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Abstract
In this paper, we first study a hierarchical problem of Baillon’s type, and we study a
strong convergence theorem of this problem. For the special case of this
convergence theorem, we obtain a strong convergence theorem for the ergodic
theorem of Baillon’s type. Our result of the ergodic theorem of Baillon’s type improves
and generalizes many existence theorems of this type of problem. Two numerical
examples are given to demonstrate our results.
As applications of our convergence theorem of the hierarchical problem, we study

the unique solution for the following problems: mathematical programming with
multiply sets split variational inclusion and fixed point set constraints; mathematical
programming with multiple sets split variational inequalities and fixed point set
constraints; the variational inequality problem with a system of mixed type equilibria
and fixed point set constraints; the variational inequality problem with multiple sets
split system of mixed type equilibria and fixed point set constraints; mathematical
programming with a system of mixed type equilibria and fixed point set constraints.
We give iteration processes for these types of problems and establish the strong
convergence for the unique solution of these problems. For our special case, our
results can be reduced to the following problems: the unique minimal norm solution
of the multiply sets split monotonic variational inclusion problems; the minimum
norm solutions for the multiple sets split system of mixed type equilibria problem; the
minimum norm solution of the system of mixed type equilibria problem. Our results
will have many applications in diverse fields of science.

Keywords: hierarchical problems; split variational inclusion problems; fixed point
problems; mathematical programming; minimum norm solution

1 Introduction
Let C,C, . . . ,Cm be nonempty closed convex subsets of a Hilbert space H. The well-
known convex feasiblity problem (CFP) is to find x∗ ∈H such that

x∗ ∈ C ∩C ∩ · · · ∩Cm.

The split feasibility problem (SFP) is to find a point

x∗ ∈ C such that Ax∗ ∈Q,
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where C is a nonempty closed convex subset of a Hilbert spaceH,Q is a nonempty closed
convex subset of a Hilbert space H, and A :H →H is an operation. The split feasibility
problem (SFP) in the finite dimensionalHilbert spaceswas first introduced byCensor et al.
[] for modeling inverse problems which arise from phase retrievals and in medical image
reconstruction. Since then, the convex feasibility problem and the split feasibility prob-
lem (SFP) has received much attention due to its applications in signal processing, image
reconstruction, approximation theory, control theory, biomedical engineering, commu-
nications, and geophysics. For example, one can refer to [–] and related literature.
Let C,C, . . . ,Cm be nonempty closed convex subsets of a Hilbert space H, let

Q,Q, . . . ,Qn be nonempty closed convex sets H and let A,A, . . . ,Am : H → H be
linear operator operators. The well-known multiple sets split feasibility problem studied
by Censor et al. []. Xu [] and Lopez et al. [] (MSSFP) is to find x∗ ∈H such that

x∗ ∈ Ci such that Aix∗ ∈Qi for all i = , , . . . ,m.

In , Moudafi [] introduced and studied the following split monotone variational
inclusion (SMVI):

Find x̄ ∈ H such that x̄ ∈ (B +G)–, ()

and

ȳ = Ax̄ ∈H such that ȳ ∈ (B +G)–, ()

where H and H are real Hilbert spaces, A : H → H is a bounded linear operator, B :
H → H and B : H → H are given operators, G : H � H and G : H � H are given
multivalued mappings.
Moudafi [] proved aweakly convergence theorem for the solution of the splitmonotone

variational inclusion (SMVI) with an iteration process.
In ,Maruyama et al. [] proved the following ergodic theorem of Baillon’s type [].

Theorem . [] Let C be a nonempty closed convex subset of a real Hilbert space H ,
T : C → C be a -generalized hybrid mapping with Fix(T) �= ∅ and let PFix(T) be the metric
projection of H onto Fix(T). Then, for any x ∈ C,

Snx :=

n

n–∑
k=

Tkx

converges weakly to an element p of Fix(T), where p = limn→∞ PFix(T)Tnx.

In this paper, we first study a hierarchical problemof Baillon’s type, andwe study a strong
convergence theorem of this problem. For the special case of this convergence theorem,
we obtain a strong convergence theorem for the ergodic theorem of Baillon’s type. Our
result of the ergodic theorem of Baillon’s type improves and generalizes many existence
theorems of this type of problem. Two numerical examples are given to demonstrate our
results.
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As applications of our convergence theorem of the hierarchical problem, we study the
unique solution for the following problems: mathematical programming with multiply
sets split variational inclusion and a fixed point set constraints; mathematical program-
ming with multiple sets split variational inequalities and fixed point set constraints; the
variational inequality problem with a system of mixed type equilibria and fixed point set
constraints; the variational inequality problem with multiple sets split system of mixed
type equilibria and a fixed point set constraints; mathematical programming with system
of mixed type equilibrium and a fixed point set constraints. We give iteration processes
for these types of problems and establish the strong convergence for the unique solution
of these problems. For the special case of our results, our results can be reduced to the fol-
lowing problems: the unique minimal norm solution of the multiply sets split monotonic
variational inclusion problems; the minimum norm solutions for the multiple sets split
system of mixed type equilibrium problem; the minimum norm solution of the system
of the mixed type equilibria problem. Our results will have many applications in diverse
fields of science.

2 Preliminaries
Throughout this paper, let N be the set of positive integers and let R be the set of real
numbers,H be a (real) Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively,
and C be a nonempty closed convex subset of H. We denote the strongly convergence
and the weak convergence of {xn} to x ∈H by xn → x and xn ⇀ x, respectively.
Let T : C → H be a mapping, and let Fix(T) := {x ∈ C : Tx = x} denote the set of fixed

points of T . A mapping T : C →H is called
(i) a -generalized hybrid mapping [] if there exist δ, δ, ε, ε ∈R such that

δ
∥∥Tx – Ty

∥∥ + δ‖Tx – Ty‖ + ( – δ – δ)‖x – Ty‖

≤ ε
∥∥Tx – y

∥∥ + ε‖Tx – y‖ + ( – ε – ε)‖x – y‖

for all x, y ∈ C.
Weknow that the class of -generalized hybridmapping contains the classes of nonexpan-
sive mappings, nonspreading mappings, and a (α,β)-generalized hybrid [] in a Hilbert
space. We give an example for a -generalized hybrid mapping.

Example . [] Let T : [, ]→R be defined as

Tx =

{
 if x ∈ [, ),
 if x = .

Then T is a -generalized hybrid mapping and Fix(T) = {}.

Proof Let ε = ε = 
 , δ = δ = 

 .
Case : If x ∈ [, ), y = , then Tx = Tx = , Ty =  and ‖x – Ty‖ ≤ . We know that

δ
∥∥Tx – Ty

∥∥ + δ‖Tx – Ty‖ + ( – δ – δ)‖x – Ty‖

= δ + δ + ( – δ – δ)‖x – Ty‖

≤ δ + δ + ( – δ – δ) = 
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and

ε
∥∥Tx – y

∥∥ + ε‖Tx – y‖ + ( – ε – ε)‖x – y‖

= ε + ε + ( – ε – ε)‖x – ‖

≥ ε + ε ≥  +  = .

Therefore,

δ
∥∥Tx – Ty

∥∥ + δ‖Tx – Ty‖ + ( – δ – δ)‖x – Ty‖

≤ ε
∥∥Tx – y

∥∥ + ε‖Tx – y‖ + ( – ε – ε)‖x – y‖.

Case : If x ∈ [, ), y ∈ [, ), then Tx = Tx = , Ty = Ty = . We know that

δ
∥∥Tx – Ty

∥∥ + δ‖Tx – Ty‖ + ( – δ – δ)‖x – Ty‖

= ( – δ – δ)x

= 

≤ ε
∥∥Tx – y

∥∥ + ε‖Tx – y‖ + ( – ε – ε)‖x – y‖.

