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a b s t r a c t

In this paper, we extend the notion of labeled partitions with ordinary permutations to
colored permutations. We use this structure to derive the generating function of the fmajk
indices of colored permutations. We further give a combinatorial treatment of a relation
on the q-derangement numbers with respect to colored permutations. Based on labeled
partitions, we provide an involution that implies the generating function formula due
to Gessel and Simon for signed q-counting of the major indices. This involution can be
extended to signed permutations. This gives a combinatorial interpretation of a formula
of Adin, Gessel and Roichman.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we introduce the notion of labeled partitions with colored permutations and use this structure to study the
fmaj index and the q-derangement numbers. To bemore specific, we will be concerned with the wreath product Skn = Ck o Sn
of the symmetric group on [n] = {1, 2, . . . , n} and the cyclic group Ck on {0, 1, . . . , k−1}, see [2,16]. The elements in Skn are
also called colored permutations, see [5]. Derangements with respect to the wreath product Skn have been studied by Chow
and Shiu [9], and Faliharimalala and Zeng [10,11].
A k-colored permutation is written in the form π(1)c1 π(2)c2 . . . π(n)cn , where π(1) π(2) . . . π(n) is a permutation on

[n] and ci ∈ {0, 1, . . . , k − 1}. For example, 42 30 12 50 21 is a colored permutation in S35 . We define a total order on the
colored letters as follows

1k−1 < 2k−1 < · · · < nk−1 < 1k−2 < 2k−2 < · · · < nk−2 < · · · < 10 < 20 < · · · < n0. (1.1)

Let us recall the following definitions:

D(σ ) := {i ∈ [n− 1]: σ(i) > σ(i+ 1)},

maj(σ ) :=
∑
i∈D(σ )

i,

Nj(σ ) := #{i ∈ [n]: σ(i) has subscript j}, j = 1, . . . , k− 1,

fmajk(σ ) := kmaj(σ )+ N1(σ )+ 2N2(σ )+ · · · + (k− 1)Nk−1(σ ). (1.2)

The set D(σ ) is called the descent set of σ ∈ Skn , and an element in D(σ ) is called a descent of σ . It should be noted that
Adin and Roichman [2] have given the definition of the flag major index of an element in Skn by the unique factorization into
Coxeter elements, and they have shown that fmajk has the above expression (1.2). In this paper, we will use the formula
(1.2) as the definition of the fmajk index.
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For k = 1, S1n is usually written as Sn. For k = 2, S
2
n becomes the group of signed permutations on [n], often denoted by Bn,

and the minus sign is often denoted by a bar. Moreover, setting k = 2, the fmajk index reduces to the fmaj index for signed
permutations as defined by

fmaj(π) = 2maj(π)+ N(π),

where N(π) denotes the number of negative elements of π and maj(π) is defined with respect to the following order

1̄ < 2̄ < · · · < n̄ < 1 < 2 < · · · < n.

Using labeled partitions with colored permutations, we give a combinatorial proof of the generating function formula for
the fmajk indices on Skn ,∑

π∈Skn

qfmajk(π) = [k]q[2k]q · · · [nk]q, (1.3)

where [k]q = 1+ q+ q2+ · · · + qk−1. The above formula is a natural extension of the formulas for the generating functions
for the major index and the fmaj index, see [11]. Bijective proofs have been given by Adin and Roichman [2], Haglund, Loehr
and Remmel [13]. Foata and Han [12] found a combinatorial interpretation of the equidistribution of the fmaj index and the
finv index for signed permutations, which implies the generating function formula for the case k = 2, that is,∑

π∈Bn

qfmaj(π) = [2]q[4]q · · · [2n]q. (1.4)

The second result of this paper is a combinatorial treatment of a relation on the q-derangement numbers Dkn(q) with
respect to Skn . This relation implies the formula for d

k
n(q), as given by Faliharimalala and Zeng [11]. For n ≥ 1, let

Dn := {σ ∈ Sn: σ(i) 6= i for all i ∈ [n]}

be the set of derangements on Sn. Gessel defined the q-derangement numbers by

dn(q) :=
∑
σ∈Dn

qmaj(σ )

and proved that

dn(q) = [n]q!
n∑
k=0

(−1)kq
(
k
2

)
[k]q!

