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Cold dark matter (DM) scenario may be cured of several problems by involving self-interaction of dark 
matter. Viability of the models of long-range interacting DM crucially depends on the effectiveness of 
recombination of the DM particles, making thereby their interaction short-range. Usually in numeric 
calculations, recombination is described by cross section obtained on a feasible quantum level. However 
in a wide range of parameter values, a classical treatment, where the particles are bound due to dipole 
radiation, is applicable. The cross sections, obtained in both approaches, are very different and lead to 
diverse consequences. Classical cross section has a steeper dependence on relative velocity, what leads 
to the fact that, after decoupling of DM particles from thermal background of “dark photons” (carriers of 
DM long-range interaction), recombination process does not “freeze out”, diminishing gradually density 
of unbound DM particles. Our simplified estimates show, that at the taken parameter values (the mass of 
DM particle is 100 GeV, interaction constant is 100−1, and quite natural assumptions on initial conditions, 
from which the result is very weakly dependent) the difference in residual density reaches about 5 orders 
of magnitude on pre-galactic stage. This estimate takes into account thermal effects induced by dipole 
radiation and recombination, which resulted in the increase of both temperature and density of DM 
particles by a half order of magnitude.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
The models of self-interacting dark matter (DM) have aroused 
a lot of interest in the last time [1–11]. DM with long-range inter-
action (referring hereafter as to y-interaction) seems to be able to 
escape several problems of ordinary cold dark matter (CDM) sce-
nario, such as an overproduction of subhalos and cuspy density 
profile in them [6,8,12,13]. At the same time, an ellipticity of big 
halos is not spoiled at some model parameters [8]. An enhance-
ment of annihilation signal in the Galaxy (so called Sommerfeld–
Gamov–Sakharov enhancement [14–16]), considered for the first 
time (to our knowledge) in [17], is one more possible bonus of 
the models of question. Analysis of recent observations of form-
ing galactic cluster Abell 3827 also favours self-interacting DM 
[18]. Origin of supermassive black holes can be connected with an 
existence of DM component with strong self-interaction [19]. Gen-
erally, models with dissipative form of DM as sub-component find 
more applications [20,21].
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Essential feature of cosmological evolution of y-interacting DM 
is a formation of atomic-like bound states by DM particles with 
opposite y-charges. If oppositely y-charged particles are particle 
(a) and anti-particle (b = ā), then they annihilate, what may dras-
tically affect their residual density [5,12,22]. If the bound particles 
are different species (a and b �= ā) so bound state is stable, then 
depending on relative amount of bound and unbound particles, as 
it is obtained by the period of large scale structure formation, DM 
dynamics is very different and whether or not the model gets con-
straint from observations [3,12,13]. Description of recombination 
process plays a clue role here. Usually a quantum approach is used 
for it. However a classical approach, which was used, in particu-
lar, for magnetic monopoles and heavy neutrinos [22,23], seems 
to be valid in a broad interval of parameter values. It leads to a 
result very different from that obtained on quantum level, which 
in the commonly accepted form does not come to the classical 
limit.

Classical recombination cross section is obtained from condition 
that the scattered particles lose, due to dipole radiation, sufficient 
energy to get bound [24,25], and is given by
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σrec = πρ2
max(v) = (4π)2/5π

α2
y

μ2

1

v14/5
, (1)

where ρmax is the maximal impact parameter at which a pair is 
bound, αy is the constant of y-interaction, μ = mamb

ma+mb
is the re-

duced mass of the pair of the scattered particles with ma and 
mb being their masses (ma ≤ mb), v is their initial relative veloc-
ity. This cross section has a steeper dependence on velocity with 
respect to that of usually accepted quantum recombination cross 
section. The latter in form of Kramers’ formula [26] summed over 
all quantum levels is (valid for v � αy):

σrec = 32π

3
√

3

α3
y

μ2

ln(v−1)

v2
. (2)

Steeper behaviour of classical cross section leads to the fact that 
recombination process does not freeze out on both radiation dom-
inated (RD) and (even faster expanding) matter dominated (MD) 
stages, and relative number of unbound y-charged particles falls 
down gradually with time.