Case : If x = y = , then Tx = , Tx = , Ty = , Ty = . We know that

δ
∥∥Tx – Ty

∥∥ + δ‖Tx – Ty‖ + ( – δ – δ)‖x – Ty‖

= δ + ( – δ – δ)

= ( – δ) =



and

ε
∥∥Tx – y

∥∥ + ε‖Tx – y‖ + ( – ε – ε)‖x – y‖

= ε + ε ≥ 

.

Therefore,

δ
∥∥Tx – Ty

∥∥ + δ‖Tx – Ty‖ + ( – δ – δ)‖x – Ty‖

≤ ε
∥∥Tx – y

∥∥ + ε‖Tx – y‖ + ( – ε – ε)‖x – y‖.

By the above case, we know that T is a -generalized hybrid. �

A mapping V :H →H is called
(i) strongly monotone if there exists γ̄ >  such that 〈x – y,Vx –Vy〉 ≥ γ̄ ‖x – y‖ for all

x, y ∈ H;
(ii) α-inverse-strongly monotone if 〈x – y,Vx –Vy〉 ≥ α‖Vx –Vy‖ for all x, y ∈ H and

α > .

http://www.fixedpointtheoryandapplications.com/content/2014/1/20
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We also know that if V is a α-inverse-strongly monotone mapping and  < λ ≤ α, then
I – λV : C →H is nonexpansive.
Let G : H � H be a multivalued mapping. The effective domain of G is denoted by

D(G), that is, D(G) = {x ∈H :Gx �= ∅}.
Then G :H �H is called
(i) a monotone operator on H if 〈x – y,u – v〉 ≥  for all x, y ∈D(G), u ∈Gx, and

v ∈Gy;
(ii) a maximal monotone operator on H if G is a monotone operator on H and its

graph is not properly contained in the graph of any other monotone operator on H.

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T be a nonexpansive mapping of C into itself, and let {xn} be a sequence in C. If xn ⇀ w
and limn→∞ ‖xn – Txn‖ = , then Tw = w.

In , Hojo et al. [] also gave an example for a -generalized hybrid mapping which
is not a generalized hybrid mapping with Fix(T) = {(, )}. We shall prove that this ex-
ample for a -generalized hybrid mapping does not satisfy the demiclosed property as in
Lemma ..

Example . Let A = {x ∈R
 : ‖x‖ ≤ } and TA→R

 be defined as

Tx =

{
(, ) if x ∈ A,
x

‖x‖ if x ∈R
/A.

Hojo et al. [] showed that T is a -generalized hybrid mapping, but T is not a gen-
eralized hybrid mapping. Note that T does not have the demiclosed property. Indeed,
there exists a sequence {xn} ∈ A such that xn ⇀ w and limn→∞ ‖xn – Txn‖ = , but w in
R

/Fix(T) =R
/{(, )}.

Proof Let rn =  + 
n , xn = (rn cos θ , rn sin θ ) for all n ∈ N, then xn → (cos θ , sin θ ) and Txn =

(cos θ , sin θ ). We also have ‖Txn – xn‖ = ‖((rn – ) cos θ , (rn – ) sin θ )‖ = rn –  → , but
(cos θ , sin θ ) �= (, ). �

Lemma. [] Let V :H →H be a γ̄ -stronglymonotone and L-Lipschitzian continuous
operator with γ̄ >  and L > . Let θ ∈ H, and V :H → H such that Vx = Vx – θ . Then
V is a γ̄ -strongly monotone and L-Lipschitzian continuous mapping. Furthermore, there
is a unique fixed point z in C satisfying z = PC(z – Vz + θ ). This point z ∈ C is also a
unique solution of the hierarchical variational inequality 〈Vz –θ ,q– z〉 ≥ , for all q ∈ C.

Let C be a nonempty subset of a real Hilbert space H. Then T : C → H is a firmly
nonexpansive mapping if ‖Tx –Ty‖ ≤ ‖x – y‖ – ‖(I –T)x – (I –T)y‖ for every x, y ∈ C,
that is, ‖Tx – Ty‖ ≤ 〈x – y,Tx – Ty〉 for every x, y ∈ C.

Lemma . [] Let G be a maximal monotone mapping on H. Let JG
r be the resolvent

of G defined by JG
r = (I + rG)– for each r > . Then the following holds:

|s – t|
s

〈
JG
s x – JG

t x, JG
s x – x

〉 ≥ ∥∥JG
s x – JG

t x
∥∥

http://www.fixedpointtheoryandapplications.com/content/2014/1/20
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for all s, t >  and x ∈H. In particular,

∥∥JG
s x – JG

t x
∥∥ ≤ |s – t|

s
∥∥JG

s x – x
∥∥

for all s, t >  and x ∈H.

A mapping T : H → H is said to be averaged if T = ( – α)I + αS, where α ∈ (, )
and S : H → H is nonexpansive. In this case, we also say that T is α-averaged. A firmly
nonexpansive mapping is 

 -averaged.

Lemma . ([, ]) Let C be a nonempty closed convex subset of a real Hilbert space H ,
and let T : C → C be a mapping. Then the following are satisfied:

(i) T is nonexpansive if and only if the complement (I – T) is /-ism.
(ii) If S is υ-ism, then for γ > , γ S is υ/γ -ism.
(iii) S is averaged if and only if the complement I – S is υ-ism for some υ > /.
(iv) If S and T are both averaged, then the product (composite) ST is averaged.
(v) If the mappings {Ti}ni= are averaged and have a common fixed point, then⋂n

i= Fix(Ti) = Fix(T · · ·Tn).

Lemma. [] Let {an} be a sequence of real numbers such that there exists a subsequence
{ni} of {n} such that ani < ani+ for all i ∈ N. Then there exists a nondecreasing sequence
{mk} ⊆ N such that mk → ∞ and the following properties are satisfied by all (sufficiently
large) numbers k ∈N:

amk ≤ amk+ and ak ≤ amk+.

In fact,mk =max{j ≤ k : aj < aj+}.

Lemma . [] Let {an}n∈N be a sequence of nonnegative real numbers, {αn} a sequence
of real numbers in [, ] with

∑∞
n= αn = ∞, {un} a sequence of nonnegative real numbers

with
∑∞

n= un < ∞, {tn} a sequence of real numbers with lim sup tn ≤ . Suppose that an+ ≤
( – αn)an + αntn + un for each n ∈N. Then limn→∞ an = .

3 Convergence theorems of hierarchical problems
Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. For
each i = , , and κi > , let Fi be a κi-inverse-strongly monotonemapping of C intoH. For
each i = , , let Gi be a maximal monotone mapping on H such that the domain of Gi is
included in C and define the set G–

i  as G–
i  = {x ∈ H :  ∈ Gix}. Let JG

λn = (I + λnG)–

and JG
rn = (I + rnG)– for each n ∈ N, λn >  and rn > . Let {θn} ⊂ H be a sequence.

Let V be a γ̄ -strongly monotone and L-Lipschitzian continuous operator with γ̄ >  and
L > . Throughout this paper, we use these notations and assumptions unless specified
otherwise.
The following strong convergence theorem for hierarchical problems is one of our main

results in this paper.
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Theorem . Let T : C → H be a -generalized hybrid mapping with Fix(T) ∩ (F +
G)–∩ (F +G)– �= ∅. Take μ ∈R as follows:

 < μ <
γ̄
L

.

Let {xn} ⊂H be defined by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x ∈ C chosen arbitrarily,
yn = JG

λn (I – λnF)JG
rn (I – rnF)xn,

sn = 
n
∑n–

k=Tkyn,
xn+ = αnxn + ( – αn)(βnθn + (I – βnV )sn)

(.)

for each n ∈ N, {λn} ⊂ (,∞), {αn} ⊂ (, ), {βn} ⊂ (, ), and {rn} ⊂ (,∞). Assume that:
(i)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(ii) limn→∞ βn = , and

∑∞
n= βn =∞;

(iii)  < a ≤ λn ≤ b < κ, and  < a ≤ rn ≤ b < κ;
(iv) limn→∞ θn = θ for some θ ∈ H.