, (1.5)

where [n]q! = [1]q[2]q · · · [n]q. Wachs [14] found a combinatorial proof of the above formula. Chow [8] generalized the
argument of Wachs to the type B case. Chow defined

DBn := {σ ∈ Bn: σ(i) 6= i for all i ∈ [n]}

as the set of derangements in Bn and

dBn(q) :=
∑
σ∈DBn

qfmaj(σ ).

It has been shown that

dBn(q) = [2]q[4]q · · · [2n]q
n∑
k=0

(−1)kq2
(
k
2

)
[2]q[4]q · · · [2k]q

. (1.6)

The notion of derangements of type B can be generalized to Skn , as given by Faliharimalala and Zeng [11]. Define

Dkn := {σ ∈ S
k
n : σ(i) 6= i0 for all i ∈ [n]}

and

dkn(q) :=
∑
σ∈Dkn

qfmajk(σ ).

Faliharimalala and Zeng have shown that

dkn(q) = [k]q[2k]q · · · [nk]q
n∑
j=0

(−1)jqk
(
j
2

)
[k]q[2k]q · · · [jk]q

. (1.7)
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The argument of Chow for dBn(q) can be extended to d
k
n(q). Our proof is based on the structure of labeled partitions with

colored permutations, which is an extension of the combinatorial approach of Chen and Xu [7] for ordinary permutations.
We will present the proof for the case k = 3, which is valid for the general case.
The third result is concerned with the following formula of Gessel and Simon [15] on signed q-counting of permutations

with respect to the major index:∑
π∈Sn

sign(π)qmaj(π) = [1]q[2]−q[3]q[4]−q · · · [n](−1)n−1q.

Note that a combinatorial proof of the above formula has been given by Wachs [15] based on permutations. We will
present an involution on labeled partitions which serves as a combinatorial proof of the above formula. Moreover, our
involution can be extended to signed permutations. This gives a combinatorial proof of the following formula of Adin–
Gessel–Roichman [3] for signed q-counting of signed permutations with respect to the fmaj index:∑

π∈Bn

sign(π)qfmaj(π) = [2]−q[4]q · · · [2n](−1)nq.

2. Labeled partitions and the fmajk index

In this section, we introduce the notion of labeled partitions with colored permutations. Using this structure, we give a
combinatorial proof of the following formula for the generating function of the fmajk indices of colored permutations in Skn ,
given by Adin and Roichman [2], see also [13,11].

Theorem 2.1. For n ≥ 1, we have∑
π∈Skn

qfmajk(π) = [k]q[2k]q · · · [nk]q.

Recall that given a colored permutation π ∈ Skn , Nj(π) is the number of elements π(i) ∈ π with subscript j, where
j = 1, 2, . . . , k − 1. The fmajk index which is originally defined algebraically by Adin and Roichman has the following
equivalent form

fmajk(π) = kmaj(π)+ N1(π)+ 2N2(π)+ · · · + (k− 1)Nk−1(π).

Clearly, Theorem 2.1 is a generalization of the formulas for permutations and signed permutations. We shall give a
combinatorial proof of Theorem 2.1 by using labeled partitions with colored permutations.
Let λ = (λ1, λ2, . . . , λn) be an integer partition with at most n parts where λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, see [4]. We write

|λ| = λ1+λ2+· · ·+λn. A labeled partition associated with S3n is defined as a pair (λ, π), where λ is a partition with at most
n parts and π = π(1)π(2) · · ·π(n) is a colored permutation in S3n . We can also employ the two-row notation to represent
a labeled partition(

λ1 λ2 · · · λn
π(1) π(2) · · · π(n)

)
.

A labeled partition (λ, π) is said to be standard if π(i) > π(i + 1) implies λi > λi+1. Equivalently, a labeled partition
(λ, π) is standard if λi = λi+1 implies π(i) < π(i + 1). Given a colored element wi, we use c(wi) to denote the color or
subscript i, and use d(wi) to denote the elementw after removing the color i.
Let P3n denote the set of partitions with at most n parts such that each part is divisible by 3. For any π ∈ S

3
n , we denote

by Qπ the set of standard labeled partitions such that λi − c(π(i)) is divisible by 3.

Lemma 2.2. For any π ∈ S3n , there is a bijection gπ : λ→ (µ, π) from P3n to Qπ such that |λ| + fmaj3(π) = |µ|.