Classical formula (1) is assumed to be valid when [25]

v � α
5/2
y . (3)

Under this condition, binding is found to occur predominantly due 
to multiple soft photon emission, what allows classical treatment. 
However considering on quantum level, only one-, two-photon fi-
nal states are usually taken into account. Eq. (3) can be formally 
deduced from condition that binding of two particles (i.e. when 
initial kinetic energy of relative motion, Erel = μv2/2, is lost) hap-
pens at distance (Rb) much greater than the radius of the respec-
tive ground bound state (aB ). In this case, action of the system, as 
will be shown, becomes much greater 1 (in units h̄ = 1) and thus 
the classical approach is reasonable.

Below we shortly discuss classical approach implications in 
recombining DM cosmological evolution. It includes estimations, 
some of which may seem to be simple, to trace explicit depen-
dence of result on the parameters.

Our results will basically relate to parameter region lying 
around fiducial values ma ∼ μ = 100 GeV and αy = 1/100 used 
for numerical estimations. Also for definiteness we assume (as 
in case of heavy neutrino model [22]) that before a direct an-
nihilation of a and b (where either b = ā or b �= ā), happening 
when the temperature becomes below their mass (of the lightest), 
T = T∗ ∼ ma/10, y-plasma (consisting of a, b with their antipar-
ticles and y-photons – massless y-force carriers) has the same 
temperature as ordinary matter. Right after annihilation, y-photon 
background decouples from a and b as well as from ordinary mat-
ter (O ), while the opposite is not true. That is the y-background 
is no longer influenced by a and b, and by O through O -a, b pos-
sible coupling, but a and b are influenced by y. Starting from this 
moment, the temperature of y-background (T y), as of a closed 
system, changes as inverse scale factor, whereas that of ordinary 
photons feels also entropy re-distribution between ordinary matter 
components. So for y- and O - photons’ temperature relation one 
has

T y = κ1/3T , κ(T ) = gs,o(T )

gs,o(T∗)
, (4)

where gs,o(T ) is the effective number of ordinary matter species 
(excluding y) contributing into entropy density (s). For the cho-
sen numeric values, contribution of y in density at nucleosynthesis 
(BBN) makes up κ4/3(T ∼ 1 MeV) ≈ 0.06 from that of O -photons, 
what has no effect on BBN data. The temperature of a and b is 
equal to T y until they decouple from y, influence of O -matter (be-
ing determined by some weak scale interaction) is negligible (see 
Appendix A). After decoupling it evolves as (see Appendix A)
Ta ≈ T 2/T̄ay,

T̄ay = π3/4 g1/4
ε m3/2

a

25/251/4ζ(3)1/2m1/2
Pl καy

≈ 0.2 MeV
( ma

100 GeV

)3/2 1/100

αy
. (5)

Here gε , being effective number of matter species (including y) 
contributing into energy density, as well as κ are taken at T =
0.2 MeV.

Evolution of number density of unbound a- and b- species can 
be approximately described by equation system (see Appendix B)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dr

dT
= 〈σrec v 〉 r2s

H T

dθ

dT
= − T̄ay

T 2

〈(
Ta − 1

3
Epair − 2

9
Erel

)
σrec v

〉
rs

H T
.

(6)

Here r is the number density conventionally expressed in units 
of s, the brackets “〈 〉” mean averaging over velocity distribution of 
a and b, θ shows deviation of Ta from Eq. (5), Epair = Ea + Eb is 
the energy lost by a-, b-gas (thermal bath) in the result of the pair 
binding (that is the case of annihilation, i.e. when b = ā, or when 
the bound systems are thermally decoupled from a-, b-gas). The 
second equation takes into account thermal effects, caused by scat-
tering of particles: (*) presumably slower particles to be bound “go 
out” (annihilate or decouple) of a-, b-plasma, effectively heating it; 
(**) scattered but unbound pairs experience dipole energy losses 
cooling plasma. Evolution is considered in terms of O -photon tem-
perature (T ).

Here we do not take into account some recombination pro-
cess details which are more appropriate for quantum case (such 
as recombination into different level bound states, red-shifting of 
recombination photons), as well as inverse processes (which are 
not important for the big parameter space of question), and also in 
quantum case the second equation of (6) is omitted (θ ≡ 1).