Then limn→∞ xn = x̄, where x̄ = PFix(T)∩(F+G)–∩(F+G)–(x̄–Vx̄+ θ ). This point x̄ is also a
unique solution of the hierarchical variational inequality:

〈Vx̄ – θ ,q – x̄〉 ≥ , ∀q ∈ Fix(T)∩ (F +G)–∩ (F +G)–.

Proof Take any x̄ ∈ Fix(T) ∩ (F +G)– ∩ (F +G)– and let x̄ be fixed. Then we have
x̄ = JG

λn (I – λnF)x̄ and x̄ = JG
rn (I – rnF)x̄. Let un = JG

rn (I – rnF)xn. For each n ∈ N, by the
same argument as the proof of Theorem . [], we have

‖un – x̄‖ ≤ ‖xn – x̄‖ – rn(κ – rn)‖Fxn – Fx̄‖ ≤ ‖xn – x̄‖ ()

and

‖yn – x̄‖ ≤ ‖un – x̄‖ – λn(κ – λn)‖Fun – Fx̄‖ ≤ ‖xn – x̄‖. ()

By equations () and (), we have

‖yn – x̄‖ ≤ ‖un – x̄‖ ≤ ‖xn – x̄‖.

Since T is a -generalized hybrid mapping with Fix(T) �= ∅, we know that T is a quasi-
nonexpansive, and

‖sn – x̄‖ =
∥∥∥∥∥ 
n

n–∑
k=

Tkyn – x̄

∥∥∥∥∥ ≤ 
n

n–∑
k=

∥∥Tkyn – x̄
∥∥

≤ ‖yn – x̄‖ ≤ ‖un – x̄‖ ≤ ‖xn – x̄‖. ()

By the same argument as in the proof of Theorem . [], we find that the sequence {xn}
is bounded. Furthermore, {un}, {zn}, {yn}, and {sn} are bounded. We also have

‖xn+ – xn‖ ≤ ( – αn)
[
β
n‖θn –Vsn‖ + ‖sn – xn‖ + βn‖θn –Vsn‖‖sn – xn‖

]
()

http://www.fixedpointtheoryandapplications.com/content/2014/1/20
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and

‖xn+ – x̄‖ – ‖xn – x̄‖ + ( – αn)αn‖sn – xn‖

≤ ( – αn)βn〈θn,xn – x̄〉 – ( – αn)βn〈Vsn,xn – x̄〉
+ ( – αn)

[
β
n‖θn –Vsn‖ + βn‖θn –Vsn‖‖sn – xn‖

]
. ()

We will divide the proof into two cases.
Case : there exists a natural number N such that ‖xn+ – x̄‖ ≤ ‖xn – x̄‖ for each n ≥ N .

Therefore, limn→∞ ‖xn – x̄‖ exists. Hence, it follows from equation (), (i), and (ii) that

lim
n→∞‖sn – xn‖ = . ()

By equations (), (), (i), and (ii), we have

lim
n→∞‖xn+ – xn‖ = . ()

We also have

‖zn – sn‖ ≤ ∥∥βnθn + ( – βnV )sn – sn
∥∥ ≤ βn‖θn –Vsn‖. ()

By equation (), (iv), and (ii) we have

lim
n→∞‖zn – sn‖ = . ()

By equations () and (),

lim
n→∞‖zn – xn‖ = . ()

By the same argument as in the proof of Theorem . [], we have

lim
n→∞‖un – xn‖ =  ()

and

lim
n→∞‖yn – un‖ = . ()

Since Fix(T) ∩ (F + G)– ∩ (F + G)– is a nonempty closed convex subset of H, by
Lemma ., we can take x̄ ∈ Fix(T)∩ (F +G)–∩ (F +G)– such that

x̄ = PFix(T)∩(F+G)–∩(F+G)–(x̄ –Vx̄ + θ ).

This point x̄ is also a unique solution of the hierarchical variational inequality:

〈Vx̄ – θ ,q – x̄〉 ≥ , ∀q ∈ Fix(T)∩ (F +G)–∩ (F +G)–. ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/20
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We shall show that

lim sup
n→∞

〈Vx̄ – θ , zn – x̄〉 ≥ .

Without loss of generality, there exists a subsequence {znk } of {zn} such that

znk ⇀ w ()

for some w ∈H and

lim sup
n→∞

〈Vx̄ – θ , zn – x̄〉 = lim
k→∞

〈
Vx̄ – θ , znk – x̄

〉
. ()

By equations () and (), we have

lim
n→∞‖un – zn‖ = 

and unk ⇀ w. On the other hand, since  < a ≤ λn ≤ b < κ, there exists a subsequence
{λnkj

} of {λnk } such that {λnkj
} converges to a number λ̄ ∈ [a,b]. By equation () and

Lemma ., we have

∥∥unkj – JG
λ̄
(I – λ̄F)unkj

∥∥
≤ ∥∥unkj – JG

λnkj
(I – λnkj

F)unkj
∥∥ +

∥∥JG
λnkj

(I – λ̄F)unkj – JG
λ̄
(I – λ̄F)unkj

∥∥
+

∥∥JG
λnkj

(I – λnkj
F)unkj – JG

λnkj
(I – λ̄F)unkj

∥∥
≤ ‖unkj – ynkj ‖ + |λnkj

– λ̄|‖Funkj ‖

+
|λnkj

– λ̄|
λ̄

∥∥JG
λ̄
(I – λ̄F)unkj – (I – λ̄F)unkj

∥∥ → . ()

By equation (), unkj ⇀ w, and Lemma ., w ∈ Fix(JG
λ̄
(I – λ̄F)) = (F + B)–.

Since  < a ≤ rn ≤ b < κ, there exists a subsequence {rnkj } of {rnk } such that {rnkj }
converges to a number r̄ ∈ [a,b]. By the same argument as for equation (), we
have

∥∥xnkj – JG
r̄ (I – r̄F)xnkj

∥∥ → . ()

By equation () and unk ⇀ w, we have xnk ⇀ w.
By equation (), xnk ⇀ w and Lemma ., we have w ∈ Fix(JG

r̄ (I – r̄F)) = (F +G)–.
Since T is a -generalized hybrid mapping, there exist δ, δ, ε, ε ∈R such that

δ
∥∥Tx – Ty

∥∥ + δ‖Tx – Ty‖ + ( – δ – δ)‖x – Ty‖

≤ ε
∥∥Tx – y

∥∥ + ε‖Tx – y‖ + ( – ε – ε)‖x – y‖ ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/20
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for all x, y ∈ C. Replacing x byTkyn in equation (), we have, for all y ∈ C and k = , , . . . ,n,

δ
∥∥Tk+yn – Ty

∥∥ + δ
∥∥Tk+yn – Ty

∥∥ + ( – δ – δ)
∥∥Tkyn – Ty

∥∥

≤ ε
∥∥Tk+yn – y

∥∥ + ε
∥∥Tk+yn – y

∥∥ + ( – ε – ε)
∥∥Tkyn – y

∥∥

≤ ε
[∥∥Tk+yn – Ty

∥∥ + ‖Ty – y‖ + 
〈
Tk+yn – Ty,Ty – y

〉]
+ ε

[∥∥Tk+yn – Ty
∥∥ + ‖Ty – y‖ + 

〈
Tk+yn – Ty,Ty – y

〉]
+ ( – ε – ε)

[∥∥Tkyn – Ty
∥∥ + ‖Ty – y‖ + 

〈
Tkyn – Ty,Ty – y

〉]
.