Proof. Define µ to be

µ = (λ1 + 3a1 + c(π(1)), λ2 + 3a2 + c(π(2)), . . . , λn + 3an + c(π(n))),

where ai is the number of descents inπ(i)π(i+1) · · ·π(n). From this definition, we see thatµ is a partition andµi−c(π(i))
is divisible by 3. It suffices to show that (µ, π) is standard. We have the following two cases.
Case 1: λi > λi+1. We have

λi + 3ai + c(π(i)) = µi > µi+1 = λi+1 + 3ai+1 + c(π(i+ 1)),

since λi − λi+1 ≥ 3, ai ≥ ai+1 and |c(π(i))− c(π(i+ 1))| < 3.
Case 2: λi = λi+1. We further consider the following two subcases:
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(i) π(i) > π(i+ 1). It is easy to verify that

λi + 3ai + c(π(i)) = µi > µi+1 = λi+1 + 3ai+1 + c(π(i+ 1)).
(ii) π(i) < π(i+ 1). If π(i) and π(i+ 1) have the same subscript, then we have

λi + 3ai + c(π(i)) = µi = µi+1 = λi+1 + 3ai+1 + c(π(i+ 1)).

Otherwise, we find that the subscript of π(i) is greater than that of π(i+ 1). This implies that

λi + 3ai + c(π(i)) = µi > µi+1 = λi+1 + 3ai+1 + c(π(i+ 1)).

Hence the labeled partition (µ, π) is standard. Conversely, given a labeled partition (µ, π) ∈ Qπ , we can recover the
partition λ ∈ P3n by reversing the steps of the above procedure. �

As a consequence of the above bijection, we obtain the following identity.

Theorem 2.3. For n ≥ 1, we have∑
π∈S3n

qfmaj3(π) = [3]q[6]q · · · [3n]q. (2.8)

Proof. We consider the following equivalent form of (2.8):
1

(q3; q3)n

∑
π∈S3n

qfmaj3(π) =
1

(1− q)n
,

where

(q3; q3)n = (1− q3)(1− q6) · · · (1− q3n).

Let Wn be the set of sequences of n nonnegative integers. Note that 1
(q3;q3)n

and 1
(1−q)n are the generating functions for

numbers of elements in P3n andWn, respectively. We wish to construct a bijection φ: (λ, π) → s from (P3n , S
3
n) toWn such

that

|λ| + fmaj3(π) = |s|,

where |s| denotes the sum of entries of s. The bijection φ can be described as follows:
Step 1. Use the bijection in Lemma 2.2 to derive a standard labeled partition (µ, π) from (λ, π).
Step 2. Based on the two-row representation of the labeled partition (µ, π), we permute the columns to make the second
row become the identity permutation by ignoring the subscripts of the elements in π . Let s denote the first row of the
resulted array.
It is not difficult to see that the above procedure is reversible. The inverse of φ consists of four steps.

Step 1. For a sequence s = (s(1), s(2), . . . , s(n)) ∈ Wn, we construct a two-row array(
s(1) s(2) · · · s(n)
1 2 · · · n

)
.

Step 2. For each element i ∈ [n], we may construct a colored permutation 1c12c2 · · · ncn , where ci = s(i)(mod 3). Clearly, we
have s∗(i) = s(i)− ci is divisible by 3. So we are led to the following array(

s∗(1) s∗(2) · · · s∗(n)
1c1 2c2 · · · ncn

)
.

Step 3. Permute the columns of the above array to make the first row s∗(j1)s∗(j2) · · · s∗(jn) in decreasing order. Moreover,
we rearrange the elements in the second row in increasing order if they correspond to the same elements in the first row.
Let us denote the resulted labeled partition by(

s∗(j1) s∗(j2) · · · s∗(jn)
δ(1)e1 δ(2)e2 · · · δ(n)en

)
.

Step 4. Recover the initial labeled partition (λ, π) from the array produced in Step 3 by the following rule:

(λ∗, π) =

(
s∗(j1)− 3a1 s∗(j2)− 3a2 · · · s∗(jn)− 3an
δ(1)e1 δ(2)e2 · · · δ(n)en

)
,

where ak is the number of descents in the colored permutation δ(k)ek · · · δ(n)en .
It is routine to check that the above procedure is feasible. Moreover, one can verify that φ · φ−1 = id and φ−1 · φ = id,

where id is the identity map. This completes the proof. �
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For example, let n = 7,λ = (18, 18, 18, 9, 9, 6, 3) andπ = 32 42 60 51 72 21 12.We obtain s = (5, 10, 29, 29, 16, 27, 14)
by the following two steps:(

18 18 18 9 9 6 3
32 42 60 51 72 21 12

)
Step 1
−→

(
29 29 27 16 14 10 5
32 42 60 51 72 21 12

)
Step 2
−→ (5, 10, 29, 29, 16, 27, 14).