The bound states start to form when Ta becomes much lower 
than ionization potential I = μα2

y/2, Ta < Ta rec ∼ I/10. For the 
chosen values, it is Ta rec = 0.5 MeV, at which Ta = T y , what cor-
responds to O -matter temperature T = Trec = κ−1/3Ta rec ≈ 1 MeV. 
Depending on behaviour of 〈σrec v 〉 with T and epoch, recombi-
nation process should flow in different regimes. Basically, it either 
damps (freezes out) and it is initial moment (when it starts) what 
predetermines the residual density of free a and b, or it “burns” 
continually with a self-adjusted rate and final moment, at which 
we need to know the density, defines its value. For classical cross 
section at T ∼ Trec recombination process gives effect and tem-
porarily freezes out, but after a–y decoupling it is restored and 
goes with a steady rate until the galactic stage.1 Herewith, recom-
bination rate 
rec = n 〈σrec v 〉 turns out to be of the same order as 
Hubble rate (H), if thermal effects (second equation of system (6)) 
are ignored (θ ≡ 1), otherwise (θ �= 1) the ratio 
rec/H slowly goes 
down with time. So the value of residual density is not sensitive 
to the initial moment and all early history, but fully defined by the 
final one, and is just weakly dependent on initial abundance for 
θ �= 1 (see below).

Classical approach is assumed to be valid when Rb as well as 
energy loss length-scale,2 Lloss, are much greater than dark atomic 
size aB . From other side, they must be much less than spacing 

1 The moment Ta ∼ I/10 can come after a–y decoupling at some parameter val-
ues and the first freezing stage is absent.

2 It is defined as the length on which 90% of initial energy is lost due to dipole 
radiation before the particles are bound.
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Fig. 1. The ratio Rb/aB as function of impact parameter for two redshift values (left) and of temperature for two values of y-interaction constant (right).

Fig. 2. Left: relative density of unbound y-charged DM particles as a function of T , obtained with either classical (dashed curve) or quantum (dashed-dot curve) recombination 
cross sections (σrec). The curve “Q-C” is obtained applying before and after the moment T ≈ 200 eV quantum and classical σrec respectively. On the small plot inside, 
a quantum case is shown with the scaled vertical axes. Right: the region of values μ and αy , where classical cross section should be used for estimation of residual density 
of (un)bound DM particles.
between y-charged particles, Lsp (a fortiori a–a(b), y interaction 
lengths). Rb and Lloss can be found by taking mechanical energy 
(kinetic plus potential in cms) loss rate equal to dipole radiation 
intensity

dE

dt
= − 1

6π
d̈2.

Dipole moment can be expressed with the help of Newton’s law, 
d = e y r̈, |r̈| = αy

r2
1
μ (braking due to radiation is negligible here), 

and then through relation dt = dr/ 
[

2
μ

(
E + αy

r − M2

2μr2

)]1/2
one 

comes to equation for E from distance between the particles r

dE

dr
= −2

3

α3
y

μ2

1

r4

1√√√√ 2

μ

(
E + αy

r
− M2

2μr2

) . (7)

Here M is the angular momentum, which can be assumed to be 
conserved. In the region of interest, solution of Eq. (7) can be sim-
plified by neglecting “E” in the square root.

Condition Rb, Lloss � Lsp is found to be true by a wide margin 
for the most of parameter values at any epoch of question [27]. The 
values Rb and Lloss are of the same order of magnitude and both 
depend on impact parameter ρ and on energy, which falls down 
with the Universe expansion. Dependences of Rb/aB from ρ/ρmax
and from the temperature of O -photon are shown in Figs. 1(a), 
1(b). One can see that Rb/aB at the most of ρ values is close to 
that at ρ = 0, therefore Rb/aB(ρ = 0) is used in all further calcu-

lations. In this case Rb ≈ 2
v4/5

αy
μ and E ≈ μv2

2

[
1 −

(
Rb
r

)5/2
]

.

Since the late period is determinative for residual density value 
in case of classical cross section, we single out late expansion 
moment, when the galaxies start to form, z ∼ 10 (T ∼ 30 K). As 
one can see from Fig. 1(b), Rb/aB � 1 there. This ratio depends 
on parameters as Rb/aB ∝ α2

yμ
2/5/T 2/5

a ∼(after a–y decoupling)∼
α

8/5
y μ/T 4/5 (for θ = 1). At the chosen parameter values, classical 

approximation does not work for T � Tq-c ≈ 200 eV, but, impor-
tantly, it does in the late period.