This implies that

 ≤ (ε – δ)
∥∥Tk+yn – Ty

∥∥ + ‖Ty – y‖ + ε
〈
Tk+yn – Ty,Ty – y

〉
+ (ε – δ)

∥∥Tk+yn – Ty
∥∥ + ε

〈
Tk+yn – Ty,Ty – y

〉
+ (δ – ε + δ – ε)

∥∥Tkyn – Ty
∥∥

+ ( – ε – ε)
〈
Tkyn – Ty,Ty – y

〉
≤ (ε – δ)

[∥∥Tk+yn – Ty
∥∥ –

∥∥Tkyn – Ty
∥∥]

+ (ε – δ)
[∥∥Tk+yn – Ty

∥∥ –
∥∥Tkyn – Ty

∥∥] + ‖Ty – y‖

+ 
〈
Tkyn – Ty + ε

(
Tk+yn – Tkyn

)
+ ε

(
Tk+yn – Tkyn

)
,Ty – y

〉
. ()

Summing up these inequalities () with respect to k =  to k = n–  and dividing by n, we
have

 ≤ (ε – δ)
n

[∥∥Tn+yn – Ty
∥∥ +

∥∥Tnyn – Ty
∥∥ – ‖Tyn – Ty‖ – ‖yn – Ty‖]

+
(ε – δ)

n
[∥∥Tnyn – Ty

∥∥ – ‖yn – Ty‖]
+ ‖Ty – y‖ + 〈sn – Ty,Ty – y〉

+

n

〈
ε

(
Tn+yn + Tnyn – Tyn – yn

)
+ ε

(
Tnyn – yn

)
,Ty – y

〉
. ()

Replacing n by nkj and let nkj → ∞. Then from equation (), (), and (), we have
snkj ⇀ w, and

 ≤ ‖Ty – y‖ + 〈w – Ty,Ty – y〉.

Taking y = w in the above inequality, we have

 ≤ ‖Tw –w‖ + 〈w – Tw,Tw –w〉 = ‖Tw –w‖ – ‖Tw –w‖ = –‖Tw –w‖.

This implies that w ∈ Fix(T). Hence, w ∈ Fix(T) ∩ (F +G)– ∩ (F +G)–. Therefore,
we have from equations () and ()

lim sup
n→∞

〈
Vx̄ – θ , zn – x̄

〉
= lim

k→∞
〈
Vx̄ – θ , znk – x̄

〉
= 〈Vx̄ – θ ,w – x̄〉 ≥ . ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/20


Yu et al. Fixed Point Theory and Applications 2014, 2014:20 Page 11 of 27
http://www.fixedpointtheoryandapplications.com/content/2014/1/20

By the same argument as the proof of Theorem . [], we have

‖xn+ – x̄‖

≤ [
 – ( – αn)βnτ

]‖xn – x̄‖ + ( – αn)βnτ

(
βnτ‖xn – x̄‖



+
〈θn – θ , zn – x̄〉

τ
+

〈θ –Vx̄, zn – x̄〉
τ

)
. ()

By equations (), (), assumptions, and Lemma ., we know that limn→∞ xn = x̄, where

x̄ = PFix(T)∩(F+G)–∩(F+G)–(x̄ –Vx̄ + θ ).

Case : Suppose that there exists {ni} of {n} such that ‖xni – x̄‖ ≤ ‖xni+ – x̄‖ for all i ∈N.
By Lemma ., there exists a nondecreasing sequence {mj} in N such thatmj → ∞ and

‖xmj – x̄‖ ≤ ‖xmj+ – x̄‖ and ‖xj – x̄‖ ≤ ‖xmj+ – x̄‖. ()

Hence, it follows from equations () and () that

( – αmj )αmj‖smj – xmj‖

≤ ( – αmj )βmj〈θmj ,xmj – x̄〉 – ( – αmj )βmj〈Vsmj ,xmj – x̄〉
+ ( – αmj )

[β
mj

‖θmj –Vsmj‖ + βmj‖θmj –Vsmj‖‖smj – xmj‖
]

()

for each j ∈N. Hence, it follows from equation (), (i), and (ii) that

lim
j→∞‖smj – xmj‖ = . ()

We show that

lim sup
j→∞

〈Vx̄ – θ , zmj – x̄〉 ≥ .

Without loss of generality, there exists a subsequence {zmjk
} of {zmj} such that zmjk

⇀ w
for some w ∈H and

lim sup
j→∞

〈Vx̄ – θ , zmj – x̄〉 = lim
k→∞

〈Vx̄ – θ , zmjk
– x̄〉. ()

By a similar argument as in the proof of Case , we have w ∈ Fix(T)∩ (F +G)–∩ (F +
G)–. Therefore, we have from equations () and ()

lim sup
j→∞

〈Vx̄ – θ , zmj – x̄〉 = lim
k→∞

〈Vx̄ – θ , zmjk
– x̄〉 = 〈Vx̄ – θ ,w – x̄〉 ≥ . ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/20
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Following a similar argument as in the proof of Case , we have

‖xmj+ – x̄‖

≤ [
 – ( – αmj )βmjτ

]‖xmj – x̄‖ + ( – αmj )(βmjτ )
‖xmj – x̄‖

+ βmj ( – αmj )〈θn – θ , zmj – x̄〉 + βmj ( – αmj )〈θ –Vx̄, zmj – x̄〉. ()

From ‖xmj – x̄‖ ≤ ‖xmj+ – x̄‖, we have

( – αmj )βmjτ‖xmj – x̄‖

≤ ( – αmj )(βmjτ )
‖xmj – x̄‖ + βmj ( – αmj )〈θn – θ , zmj – x̄〉

+ βmj ( – αmj )〈θ –Vx̄, zmj – x̄〉. ()

Since ( – αmj )βmj > , we have

τ‖xmj – x̄‖ ≤ βmjτ‖xmj – x̄‖ + 〈θn – θ , zmj – x̄〉 + 〈θ –Vx̄, zmj – x̄〉. ()

By equations (), (), and the assumptions, we know that

lim
j→∞‖xmj – x̄‖ = .

By (), (), and the assumptions, we know that

lim
j→∞‖xmj+ – xmj‖ = .

Thus, we have

lim
j→∞‖xmj+ – x̄‖ = . ()

By equations () and (),

lim
j→∞‖xj – x̄‖ ≤ lim

j→∞‖xmj+ – x̄‖ = .

Thus, the proof is completed. �

Remark .
(i) The assumptions, method, conclusion, and applications of Theorem . are different

from Theorem . in [] and []. In Theorem ., Lemma . is used to prove the
result, but in [] and [] we did not use this lemma.

(ii) The assumptions, method, and conclusion of Theorem . are different from
Theorem . []. In Theorem . [], T is a quasi-nonexpansive with the
demiclosed property, but in Theorem ., T is a -generalized hybrid mapping, and
by Example ., we know that T does not satisfy the demiclosed property. Therefore
Theorem . [] cannot apply for a -generalized hybrid mapping.

http://www.fixedpointtheoryandapplications.com/content/2014/1/20
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Figure 1 x-axis: index; y-axis: xn .

Example . Let T be the same as Example .. Let αn = /, βn = /n, θn = , Vx = x,
Gx = Fx = x, Gx = Fx = x, rn = /, λn = /. Then V , G, G, F, F satisfy all
conditions of Theorem . and Fix(T) ∩ (F + G)– ∩ (F + G)– = {}, and if we let
x = ., we see the following numerical results and graph (see Figure ) demon-
strating Theorem .:

n =  –  . . . . .
n =  –  . . . . .
n =  –  . . . . .
. . .

Besides, we know the following.
If |xn – xn–| < –, then n = ; if |xn – xn–| < –, then n = ; if |xn – xn–| < –,

then n = ; if |xn – xn–| < –, then n = ,.

For i = , , let Fi = ,Gi = ∂iC , and λn = rn =  for all n ∈N in Theorem .. Furthermore,
put θn = θ , and V (x) = x for all x ∈H; we obtain the following theorem which generalizes
Theorem . in [].

