is quite clear how to generalize our computation of F1. Since the terms Fg give rise to

interactions of the form Fg(X)(R−)2(W− 2)g−1 + c.c., one again could try to determine Fg
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by computing the two point function of stress-energy tensor, but now in a flat background

with the graviphoton field W− (or T− in the 5d language) turned on. While such an

approach is completely feasible, it seems to be much harder computationally than the

approach of section 4 of [5]. However, it may well turn out that the actual computation

will be easier than we expect.

Another possible approach is to generalize the computation of F0. In this case we notice

that turning on a constant graviphoton background T− (i.e. considering the supersymmetric

Gödel solution of [24], as explained in [5]) effectively deforms the 4d prepotential by the

4d graviphoton W−:

F̃0(X) =
∞∑
g=0

Fg(X)(W− 2)g, (6.1)

so that if we treat W− not as a field but rather as a parameter in the action, the kinetic

term for scalars will receive W−-dependent deformations. One can reconstruct Fg from the

knowledge of this deformed kinetic term. And to compute the deformed kinetic term, all we

need to do is to compute the two-point function of mass terms (as in the F0 computation in

section 4 of this paper), but in the background with the constant graviphoton field turned

on. Again, it seems presently that such a computation will be much more complicated then

what we have so far. But if it turns out to be simple, then it will be a nice approach to

compute Fg for all g ≥ 0 at once.

Finally, we note that the results of the one-loop computation are actually exact. This

one-loop exactness follows in the usual way from holomorphy. If we go beyond quadratic

order in the action and thus consider higher-loop corrections, they will be multiplied by ex-

tra powers of the mass M = qIh
I , which will not be balanced by extra powers of holonomies

qIα
I , and thus will violate holomorphy.
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