Solution of the system (6) is given by Eqs. (25)–(27) of Ap-
pendix B. In the Fig. 2(a) the density of unbound y-charged par-
ticles, obtained in different approximations, is shown as function 
of T . In classical case, the mentioned above features are seen: 
sharp recombination effect freezes out around T ∼ 1 MeV, con-
tinual recombination takes place from T ∼ 0.1 MeV until the late 
epoch, changing slope at RD→MD transition. (All sharp breaks in 
the curve would be smoothed if estimated more accurately.) Quan-
tum formula gives very small effect at the chosen parameters: 
there are unessential effect at T ∼ 1 MeV and a slow logarithmic 
decline of r(T ) from y–a decoupling to RD→MD transition. The 
curve “Q–C” in the figure is obtained with application of Eq. (2)
in interval T > Tq-c and Eq. (1) at T < Tq-c. As one can see, in 
the late period this solution comes to that obtained in pure clas-
sical approximation. A small deviation is caused by thermal effects 
(described by second equation of the system (6)) which make the 
result being a little sensitive to the initial density (see Eq. (27) of 
Appendix B). In calculations the following values had been used: 
αy = 1/100, ma = 100 GeV, mb = 1 TeV, r(Trec) = ρCDM/mb/s(T =
2.7 K) ≈ 4.6 × 10−13 with ρCDM ≈ 1.4 keV/cm3 being the mod-
ern CDM density. Also, quantum recombination rate was taken 
from [1], where σrec is a little corrected as compared to Eq. (2).

Note that the mentioned above thermal effects in classical case 
are found to be weak (θ(T ) ∼ T −1/23), but nonetheless noticeable. 
At T ∼ 30 K for μ = 100 GeV and αy = 1/100, θ ≈ 4. The ratio of 



84 K.M. Belotsky et al. / Physics Letters B 761 (2016) 81–86
r(T ∼ 30), obtained with and without account for thermal effects 
(using only classical cross section), is ∼3.

Condition (3) for period z ∼ 10 allows to outline the region 
of parameters values (μ and αy) when the classical approxima-
tion for σrec is applicable. It is shown in the Fig. 2(b). There can 
exist a region of parameter space where calculations should be 
re-considered, since interaction radius ∼ αy/Ta exceeds spacing 
between DM particles [27].

Finally, we show arguments in favour of condition Eq. (3) on 
the base of action in the Appendix C.

To conclude, we have shown that classical recombination cross 
section Eq. (1) can be applicable in a broad parameter region of 
self-interacting DM models, and it leads to strongly different re-
sult comparing to obtained with usually accepted quantum cross 
section. It may change (extend) the parameter region of the corre-
sponding models’ viability.
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Appendix A

Here we trace shortly the temperature evolution of y-charged 
particles, a (b), before recombination starts. They are assumed to 
experience energy exchange with y-background and, possibly, or-
dinary matter. In calculations we suppose that a interacts with O
as Dirac heavy neutrino.

To find Ta one can formally use the first law of thermodynam-
ics, which for a-particles can be reduced to

3

2

dTa

dt
= 〈

�Eσ v
〉
ay ny + 〈

�Eσ v
〉
ao no − 3Ta H, (8)

where o = e, ν, p, n, . . . are available species of O -matter, 
〈
�Eσ v

〉
ai

is the kinematically averaged energy transfer in ai-interaction mul-
tiplied by respective cross section and relative velocity, averaged 
in thermal distribution, ni is the respective number density (i = y
or o).

In all scattering processes of interest a is non-relativistic, i is 
ultra-relativistic (p, n turn out to be too suppressed in density, so 
play no role in heat transfer with a). We adopt Boltzmann ap-
proximation for all species distributions. The ay-scattering is well 
described by Thomson cross section over the great part of param-
eter space. Then calculation of 

〈
�Eσ v

〉
ay with accuracy ∼ T /ma

gives

〈
�Eσ v

〉
ay ≈ σT

(〈
ω2

〉
ma

− 8 〈ω 〉 〈 E 〉
3ma

)
= 32πα2

y

m3
a

T y(T y − Ta),

(9)

where ω and E are the energies of y- and a-particles respectively.
To estimate 

〈
�Eσ v

〉
ao , assuming that a is heavy neutrino, one 

needs to take the cross sections of relevant processes (aν , aν̄ , ae− , 
ae+), which in our limit are undistinguishable for particle and an-
tiparticle
σaν = σaν̄ = G2
F ω

2
lab

2π
, σae− = σae+ = G2

F ξeω
2
lab

2π
. (10)