Theorem . Let T : C → H be a -generalized hybrid mapping such that F(T) �= ∅. Let
θ ∈ C, and {xn} ⊂ C be defined by

⎧⎪⎨
⎪⎩
x ∈ C chosen arbitrarily,
sn = 

n
∑n–

k=Tkxn,
xn+ = αnxn + ( – αn)(βnθ + ( – βn)sn)

(.)

for each n ∈ N, {αn} ⊂ (, ), and {βn} ⊂ (, ). Assume that  < lim infn→∞ αn ≤
lim supn→∞ αn <  and limn→∞ βn = , and

∑∞
n= βn = ∞. Then limn→∞ xn = x̄, where

x̄ = PFix(T)θ .

http://www.fixedpointtheoryandapplications.com/content/2014/1/20
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Figure 2 x-axis: index; y-axis: xn .

Example . Let T be the same as Example .. Let αn = /, βn = /n, θ = . Then the
following numerical results and graph (see Figure ) demonstrate Theorem .:

n =  –  . . . . .
n =  –  . . . . .
n =  –  . . . . .
n =  –  . . . . .

Besides, we know the following.
If |xn – xn–| < –, then n = ; if |xn – xn–| < –, then n = ; if |xn – xn–| < –,

then n = ; if |xn – xn–| < –, then n = ,.

4 Mathematical programming withmultiple sets split feasibility constraints
Let H be a Hilbert space, let f be a proper lower semicontinuous convex function of H

into (–∞,∞). The subdifferential ∂f of f is defined as follows:

∂f (x) =
{
z ∈ H : f (x) + 〈z, y – x〉 ≤ f (y),∀y ∈H

}
for all x ∈H. FromRockafellar [], we know that ∂f is amaximalmonotone operator. Let
C be a nonempty closed convex subset of a real Hilbert space H, and iC be the indicator
function of C, i.e.

iCx =

{
 if x ∈ C,
∞ if x /∈ C.

Furthermore, we also define the normal cone NCu of C at u as follows:

NCu =
{
z ∈H : 〈z, v – u〉 ≤ ,∀v ∈ C

}
.

Then iC is a proper lower semicontinuous convex function on H , and the subdifferential
∂iC of iC is a maximal monotone operator. Thus, we can define the resolvent J∂iCλ of ∂iC
for λ > , i.e.

J∂iCλ x = (I + λ∂iC)–x

http://www.fixedpointtheoryandapplications.com/content/2014/1/20
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for all x ∈H . Since

∂iCx =
{
z ∈ H : iCx + 〈z, y – x〉 ≤ iCy,∀y ∈H

}
=

{
z ∈ H : 〈z, y – x〉 ≤ ,∀y ∈ C

}
=NCx

for all x ∈ C, we have

u = J∂iCλ x ⇔ x ∈ u + λ∂iCu ⇔ x – u ∈ λNCu

⇔ 〈x – u, y – u〉 ≤ , ∀y ∈ C

⇔ u = PCx. ()

The equilibrium problem is to find z ∈ C such that

g(z, y) ≥  for each y ∈ C. (EP)

The solutions set of the equilibrium problem (EP) is denoted by EP(g). For solving the
equilibrium problem, let us assume that the bifunction g : C ×C → R satisfies the follow-
ing conditions:
(A) g(x,x) =  for each x ∈ C;
(A) g is monotone, i.e., g(x, y) + g(y,x) ≤  for any x, y ∈ C;
(A) for each x, y, z ∈ C, limt↓ g(tz + ( – t)x, y) ≤ g(x, y);
(A) for each x ∈ C, the scalar function y→ g(x, y) is convex and lower semicontinuous.

Lemma. [, ] Let g : C×C →R be a bifunctionwhich satisfies conditions (A)-(A).
Let r >  and x ∈ C. Then there exists z ∈ C such that

g(z, y) +

r
〈y – z, z – x〉 ≥  for all y ∈ C.

Furthermore, if

Tg
r (x) :=

{
z ∈ C : g(z, y) +


r
〈y – z, z – x〉 ≥  for all y ∈ C

}
,

then we have:
(i) Tg

r is single-valued;
(ii) Tg

r is a firmly nonexpansive mapping;
(iii) EP(g) is a closed convex subset of C;
(iv) EP(g) = Fix(Tg

r ).

We call such Tg
r the resolvent of g for r > . Throughout these section, we use these

notations and assumptions unless specified otherwise.
Takahashi et al. [] gave the following lemma.

http://www.fixedpointtheoryandapplications.com/content/2014/1/20


Yu et al. Fixed Point Theory and Applications 2014, 2014:20 Page 16 of 27
http://www.fixedpointtheoryandapplications.com/content/2014/1/20

Lemma . [] Let g : C × C → R be a bifunction satisfying the conditions (A)-(A).
Define Ag as follows:

Agx =

{
{z ∈ H : g(x, y) ≥ 〈y – x, z〉,∀y ∈ C} if x ∈ C;
∅ if x /∈ C.

(L.)

Then, EP(g) = A–
g  and Ag is a maximal monotone operator with the domain of Ag ⊂ C.

Furthermore, for any x ∈ H and r > , the resolvent Tg
r of g coincides with the resolvent

of Ag , i.e., T
g
r x = (I + rAg)–x.

Let C, Q, and Q′ be nonempty closed convex subsets of real Hilbert spaces H, H, and
H, respectively, let Gi be a maximal monotone mapping on H such that the domains of
Gi is included in C for each i = , . Let JG

λ = (I + λG)– and JG
r = (I + rG)– for each

λ >  and r > , let L be a κ-inverse-strongly monotone mapping of C into H, let L
be a κ-inverse-strongly monotone mapping of C into H, let B be a ν-inverse-strongly
monotone mapping of Q into H and let B′ be a ν ′-inverse-strongly monotone mapping
of Q′ into H. Let G be a maximal monotone mappings on H such that the domain of G
is included inQ and letG′ be maximal a monotone mappings onH such that the domain
of G′ is included in Q′. Let JG

λ′ = (I + λ′G)– and JG′
r′ = (I + r′G′)– for each λ′ >  and r′ > .

Let A,A : H → H be bounded linear operators, A∗
 and A∗ the adjoints of A and A

respectively, A :H → H a bounded linear operator, and A∗
 the adjoint of A. Let Ri be

the spectral radius of the operator A∗
i Ai for i = , , respectively, and R the spectral radius

of the operator A∗A. Let I , I, I be the identity mappings of H, H, H, respectively. We
use these notations throughout this section unless specified otherwise.
In order to study the convergence theorems for the solutions set of the multiple sets

split monotone variational inclusion problem, we study the following essential problem
(SFP-):

Find x̄ ∈ H such that Ax̄ ∈ (G + B)–().

Theorem . Given any x̄ ∈H we have the following.
(i) If x̄ is a solution of (SFP-), then (I – λA∗(I –U)A)x̄ = x̄, where λ > ,

U = JGσ (I – σB) and σ > .
(ii) Suppose that U = JGσ (I – σB),  < λ < 

R ,  < σ < ν . Then A∗(I –U)A is a κ
R -ism

mapping, JGσ (I – σB), and I – λA∗(I –U)A are averaged for some κ > 
 . Suppose

further that solution set of (SFP-) is nonempty and (I – λA∗(I –U)A)x̄ = x̄. Then x̄
is a solution of (SFP-).

Proof (i) Suppose that x̄ ∈H is a solution of (SFP-). Then x̄ ∈H, Ax̄ ∈ Fix(U). It is easy
to see that (I – λA∗(I –U)A)x̄ = x̄.
(ii) Since the solutions set of (SFP-) is nonempty, there exists w̄ ∈ H such that Aw̄ ∈

F(U). Since B is a ν-inverse-strongly monotone mapping of Q into H, it follows from
Lemma .(iii) and (iv) that

JGσ (I – σB) is averaged. ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/20
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By Lemma .(iii), for some κ > 
 , we know that

I –U = I – JGσ (I – σB) is κ-ism. ()

In Theorem . [], Moudafi showed that

A∗
 (I –U)A is

κ

R
-ism. ()

By Lemma .(iii) and  < λ < 
R , we know that

I – λA∗(I –U)A is averaged ()

for some κ > 
 . Since

x̄ =
(
I – λA∗(I –U)A

)
x̄. ()

This implies

A∗(I –U)Ax̄ = . ()

We know thatU(Ax̄) = Ax̄+w, withA∗w = , which combinedwith the fact thatU(Aw̄) =
Aw̄ yields

∥∥U(Ax̄) –U(Aw̄)
∥∥ = ‖Ax̄ +w –Aw̄‖ = ‖Ax̄ –Aw̄‖ + ‖w‖. ()

Since U = JGσ (I – σB) is a nonexpansive mapping and we have equation (), we have
w = .
This implies that

Ax̄ = Fix(U) = Fix
(
JGσ (I – σB)

)
. ()

This shows that x̄ is a solution of (SFP-). �

In the following theorem, we consider the multiple set split monotonic variational in-
clusion problem (MSSMVIP-):

Find x̄ ∈H such that x̄ ∈G–
 ()∩G–

 (), Ax̄ ∈ (B +G)–(),

and Ax̄ ∈ (
B′ +G′)–().