The reverse process from s to (λ, π) is illustrated as follows:

(5, 10, 29, 29, 16, 27, 14)
Step 1
−→

(
5 10 29 29 16 27 14
1 2 3 4 5 6 7

)
Step 2
−→

(
3 9 27 27 15 27 12
12 21 32 42 51 60 72

)
Step 3
−→

(
27 27 27 15 12 9 3
32 42 60 51 72 21 12

)
Step 4
−→

(
18 18 18 9 9 6 3
32 42 60 51 72 21 12

)
.

3. Labeled partitions and q-derangement numbers

In this section, we give a combinatorial treatment of a relation on the q-derangement numbers for Skn . This relation leads
to the formula of Faliharimalala and Zeng for dkn(q). We will give the proof for the case k = 3. It is easily seen that the
argument applies to the general case.
Following [14,8], we define the reduction of a colored permutation σ on a set of positive integers A = {a1 < a2 <

· · · < ak} by substituting the element ai with i while keeping the colors of the elements. A position i is called a fixed
point of a colored permutation π(1)π(2) · · ·π(n) if π(i) = i0. The derangement part of a colored permutation σ ∈ S3n ,
denoted by dp(σ ), is the reduction of the sequence obtained from σ by removing the fixed elements. For example,
dp(80 12 51 40 31 60 71 22) = 60 12 41 31 51 22.
We have the following extension of the relation of Wachs [14] to colored permutations.

Theorem 3.1. Let α ∈ D3k . For 0 ≤ k ≤ n, we have∑
dp(σ )=α, σ∈S3n

qfmaj3(σ ) = qfmaj3(α)
[n
k

]
q3
. (3.9)

It should be noted that the above theorem can be proved by themethod ofWachs [14] which has been extended by Chow
[8] to signed permutations. We will give a combinatorial proof based on labeled partitions with colored permutations.
For any π = π(1)π(2) · · ·π(k) ∈ S3k , we can insert a fixed point j with 1 ≤ j ≤ k+ 1 into π to obtain a permutation π̄

in S3k+1. Precisely, π̄ is given by

π̄ = π ′(1)π ′(2) · · ·π ′(j− 1)j0π ′(j) · · ·π ′(k),

where

π ′(i) =
{
(c(π(i)))d(π(i)), if d(π(i)) < j,
(c(π(i)))(d(π(i))+ 1), otherwise.

In other words, π̄ is the unique permutation with i being a fixed point such that the reduction of the sequence obtained
from π̄ by deleting the element at position i equals π . For example, let π = 42 10 20 61 51 32 and j = 3. We have π̄ =
52 10 30 20 71 61 42.

Proof of Theorem 3.1. First of all, we reformulate the relation (3.9) in the equivalent form

1
(q3; q3)n

∑
dp(σ )=α,σ∈S3n

qfmaj3(σ ) =
1

(q3; q3)k(q3; q3)n−k
qfmaj3(α). (3.10)

Weproceed tomake use of labeled partitions to give a combinatorial proof of (3.10). Let Rα be the set of colored permutations
σ ∈ S3n such that dp(σ ) = α. We aim to give a bijection θ : (λ, σ )→ (β, γ ) from (P3n , Rα) to (P

3
k , P

3
n−k) such that

|λ| + fmaj3(σ ) = |β| + |γ | + fmaj3(α). (3.11)

This bijection consists of the following three steps.
Step 1. Apply the bijection gσ given in Lemma 2.2 to get a standard labeled partition (λ∗, σ ) from λ.
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Step 2. Letσ(i1), σ (i2), . . . , σ (in−k) be the fixed points, andσ(j1), σ (j2), . . . , σ (jk) the non-fixed points ofσ .We decompose
λ∗ into two parts, namely, λ∗(i1), λ∗(i2), . . . , λ∗(in−k) and λ∗(j1), λ∗(j2), . . . , λ∗(jk). Let γ = (λ∗(i1), λ∗(i2), . . . , λ∗(in−k))
and β∗ = (λ∗(j1), λ∗(j2), . . . , λ∗(jk)).