Here ωlab is the energy of incident i-particle in the reference frame 
where a is in the rest, G F is the Fermi constant, ξe = 1 −4ξ +8ξ2 ≈
0.50 with ξ = sin2 θW being the weak mixing parameter. Unlike 
ay-scattering, ae-, aν- cross sections depend on energy, what ac-
counts for higher power of the temperature in the final expression

〈
�Eσ v

〉
aν(ν̄)

= 180G2
F

πma
T 3
ν (Tν − Ta),

〈
�Eσ v

〉
ae± = 180G2

F ξe

πma
T 3

e (Te − Ta). (11)

Eq. (8) can be then re-written as

1

2

dTa

dT
= − T (κ1/3T − Ta)

T 2
ay

− T 3(T − Ta)

T 4
ao

+ Ta

T
. (12)

Tν = Te = T was put. Coefficients Tay ∼ 0.1 MeV, Tao ∼ 10 MeV. 
Second term in the r.h. of Eq. (12) has no effect on solution. Ex-
cluding it, solution can be expressed in the form

Ta(T ) =
√

πκ1/3T 2

Tay
exp (T 2/T 2

ay)(1 − erf(T /Tay)). (13)

At T � Tay (i.e. after a–y decoupling)

Ta ≈ T 2

T̄ay
, T̄ay = Tay√

πκ1/3
= π3/4 g1/4

ε m3/2
a

25/251/4ζ(3)1/2m1/2
Pl καy

. (14)

Appendix B

Evolution of abundance of free a-, b- particles can be described 
by Boltzmann equation

dn

dt
= −n2 〈σrec v 〉 − 3Hn, (15)

which is easily reduced to the first equation of the system Eq. (6)

with the help of replacements: n = rs = r 2π2 gs
45 T 3, −dt = 1

H
dT
T (for 

gε,s ≈ const). For calculation one parametrizes σrec = σ0/vβ . For 
〈σrec v 〉 then one can get

〈σrec v 〉 =
2


(
2 − β

2

)
2

β−1
2

√
π

σ0

(
μ

Ta

)β−1
2

. (16)

Since recombination rate is strongly temperature dependent 
(especially in classical case), thermal effects of recombination pro-
cess itself can be important, correcting temperature evolution. 
These effects are relevant, obviously, after a–y decoupling.

One can take again the first law of thermodynamics, dQ =
δA + dU . One has the total particle number in some volume 
Nab = nab V with nab = na + nb = 2n being their number den-
sity, the pressure p = nab Ta . Expansion of the Universe is treated 
as a work of gas: δA = pdV = nab Ta 3H V dt . Inner energy gain 
is dU = 3

2 d(Nab Ta) = 3
2 NabdTa + 3

2 TadNab . Here we assume that 
dNab = −2 〈σrec v 〉n2 V dt as if the recombined pairs disappear 
from a-, b- gas. It would be true when b = ā, and also when b �= ā
if the bound systems are out of thermal equilibrium with free a
and b, however it is not always the case [12]. We do not see the 
opposite since it is not of principle here.

One can define dQ through the energy lost during ab-scattering. 
If the pair is combined (impact parameter ρ < ρmax), then their 
energy Epair = Ea + Eb = ma v2

a + mb v2
b is lost completely. Otherwise 
2 2
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(ρ > ρmax), their energy is lost partially due to dipole radiation, 
what is for given ρ and v = |�va − �vb| (in large scattering angle 
limit, which is realized when ρ � αy/(μv2)) [24]3

�E(v,ρ) = 2πα5
y

μ4 v5ρ5
= Erel

(
ρmax

ρ

)5

, (17)

where Erel = μv2/2 is the energy of relative motion. So, energy 
losses rate by ab-gas per unit volume can be given by

ε̇ = nanb

∫ { ρmax∫
0

(Ea + Eb)v2πρ dρ

+
D∫

ρmax

�E v2πρ dρ

}
fa(�va)d

3 va fb(�vb)d3 vb =

= n2 〈 Epairσrec v
〉+ 2

3
n2 〈 Erelσrec v 〉 , (18)

where fa,b is the distribution in velocity (Maxwell). Upper limit D
should be given by Debye length of ab-plasma, but thanks to fast 
convergence of �E(v, ρ) with ρ → ∞, we put D → ∞ in Eq. (18). 
Averaging over velocity distributions gives

〈
Epairσrec v

〉= (7 − β)
(2 − β
2 )

2
β−1

2
√

π
σ0

(
μ

Ta

) β−1
2

Ta, (19)