That is,

Find x̄ ∈H such that x̄ ∈ Fix
(
JG
λ

) ∩ Fix
(
JG
r

)
, Ax̄ ∈ Fix(U) and Ax̄ ∈ Fix(U)

where U = JGσ (I – σB), U = JG
′

σ ′
(
I – σ ′B′).

Let � be the solutions set of (MSSMVIP-).

http://www.fixedpointtheoryandapplications.com/content/2014/1/20
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Theorem . Let T : C → H be a -generalized hybrid mapping. Suppose that � is the
solutions set of (MSSMVIP-) with Fix(T)∩ � �= ∅. Take μ ∈R as follows:

 < μ <
γ̄
L

.

Let {xn} ⊂H be defined by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x ∈ C chosen arbitrarily,
yn = JG

λ (I – λA∗
 (I –U)A)JG

r (I – rA∗
(I –U)A)xn,

sn = 
n
∑n–

k=Tkyn,
xn+ = αnxn + ( – αn)(βnθn + ( – βnV )sn),

(.)

where U = JGσ (I – σB), U = JG′
σ ′ (I – σ ′B′), {αn} ⊂ (, ), {βn} ⊂ (, ), r ∈ (,∞) and λ ∈

(,∞).We have
(i)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(ii) limn→∞ βn = , and

∑∞
n= βn =∞;

(iii)  < λ < 
R
,  < r < 

R
,  < σ < ν and  < σ ′ < ν ′;

(iv) limn→∞ θn = θ for some θ ∈ H.
Then limn→∞ xn = x̄, where x̄ = PFix(T)∩� (x̄–Vx̄+ θ ). This point x̄ is also a unique solution
of the hierarchical variational inequality:

〈Vx̄ – θ ,q – x̄〉 ≥ , ∀q ∈ Fix(T)∩ �.

Proof Let F = A∗
 (I –U)A, F = A∗

(I –U)A, λn = λ and rn = r for all n ∈ N in Theo-
rem .. It follow from Theorem .(ii) that Fi is μi

Ri
-ivm for some μi > 

 and each i = , .
Then algorithm (.) in Theorem . follows immediately from algorithm (.) in Theo-
rem ..
Since Fix(T)∩ � is nonempty, there exists w̄ ∈ C such that

w̄ ∈ Fix(T)∩ Fix
(
JG
λ

) ∩ Fix
(
I – λA∗

 (I –U)A
)

∩ Fix
(
JG
r

) ∩ Fix
(
I – rA∗

(I –U)A
)
. ()

This implies that

w̄ ∈ Fix(T)∩ Fix
(
JG
λ

(
I – λA∗

 (I –U)A
))

∩ Fix
(
JG
r

(
I – rA∗

(I –U)A
))
. ()

That is,

w̄ ∈ Fix(T)∩ Fix
(
JG
λ (I – λF)

) ∩ Fix
(
JG
r (I – rF)

)
. ()

Hence,

w̄ ∈ Fix(T)∩ (G + F)–∩ (G + F)– �= ∅. ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/20
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It follows from Theorem . that limn→∞ xn = x̄, where

x̄ = PFix(T)∩(F+G)–∩(F+G)–(x̄ –Vx̄ + θ ).

This point x̄ is also a unique solution of the hierarchical variational inequality:

〈Vx̄ – θ ,q – x̄〉 ≥ , ∀q ∈ Fix(T)∩ (F +G)–∩ (F +G)–.

If

w ∈ Fix(T)∩ (G + F)–∩ (G + F)–. ()

By equations (), (), and (), we know that

w = Tw, w = JG
λ

(
I – λA∗

 (I –U)A
)
w, w = JG

r
(
I – rA∗

(I –U)A
)
w. ()

By � �= ∅, equation (), and Lemma .(v), we have

w = Tw, w = JG
λ w, w =

(
I – λA∗

 (I –U)A
)
w, w = JG

r w,

w =
(
I – rA∗

(I –U)A
)
w.

()

It follows from Theorem .(ii) that w is a solution of (MSSMVIP-). Therefore, w ∈
Fix(T)∩ � and

Fix(T)∩ (G + F)–∩ (G + F)– ⊆ Fix(T)∩ �.

Conversely, if w ∈ Fix(T) ∩ �, by equations (), (), (), and (), we know that w ∈
Fix(T)∩ (G + F)–∩ (G + F)– and

Fix(T)∩ � ⊆ Fix(T)∩ (G + F)–∩ (G + F)–.

Therefore, Fix(T)∩ � = Fix(T)∩ (G + F)–∩ (G + F)– and the proof is completed.
�

Remark . Moudafi [] studied a weak convergence theorem for the split monotone
variational inclusion problem, while Theorem . is a strong convergence theorem for the
multiply sets split monotone variational inclusion problem.

By Theorem ., we study the mathematical programming problem with (MSSMVIP-)
and fixed point set constraints.

Theorem . In Theorem ., let h : C → R be a convex Gâteaux differential function
with Gâteaux derivative V , and the assumption (iv) is replaced by limn→∞ θn = . Then
limn→∞ xn = x̄, where x̄ = PFix(T)∩� (x̄ – Vx̄). This point x̄ is also a unique solution of
the mathematical programming problem with (MSSMVIP-) and fixed point constraints:
minx∈Fix(T)∩� h(x).
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Yu et al. Fixed Point Theory and Applications 2014, 2014:20 Page 20 of 27
http://www.fixedpointtheoryandapplications.com/content/2014/1/20

Proof Let θ =  in Theorem ., by Theorem ., we see that

〈Vx̄,q – x̄〉 ≥ , ∀q ∈ F(T)∩ �. ()

Since h : C → R is a convex Gâteaux differential function with Gâteaux dirivitive V , we
obtain

〈Vx̄, y – x̄〉 = lim
t→

h(x̄ + t(y – x̄)) – h(x̄)
t

= lim
t→

h(( – t)x̄ + ty) – h(x̄)
t

≤ lim
t→

( – t)h(x̄) + th(y) – h(x̄)
t

= h(y) – h(x̄) ()

for all y ∈ C. By equations () and (), it is easy to see that h(x̄)≤ h(q) for all q ∈ Fix(T)∩
�. �

If we put h(x) = 
‖x‖ in Theorem ., then V = I , and we have the following minimum

norm of common solutions for (MSSMVIP-) and Fix(T).

Theorem . In Theorem ., let the iteration process {xn+} be replaced by

xn+ = αnxn + ( – αn)
(
βnθn + ( – βn)sn

)
, n ∈N.

Then limn→∞ xn = x̄, where x̄ = PFix(T)∩� (). This point x̄ is also a unique minimum solu-
tion of Fix(T)∩ �: minx∈Fix(T)∩� ‖x‖.