Step 3. Apply g−1α to (β∗, α) and denote the resulted partition by β .
To prove that the above procedure is feasible, it is necessary to show that β∗ generated in Step 2 satisfies the condition

that (β∗, α) belongs to Qα so that one can apply g−1α . Observe that for any 1 ≤ q ≤ k, σ(jq) and α(q) have the same subscript
since α(q) is obtained by the reduction operation. It follows that

β∗(q)− c(α(q)) = λ∗(jq)− c(α(q))

is divisible by 3 for any 1 ≤ q ≤ k. To verify that (β∗, α) is standard, it suffices to show if σ(p) > σ(q) with σ(p + 1),
. . . , σ (q − 1) being at the positions of fixed points, then we have λ∗p > λ∗q . When q = p + 1, we see that λ

∗
p > λ∗q since

(λ∗, σ ) is standard. When q > p+ 1, it is easy to see that either σ(p) > σ(p+ 1) or σ(q− 1) > σ(q). Therefore, we have
either λ∗p > λ∗p+1 or λ

∗

q−1 > λ∗q . Since λ
∗ is a partition, we have λ∗p > λ∗q . Hence the above procedure is well defined.

It remains to show that the above procedure is reversible. We proceed to construct the inverse map η from (P3k , P
3
n−k) to

(P3n , Rα), which consists of three steps.

Step 1. Apply gα to β and denote the resulted partition by (β̃, α).

Step 2. Let (λ̃0, σ 0) = (β̃, α). We insert γi into (λ̃i−1, σ i−1) to get (λ̃i, σ i). Find the first position r in λ̃i−1 such that the
insertion of γi to this position will generate a partition. We denote this partition by λ̃i. Obviously, we have λ̃ir−1 > λ̃ir = γi.
Suppose that λ̃ir = · · · = λ̃

i
t > λ̃it+1 for some t ≥ r . If r = t , we set s = r . Otherwise, we look for a position s, from left to

right, subject to the condition

σ i−1(s− 1) < s0 ≤ σ i−1(s),

here we treat σ i−1(r−1) as−∞ and σ i−1(t+1) as∞. In this way, we obtain σ i from σ i−1 by inserting s0 as a fixed point. In
fact, this procedure guarantees that the subsequence σ i(r), σ i(r + 1), . . . , σ i(t) is increasing. That is, (λ̃i, σ i) is a standard
labeled partition. On the other hand, since γ ∈ P3n−k and each fixed point has subscript 0, we find that γi is divisible by 3 for
each 1 ≤ i ≤ n− k and thus (λ̃i, σ i) ∈ Qσ i .

Step 3. Apply g−1
σ n−k

to (λ̃n−k, σ n−k) and denote the resulted partition by λn−k.
We claim that λn−k and σ n−k are equal to λ and σ , respectively. This implies that η is the inverse of θ . From Lemma 2.2,

it is easily seen that β∗ = β̃ . Since λ̃n−k is the partition obtained from β̃ by inserting γ1, . . . , γn−k, we have λ∗ = λ̃n−k.
It remains to show that σ n−k = σ . It suffices to verify σ n−k and σ have the same fixed points. By removing the common

fixed points, let us use f , or f0, to be more precise, to denote the first fixed point of σ , which is different from the first fixed
point f ′ of σ n−k. It is clear that

σ(f − 1) < f0 ≤ σ(f + 1)− 1.

By the choice of f ′, we infer that f ′ < f . On the other hand, λ∗(f ) = λ∗(f ′). Since (λ∗, σ ) and (λ∗, σ n−k) are both standard
labeled partitions, we have

σ(f ′) < σ(f ′ + 1) < · · · < σ(f ),

and

σ n−k(f ′) < σ n−k(f ′ + 1) < · · · < σ n−k(f ).

Using the fact that λ∗(f ) = λ∗(f ′), σ n−k(f ) and σ n−k(f ′) have the same subscript, we deduce that σ n−k(f ) has the same
subscript 0 as σ n−k(f ′).
Recall that by assumption σ(f ) = f and σ n−k(f ′) = f ′. Since

σ(f ′) < σ(f ′ + 1) < · · · < σ(f )

and σ(f ) = f , it follows that σ(f ′) ≤ f ′. Recalling that f is the first fixed point of σ , we obtain

α(f ′) = σ(f ′) < f ′.