〈 Erelσrec v 〉 = (4 − β)
(2 − β
2 )

2
β−1

2
√

π
σ0

(
μ

Ta

) β−1
2

Ta. (20)

Combining dQ = −ε̇V dt with other terms of the 1st law of 
thermodynamics gives

3

2

dTa

dt
=
〈(

3

2
Ta − 1

2
Epair − 1

3
Erel

)
σrec v

〉
n − 3Ta H . (21)

Note, that the first two terms in the right side of Eq. (21), ∝
3
2 T N − 1

2 Epair ∝ (β − 1), originate from the fact of disappearance 
(recombination) of the pair and lead to a heating of ab-gas (at 
β > 1). Term ∝ 1

3 Erel does not dominate for σrec given by Eq. (1)
and diminishes this effect. It is clear after accounting for Eqs. (16), 
(19), (20)〈(

3

2
Ta − 1

2
Epair − 1

3
Erel

)
σrec v

〉

= 5β − 11

3


(2 − β
2 )

2
β+1

2
√

π
σ0

(
μ

Ta

) β−1
2

Ta. (22)

It is convenient to pass from Ta to new variable θ :

Ta = θT 2/T̄ay . (23)

Then Eq. (21) reduces to the second equation of the system (6). 

Hubble parameter at RD-stage is H =
√

4π3 gε
45

T 2

mPl
with mPl be-

ing the Plank mass. At MD-stage it can be roughly given by 
H(R D)

√
TRM/T , where TRM ∼ 1 eV is the temperature when 

RD→MD transition occurs. The late �-dominated stage is not con-
sidered.

3 aa-, bb-scatterings do not lead to dipole radiation.
The system (6) can be transformed to⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dr

dT
= Ds

r2

θ
β−1

2 T βs+1

dθ
dT = −γ Ds

r θ
3−β

2

T βs+1
.

(24)

Here the following notations are introduced: index s =’R’ or ’M’ 
means RD- or MD-stage,

γ = 5β − 11

18
, βR = β − 2, βM = β − 5

2
,

DR = DM

√
TRM =



(

2 − β
2

)
gs

2
β−3

2
√

45gε

σ0 mPl
(
μT̄ay

) β−1
2 .

To solve the system (24), one divides second equation by first, from 
where one gets independently on the stage

r(θ) = r0 θ−1/γ , (25)

for initial conditions θ(T0 = T̄ay) = 1, r(T0) = r0. Being interested 
in r(T ) on MD-stage, we will put the solution of system for RD-
stage to be initial conditions for that for MD-stage. Substituting 
r(θ) of Eq. (25) in this manner into second equation of the system 
(24) yields

θ(T ) =
{

1 + γ̄

βR
DRr0

(
1

T βR
RM

− 1

T βR
0

)

+ γ̄

βM
DMr0

(
1

T βM
− 1

T βM
RM

)}γ /γ̄

, (26)

where γ̄ = 1 +γ β−1
2 . Function θ(T ), with β = 14/5, is very slowly 

growing with decrease of T (βR = 4/5, βM = 3/10, γ = 1/6, γ̄ =
23/20). At T � TRM � T0, θ(T ) ∝ T −1/23.

Solution for r(T ) is given by Eqs. (25) and (26). At T � T RM �
T0 (with βR,M > 0)

r ≈
{

rγ̄ −1
0

βM

γ̄

T βM

DM

}1/γ̄

(27)

Note, that a weak sensitivity of final density to its initial value 
(r0) is obliged to thermal effects (second equation of (6)), and it 
vanishes totally if to ignore them (θ ≡ 1, γ = 0, γ̄ = 1).

Appendix C

The action of the pair of mutually attracted particles looks like

S =
t2∫

t1

(
μv2

2
+ αy

r

)
dt. (28)

Here v is the current velocity rather than initial one as defined 
above. In the region of interest we have μv2

2 ∼ αy
r , whence v ∼√

2αy
μr . One replaces dt by dr

S ∼
r2∫

r1

2
αy

r

dr

v
∼ √

μαy
(√

r2 − √
r1
)
. (29)

If we choose r1 = Rb and r2 = Lloss + Rb ≈ 102/5 Rb then condition 
S � 1 gives Eq. (3). Condition Rb � aB (and consequently Eq. (3)) 
can be explicitly derived if we take r1 = aB and r2 = Rb . On this 
interval the most of energy (∼ I) is lost.
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