The multiple sets split variational inequality problem (MSSMVIP-) is defined as fol-
lows:

Find x̄ ∈ H such that x̄ ∈ G–
 ()∩G–

 (), ()

and

〈
B(Ax̄), y –Ax̄

〉 ≥  for all y ∈ Q, ()〈
B′(Ax̄), y –Ax̄

〉 ≥  for all y ∈ Q′. ()

That is,

Find x̄ ∈ H such that x̄ ∈ Fix
(
JG
λ

) ∩ Fix
(
JG
r

)
()

and

Ax̄ ∈ Fix
(
PQ(I – σB)

)
and Ax̄ ∈ Fix

(
PQ′

(
I – σ ′B′)). ()

By Theorem ., we can study a variational inequality problem with the split variational
inequality (MSSMVIP-) and fixed point set constraints.
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Theorem . In Theorem ., let U = JGσ (I – σB), U = JG′
σ ′ (I – σ ′B′) be replaced by

U = PQ(I – σB), U = PQ′ (I – σ ′B′), respectively. Suppose that the set of solutions for
(MSSMVIP-) is � and Fix(T) ∩ � �= ∅. Then limn→∞ xn = x̄, where x̄ = PFix(T)∩� (x̄ –
Vx̄ + θ ). This point x̄ is also a unique solution of the hierarchical variational inequality:

〈Vx̄ – θ ,q – x̄〉 ≥ , ∀q ∈ Fix(T)∩ �.

Proof Let G = ∂iQ and G′ = ∂iQ′ in Theorem ., then, by equation (), we have JGσ (I –
σB) = PQ(I – σB), JG′

σ ′ (I – σ ′B′) = PQ′ (I – σ ′B′). Since Fix(T) ∩ � �= ∅, there exists w̄ ∈ C
such that we can find

w̄ ∈H such that w̄ ∈ Fix
(
JG
λ

) ∩ Fix
(
JG
r

)
()

and

Aw̄ ∈ Fix
(
PQ(I – σB)

)
and Aw̄ ∈ Fix

(
PQ′

(
I – σ ′B′)). ()

This implies that

Aw̄ ∈ Fix
(
JGσ (I – σB)

)
and Aw̄ ∈ Fix

(
JG

′
σ ′

(
I – σ ′B′)). ()

Therefore, w̄ ∈ Fix(T)∩� �= ∅. It follows fromTheorem . that limn→∞ xn = x̄, where x̄ =
PFix(T)∩� (x̄–Vx̄ + θ ). This point x̄ is also a unique solution of the hierarchical variational
inequality:

〈Vx̄ – θ ,q – x̄〉 ≥ , ∀q ∈ Fix(T)∩ �.

By equations (), (), and (), limn→∞ xn = x̄, where x̄ = PFix(T)∩� (x̄ – Vx̄ + θ ). This
point x̄ is also a unique solution of the hierarchical variational inequality:

〈Vx̄ – θ ,q – x̄〉 ≥ , ∀q ∈ Fix(T)∩ �. �

Remark . Censor et al. [] studied a weak convergence theorem for the split varia-
tional inequalities problem with the additional assumption, while Theorem . studies a
strong convergence theorem for multiply sets split variational inequalities problem with-
out this additional assumption.

By Theorem ., we study a mathematical programming problem with (MSSMVIP-)
and fixed point set constraints.

Theorem . In Theorem ., let h : C → R be a convex Gâteaux differential function
with Gâteaux derivative V , and the assumption (iv) is replaced by limn→∞ θn = . Then
limn→∞ xn = x̄, where x̄ = PFix(T)∩� (x̄ – Vx̄). This point x̄ is also a unique solution of the
following mathematical programming problem with (MSSMVIP-) and fixed point con-
straints:

min
x∈Fix(T)∩�

h(x).
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Proof By Theorem . and following the same argument as in the proof of Theorem .,
we see that the proof is complete. �

In the following theorem, we consider the following split monotonic variational inclu-
sion problem (MSSMVIP-):

Find x̄ ∈ H such that x̄ ∈ G–
 (), x̄ ∈ (G + F)–, and Ax̄ ∈ (

B′ +G′)–().
That is,

Find x̄ ∈H such that x̄ ∈ Fix
(
JG
λ (I – λF)

) ∩ Fix
(
JG
r

)
, and Ax̄ ∈ Fix(U)

where U = JG
′

σ ′
(
I – σ ′B′).

Let � be the solutions set of (MSSMVIP-).

Theorem . Let T : C → H be a -generalized hybrid mapping. Suppose that � is the
solutions set of (MSSMVIP-) with Fix(T)∩ � �= ∅. Take μ ∈R as follows:

 < μ <
γ̄
L

.

Let {xn} ⊂H be defined by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x ∈ C chosen arbitrarily,
yn = JG

λ (I – λF)JG
r (I – rA∗

(I –U)A)xn,
sn = 

n
∑n–

k=Tkyn,
xn+ = αnxn + ( – αn)(βnθn + ( – βnV )sn),

(.)

where U = JG′
σ ′ (I – σ ′B′), {αn} ⊂ (, ), {βn} ⊂ (, ), r ∈ (,∞) and λ ∈ (,∞).

(i)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(ii) limn→∞ βn = , and

∑∞
n= βn =∞;

(iii)  < λ < κ,  < r < 
R

and  < σ ′ < ν ′;
(iv) limn→∞ θn = θ for some θ ∈ H.

Then limn→∞ xn = x̄, where x̄ = PFix(T)∩� (x̄–Vx̄+ θ ). This point x̄ is also a unique solution
of the hierarchical variational inequality:

〈Vx̄ – θ ,q – x̄〉 ≥ , ∀q ∈ Fix(T)∩ �.

Proof Let F = A∗
(I –U)A, λn = λ and rn = r for all n ∈ N in Theorem .. It follows from

Theorem .(ii) that F is μi
Ri
-ivm for some μi > 

 . Then algorithm (.) in Theorem .
follows immediately from algorithm (.) in Theorem ..
Since Fix(T)∩ � is nonempty, there exists w̄ ∈ C such that

w̄ ∈ Fix(T)∩ Fix
(
JG
λ (I – λF)

) ∩ Fix
(
JG
r

) ∩ Fix
(
I – rA∗

(I –U)A
)
. ()

This implies that

w̄ ∈ Fix(T)∩ Fix
(
JG
λ (I – λF)

) ∩ Fix
(
JG
r

(
I – rA∗

(I –U)A
))
. ()
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That is,

w̄ ∈ Fix(T)∩ Fix
(
JG
λ (I – λF)

) ∩ Fix
(
JG
r (I – rF)

)
. ()

Hence,

w̄ ∈ Fix(T)∩ (G + F)–∩ (G + F)– �= ∅. ()

It follows from Theorem . that limn→∞ xn = x̄, where

x̄ = PFix(T)∩(F+G)–∩(F+G)–(x̄ –Vx̄ + θ ).

This point x̄ is also a unique solution of the hierarchical variational inequality:

〈Vx̄ – θ ,q – x̄〉 ≥ , ∀q ∈ Fix(T)∩ (F +G)–∩ (F +G)–.

If

w ∈ Fix(T)∩ (G + F)–∩ (G + F)–. ()

That is,

w = Tw, w = JG
λ (I – F)w and w = JG

r
(
I – rA∗

(I –U)A
)
w. ()

By � �= ∅, equation () and Lemma .(v), we have

w = Tw, w = JG
λ (I – λF)w, w = JG

r w, w =
(
I – rA∗

(I –U)A
)
w. ()

By� �= ∅, equation (), andTheorem.(ii), we see thatw is a solution of (MSSMVIP-).
Therefore, w ∈ Fix(T) ∩ � and Fix(T) ∩ (G + F)– ∩ (G + F)– ⊆ Fix(T) ∩ �.
Conversely, if w ∈ Fix(T) ∩ �, by equations (), (), (), and (), we know that
w ∈ Fix(T)∩ (G + F)–∩ (G + F)– and

Fix(T)∩ � ⊆ Fix(T)∩ (G + F)–∩ (G + F)–.

Therefore, Fix(T)∩ � = Fix(T)∩ (G + F)–∩ (G + F)– and the proof is completed.
�

Remark . Theorem . also improve Theorem . [].