From the construction of σ n−k, we get

σ n−k(f ′) ≤ α(f ′) < f ′,

which contradicts the assumption that σ n−k(f ′) = f ′. This implies that σ = σ n−k. Again by Lemma 2.2, we conclude that
λ = λn−k. Hence η is the inverse map of θ . This completes the proof. �
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For example, let n = 8, λ = (18, 12, 12, 12, 9, 9, 6, 3) and σ = 52 10 20 40 81 60 71 32. We have

gσ (λ) =
(
29 21 21 21 16 10 5
52 10 20 40 71 61 32

)
.

The fixed points of σ are 40 and 60, and α = dp(σ ) = 42 10 20 61 51 32. Decomposing (29, 21, 21, 21, 16, 15, 10, 5), we
get ((29, 21, 21, 16, 10, 5), (21, 15)). Applying g−1α to β∗ = (29, 21, 21, 16, 10, 5) gives β = (18, 12, 12, 9, 6, 3) and γ =
(21, 15).
Conversely, given α = 42 10 20 61 51 32 and (β, γ ) = ((18, 12, 12, 9, 6, 3), (21, 15)), we have β̃ = (29, 21, 21, 16,

10, 5). The insertion process is illustrated as follows,(
29 21 21 16 10 5
42 10 20 61 51 32

)
γ1=21
−→

(
29 21 21 21 16 10 5
52 10 20 40 71 61 32

)
γ2=15
−→

(
29 21 21 21 16 15 10 5
52 10 20 40 81 60 71 32

)
.

So we get λ̃n−k = (29, 21, 21, 21, 16, 15, 10, 5), σ n−k = 52 10 20 40 81 60 71 32. Finally, we obtain λn−k = g−1
σ n−k

=

(18, 12, 12, 12, 9, 9, 6, 3).

4. Involutions on labeled partitions

In this section, we give an involution on labeled partitions which leads to a combinatorial interpretation of a formula of
Gessel and Simon on signed q-counting of the major indices. This involution can be easily extended to signed permutations.
This gives a combinatorial proof of a formula of Adin, Gessel and Roichman on the signed q-counting of fmaj indices.
Recall that the sign of a signed permutation is defined in terms of the generators of Bn as a Coxeter group. Consider the

generating set {s0, s1, s2, . . . , sn−1} of Bn, where

s0 := [−1, 2, 3, . . . , n], and si := [1, 2, . . . , i− 1, i+ 1, i, i+ 2, . . . , n]

for 1 ≤ i ≤ n− 1. The sign of a signed permutation π is defined by

sign(π) := (−1)l(π),

where l(π) is the standard length of π with respect to the generators of Bn.
The following theorem is due to Gessel and Simon [15].

Theorem 4.1.∑
π∈Sn

sign(π)qmaj(π) = [1]q[2]−q[3]q[4]−q · · · [n](−1)n−1q. (4.12)

A combinatorial proof of the above formula has been given by Wachs [15]. Here we shall give an involution on labeled
partitions and shall show that this involution can be easily extended to the following type B formula due to Adin, Gessel and
Roichman [3].

Theorem 4.2.∑
π∈Bn

sign(π)qfmaj(π) = [2]−q[4]q · · · [2n](−1)nq. (4.13)

To describe our involution on labeled partitions as a proof of (4.12), we may reformulate it into the following equivalent
form:

1
(q; q)n

∑
π∈Sn

sign(π)qmaj(π) =
1

(1− q)(1+ q)(1− q)(1+ q) · · · (1− (−1)n−1q)
. (4.14)

Proof of Theorem 4.1. We consider the two cases according to the parity of n.
Case 1. n is even, i.e., n = 2k. In this case (4.14) takes the form

1
(q; q)2k

∑
π∈S2k

sign(π)qmaj(π) =
1

(1− q2)k
. (4.15)

Notice that the right-hand side of (4.15) is the generating function of sequences (a1, a2, . . . , a2k) satisfying a2i−1 = a2i for
i = 1, 2, . . . , k. Meanwhile, the left-hand side of (4.15) is the generating function of labeled partitions on Sn with at most 2k
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parts under the assumption that a labeled partition (λ, π) carries the sign of the permutation π . To be more specific, such
labeled partitions are called signed labeled partitions. We wish to construct an involution on the set H of signed labeled
partitions (λ, π) such that the generating function of the fixed points of the involution equals the right-hand side of (4.15).
This involution consists of three steps.
Step 1. Let (λ, π) be a labeled partition such that π ∈ S2k and λ = (λ1, λ2, . . . , λ2k) with λ1 ≥ λ2 ≥ · · · ≥ λ2k ≥ 0. If
|π−1(1)− π−1(2)| 6= 1, we define

φ1(π)(i) =

π(i), i 6= π−1(1) and π−1(2),
2, i = π−1(1),
1, i = π−1(2).