For each i = , , let fi : C × C → R be a bifunction satisfying the conditions (A)-(A).
The system of mixed type equilibria problem (MSSMVIP-) is defined as follows.

Find x̄ ∈ C such that f(x̄,x) + 〈x – x̄,Fx̄〉 ≥  and f(x̄,x) + 〈x – x̄,Fx̄〉 ≥ 

for all x ∈ C.
By Theorem . and Lemma ., we study a variational inequality problem with

(MSSMVIP-) and fixed point set constraints.
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Theorem . Let T : C → H be a -generalized hybrid mapping. For each i = , , let
fi : C × C → R be a bifunction satisfying the conditions (A)-(A), and J

Af
λ , J

Af
r , defined

as Lemma .. Suppose that � is the solutions set of (MSSMVIP-) with (Af + F)– ∩
(Af + F)–∩ Fix(T) �= ∅. Let {xn} ⊂H be defined by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,
yn = J

Af
λ (I – λF)J

Af
r (I – rF)xn,

sn = 
n
∑n–

k=Tkyn,
xn+ = αnxn + ( – αn)(βnθn + ( – βnV )sn),

(.)

where {αn} ⊂ (, ), {βn} ⊂ (, ), r ∈ (,∞) and λ ∈ (,∞). Assume that:
(i)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(ii) limn→∞ βn = , and

∑∞
n= βn =∞;

(iii)  < a ≤ λ ≤ b < κ,  < a ≤ r ≤ b < κ;
(iv) limn→∞ θn = θ for some θ ∈ H.

Then limn→∞ xn = x̄, where x̄ = PFix(T)∩� (x̄–Vx̄+ θ ). This point x̄ is also a unique solution
of the hierarchical variational inequality:

〈Vx̄ – θ ,q – x̄〉 ≥ , ∀q ∈ Fix(T)∩ �.

Proof For each i = , , let Afi be as in Lemma .. By Lemma ., we see that Afi is a
maximal monotone operator with the domain of Afi ⊂ C. Furthermore, for any x ∈ H and
r > , the resolvent Tfi

λ of fi coincides with the resolvent of Afi , i.e.,

Tfi
λ x = (I + λAfi )

–x. ()

For i = , , let Gi = Afi in Theorem .. By equation (), we have

Tfi
λ x = (I + λAf )

–x = JG
λ x, Tf

r x = (I + rAf )
–x = JG

r x. ()

Then algorithm (.) in Theorem . follows immediately from algorithm (.) in Theo-
rem ..
By equation (), we have Fix(Tf

λ ) = A–
f  = Fix(J

Af
λ ) and Fix(Tf

r ) = A–
f  = Fix(J

Af
r ).

It follows from Theorem . that limn→∞ xn = x̄, where

x̄ = PFix(T)∩� (x̄ –Vx̄ + θ ).

This point x̄ is also a unique solution of the hierarchical variational inequality:

〈Vx̄ – θ ,q – x̄〉 ≥ , ∀q ∈ Fix(T)∩ �.

Here w ∈ (G + F)– ∩ (G + F)–. That is, w ∈ (Af + F)– ∩ (Af + F)–. That is,
w ∈ Fix(J

Af
λ (I – λF))∩ Fix(J

Af
r (I – rF)). That is,

f(w,x) + 〈x –w,Fw〉 ≥ 
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and

f(w,x) + 〈x –w,Fw〉 ≥ 

for all x ∈ C. Therefore, � =� and the proof is complete. �

By Theorem ., we study a mathematical programming problem with (MSSMVIP-)
and fixed point set constraints.

Theorem . In Theorem ., let h : C → R be a convex Gâteaux differential function
with Gâteaux derivative V , and let the assumption (iv) be replaced by limn→∞ θn = .Then
limn→∞ xn = x̄, where x̄ = PFix(T)∩� (x̄ – Vx̄). This point x̄ is also a unique solution of the
mathematical programming problem with (MSSMVIP-) constraints:

min
x∈Fix(T)∩�

h(x).

For each i = , , let fi : C ×C →R and g :Q×Q →R, g :Q′ ×Q′ →R be bifunctions
satisfying conditions (A)-(A). The multiple sets split system of mixed type equilibrium
problems (MSSMVIP-) is defined as follows.

Find x̄ ∈ C such that x̄ ∈ EP(f)∩ EP(f), g(Ax̄, y) + 〈y –Ax̄,BAx̄〉 ≥  and

g
(
Ax̄, y′) + 〈

y′ –Ax̄,B′Ax̄
〉 ≥ 

for all y ∈Q, y′ ∈Q′.
By Theorem ., we can study a variational inequality problem with (MSSMVIP-) and

fixed point set constraints.

Theorem. For each i = , , let fi : C×C →R and g :Q×Q →R, g :Q′ ×Q′ →R be
bifunctions satisfying the conditions (A)-(A). Let T : C → H be a -generalized hybrid
mapping, and let J

Af
λ , J

Af
r , JAg

σ , JAg
σ be defined as in Lemma .. Suppose that � is the

solutions set of (MSSMVIP-) with � ∩ Fix(T) �= ∅. Let {xn} ⊂H be defined by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,
yn = J

Af
λ (I – λA∗

 (I –U)A)J
Af
λ (I – rA∗

(I –U)A)xn,
sn = 

n
∑n–

k=Tkyn,
xn+ = αnxn + ( – αn)(βnθn + ( – βnV )sn),

(.)

where U = JAg
σ (I – σB),U = JAg

σ ′ (I – σ ′B′). Then limn→∞ xn = x̄, where x̄ = PFix(T)∩� (x̄–
Vx̄ + θ ). This point x̄ is also a unique solution of the hierarchical variational inequality:

〈Vx̄ – θ ,q – x̄〉 ≥ , ∀q ∈ Fix(T)∩ �.

Proof For i = , , let Gi = Afi , G = Ag , and G′ = Ag in Theorem .. By Theorem . and
following the same argument as in the proof of Theorem ., we prove Theorem ..

�
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For each i = , , let fi : C × C → R and gi : Q × Q → R be bifunctions satisfying con-
ditions (A)-(A). The split mixed type equilibrium problem (MSSMVIP-) is defined as
follows.

Find x̄ ∈ C such that x̄ ∈ EP(f), f(x̄,x) + 〈x – x̄,Fx̄〉 ≥  and

g(Ax̄, y) + 〈y –Ax̄,B′Ax̄〉 ≥ 

for all x ∈ C, y ∈Q.
Applying Theorem . and following a similar argument as in Theorem ., we can

study a variational inequality problem with (MSSMVIP-) and with fixed point set con-
straints.

Theorem . For each i = , , let fi : C × C → R and gi : Q × Q → R be bifunc-
tions satisfying conditions (A)-(A). Let T : C → H be a -generalized hybrid mapping,
and J

Af
λ , J

Af
r , JAg

σ , JAg
σ defined as in Lemma .. Suppose that � is the solutions set of

(MSSMVIP-) with � ∩ Fix(T) �= ∅. Let {xn} ⊂H be defined by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,
yn = J

Af
λ (I – λF)J

Af
λ (I – rA∗

(I –U)A)xn,
sn = 

n
∑n–

k=Tkyn,
xn+ = αnxn + ( – αn)(βnθn + ( – βnV )sn),

(.)

where U = JAg
σ ′ (I – σ ′B′), {αn} ⊂ (, ), {βn} ⊂ (, ), r ∈ (,∞) and λ ∈ (,∞). Assume

further that
(i)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(ii) limn→∞ βn = , and

∑∞
n= βn =∞;

(iii)  < λ < κ,  < r < 
R

and  < σ ′ < ν ′;
(iv) limn→∞ θn = θ for some θ ∈ H.

Then limn→∞ xn = x̄, where x̄ = PFix(T)∩� (x̄–Vx̄+ θ ). This point x̄ is also a unique solution
of the hierarchical variational inequality:

〈Vx̄ – θ ,q – x̄〉 ≥ , ∀q ∈ Fix(T)∩ �.
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