Obviously, (λ, π) and (λ, φ1(π)) have opposite signs and maj(π) = maj(φ1(π)). Consequently, we have

maj(π)+ |λ| = maj(φ1(π))+ |λ|,

and so these two elements cancel each other.
In the case that |π−1(1)−π−1(2)| = 1, we have maj(π) 6= maj(φ1(π)). So we consider that the set H1 of signed labeled

partitions (λ, π) such that |π−1(1)− π−1(2)| = 1. Repeating the above procedure, some elements in H1 will be cancelled.
At this stage, we consider the positions of the elements 3 and 4. Similarly, if |π−1(3)− π−1(4)| 6= 1, we define

φ2(π)(i) =

π(i), i 6= π−1(3) and π−1(4),
4, i = π−1(3),
3, i = π−1(4).

Therefore, (λ, π) and (λ, φ2(π)) have the opposite signs and

maj(π)+ |λ| = maj(φ2(π))+ |λ|.

In other words, these two elements cancel out in the set H1.
Similarly, we use H2 to denote the subset of H1 such that |π−1(3) − π−1(4)| = 1. Repeating the above procedure, we

may consider the elements {5, 6}, {7, 8}, . . . , {2k − 1, 2k} and obtain a sequence of subsets Hk ⊆ Hk−1 ⊆ · · · ⊆ H1. Let
φi (1 ≤ i ≤ k) denote the functions defined in the above procedure. It is not difficult to see that for a labeled partition (λ, π)
in Hk, we have

|π−1(1)− π−1(2)| = 1, |π−1(3)− π−1(4)| = 1, . . . , |π−1(2k− 1)− π−1(2k)| = 1.

Namely, any odd number 2i− 1 is next to 2i in π for all i = 1, . . . , k.
Step 2. For any labeled partition

(λ, π) =

(
λ1 · · · λπ−1(2) λπ−1(1) · · · λ2k
π(1) · · · 2 1 · · · π(2k)

)
,

we define (f 1(λ), g1(π)) as follows

(f 1(λ), g1(π)) =
(
λ1 + 1 · · · λπ−1(2) + 1 λπ−1(1) · · · λ2k
π(1) · · · 1 2 · · · π(2k)

)
,

where f 1(λ) is the partition obtained from λ by adding 1 to the firstπ−1(2) parts of λ and g1(π) is the permutation obtained
from π by exchanging the positions of 1 and 2.
Note that (λ, π) and (f 1(λ), g1(π)) have opposite signs. Moreover,

maj(π)+ |λ| = maj(g1(π))+ |f 1(λ)|.

Therefore, (λ, π) and (f 1(λ), g1(π)) cancel out in Hk. Observe that the resulted labeled partition (f 1(λ), g1(π)) has the
additional property that f 1(λ)π−1(1) is greater than f

1(λ)π−1(2). By inspection, we see that after cancellation, the remaining
elements in Hk are of the following form

(λ, π) =

(
λ1 · · · λπ−1(1) λπ−1(2) · · · λ2k
π(1) · · · 1 2 · · · π(2k)

)
where λπ−1(1) = λπ−1(2). Let H

k
1 denote the set of remaining elements in H

k that are of the above form.
We iterate the above process for Hk1 with respect to the relative positions of 3 and 4. It is easily seen that for any labeled

partition (λ, π) in Hk1 , 1 appears before 2 in π and λπ−1(1) = λπ−1(2). Now, for any element (λ, π) ∈ H
k
1 , if

(λ, π) =

(
λ1 · · · λπ−1(4) λπ−1(3) · · · λ2k
π(1) · · · 4 3 · · · π(2k)

)
,
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then we can find another labeled partition (f 2(λ), g2(π)) ∈ Hk1

(f 2(λ), g2(π)) =
(
λ1 + 1 · · · λπ−1(4) + 1 λπ−1(3) · · · λ2k
π(1) · · · 3 4 · · · π(2k)

)
.

Again, (λ, π) and (f 2(λ), g2(π)) cancel each other inHk1 . Notice that f
2(λ)π−1(3) is greater than f

2(λ)π−1(4). So the remaining
labeled partitions after the above cancellation are of the following form

(λ, π) =

(
λ1 · · · λπ−1(3) λπ−1(4) · · · λ2k
π(1) · · · 3 4 · · · π(2k)

)
,

where λπ−1(3) = λπ−1(4). We now denote the set of the remaining labeled partitions by H
k
2 and continue the above process.

In the end, we get Hkk ⊆ H
k
k−1 ⊆ · · · ⊆ H

k
1 . Moreover, in the above process we have defined the functions f

i and g i for
i = 1, 2, . . . , k.
Evidently, for any labeled partition (λ, π) in Hkk and for any i ∈ {1, . . . , k}, 2i − 1 appears immediately before 2i and

λπ−1(2i−1) = λπ−1(2i). It is also clear that all the labeled partitions in H
k
k have positive signs.

Step 3. Permute the columns of the labeled partitions (λ, π) in Hkk so that the elements in π are rearranged in increasing
order. Taking the first row of the resulted two-row array, we get a sequence (a1, a2, . . . , a2k−1, a2k) such that a2i−1 = a2i (i =
1, . . . , k)whose generating function is the right-hand side of (4.15).
It is easy to see that the relation (4.15) can be justified by the above algorithm. Hence Theorem 4.1 holds when n is even.

Case 2. n is odd, i.e., n = 2k+ 1. We need to show that

1
(q; q)2k+1

∑
π∈S2k+1

sign(π)qmaj(π) =
1

(1− q2)k(1− q)
. (4.16)

The proof is similar to the reasoning when n is even. We may employ the same operations in Step 1 and Step 2 by
ignoring the element 2k + 1 while making the pairs {1, 2}, {3, 4}, . . . , {2k − 1, 2k}. The only difference lies in Step 3.
When we take the first row of the resulted two-row array, we encounter a sequence (a1, a2, . . . , a2k−1, a2k, a2k+1) such
that a2i−1 = a2i (i = 1, . . . , k). Moreover, a2k+1 can be any positive integer. This completes the proof of (4.16).
So far we have constructed a sign reversing involution

(θ, χ): (λ, π)→ (θ(λ), χ(π)).

To be more specific, the map (θ, χ) is given by

(θ(λ), χ(π)) =



(λ, φ1(π)), if(λ, π) ∈ H \ H1,
(λ, φ2(π)), if(λ, π) ∈ H1 \ H2,
· · ·

(λ, φk(π)), if(λ, π) ∈ Hk−1 \ Hk,
(f 1(λ), g1(π)), if(λ, π) ∈ Hk \ Hk1,
(f 2(λ), g2(π)), if(λ, π) ∈ Hk1 \ H

k
2,

· · ·

(f k(λ), gk(π)), if(λ, π) ∈ Hkk−1 \ H
k
k ,

(λ, π), if(λ, π) ∈ Hkk ,

where φi(π), f i(λ) and g i(π) are defined in the above algorithm. It is easy to verify that the map is sign reversing, that is, if
(λ, π) is not a fixed point of the map (θ, χ), then we have sign(θ(λ), χ(π)) = −sign(λ, π) and

|θ(λ)| +maj(χ(π)) = |λ| +maj(π).

The fixed points of the map (θ, χ) correspond to the right-hand side of (4.12). This completes the proof. �

We now turn to the proof of Theorem 4.2, and we need a characterization of the length function of signed permutations
[1,6].

Lemma 4.3. Let σ ∈ Bn, we have

l(σ ) = inv (σ )+
∑

{1≤i≤n|σ(i)<0}

|σ(i)|,

where inv (σ ) is defined with respect to the order

n̄ < · · · < 1̄ < 1 < · · · < n.
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Observe that in the definition of the fmaj index on Bn we have imposed the order

1̄ < · · · < n̄ < 1 < · · · < n

or in the notation of colored permutations,

11 < · · · < n1 < 10 < · · · < n0.

The above lemma is useful for the construction of a sign reversing involution for the formula (4.13) for Bn. Given a signed
permutation σ ∈ Bn, we may construct a signed permutation σ ′ as follows. If 1 and 2 have different signs or 1 and 2 have
the same sign but are not adjacent in σ , then we exchange 1 and 2 without changing the signs. By Lemma 4.3, we see that
the σ ′ and σ have opposite signs and fmaj(σ ) = fmaj(σ ′).
For example, let σ = 40 21 51 10 31. We have σ ′ = 40 11 51 20 31. Clearly, σ and σ ′ have opposite signs.
Using the above rule, we can easily extend the above involution for permutations to signed permutations. The details are

omitted.
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