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next-to-leading order electroweak and QCD corrections within the minimal supersymmetric
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1 Introduction

The Drell-Yan-like production of W and Z bosons both provides a standard candle for

hadronic high-energy colliders as the Tevatron and the LHC and offers good possibili-

ties to search for extra gauge bosons W′ and Z′ in high-energy tails of distributions (see,

e.g., refs. [1, 2] and references therein). For instance, the investigation of the Z-boson res-

onance, which is well known from LEP and SLC experiments, is of great importance for
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detector calibration, while the analogous study of Jacobian peaks of the W boson in ap-

propriate distributions even allow for precision measurements of the W-boson mass. Even

the effective leptonic weak mixing angle might be measurable [3] at the LHC with a preci-

sion competing with LEP and SLC. On the theoretical side, all these tasks require precise

predictions with an inclusion of both strong and electroweak radiative corrections and a

careful estimate of the remaining theoretical uncertainties.

The largest corrections are due to strong interactions, mainly described by perturba-

tive QCD. The QCD corrections are known to two loops, i.e. next-to-next-to-leading order

(NNLO) for integrated cross sections [4–6] and for differential distributions [7–10]. Includ-

ing corrections up to N3LO in the soft-plus-virtual approximation [11–14] the remaining

theoretical error from QCD for inclusive cross sections is at the per-cent level or lower. The

next-to-leading-order (NLO) QCD corrections have been matched with parton showers [15]

and combined with a summation of soft gluon radiation [16–26].

While QCD corrections to on- or off-shell W- and Z-boson production with leptonic de-

cays are very similar, electroweak corrections to the different gauge-boson production pro-

cesses differ considerably. At NLO the electroweak corrections are completely known, both

for charged-current (CC) [27–32] and neutral-current (NC) [33–37] processes. A tuned com-

parison of cross sections and differential distributions has shown good agreement between

the various calculations [1, 38, 39]. Since collinear singularities from photonic initial-state

radiation are absorbed into the parton distribution functions (PDF), similar to the usual

QCD factorization, a photon PDF delivers another source of real electroweak corrections.

Corrections due to γq and γq̄ collisions arise both in the CC case (W production) [40–42]

and in the NC case (dilepton production) [36, 41]. In the NC case even a leading-order

(LO) contribution is induced by γγ collisions [36]. Finally, the NLO calculations to the CC

Drell-Yan process have been generalized to the supersymmetric extension of the Standard

Model (MSSM) in ref. [42].

Beyond NLO electroweak corrections, multi-photon final-state radiation has been con-

sidered both for W-boson [42–45] and Z-boson production [46]; more recently even multi-

photon radiation off all charged particles has been matched with the O(α) corrections in

the HORACE program in the CC [32] and NC [36] cases. Moreover, the impact of the

leading higher-order effects due to ∆α and ∆ρ as well as the leading two-loop corrections

in the high-energy Sudakov regime have been investigated for the CC case in ref. [42].

A proper combination of QCD and electroweak corrections is in progress by various

groups. Different procedures for this combination based on factorization or addition, as

implemented in HORACE, are described in ref. [47, 48]. The results discussed there

suggest that non-factorizable mixed strong-electroweak corrections, which start at the two-

loop level, are required in order to achieve per-cent accuracy in the predictions. For on-shell

Z production part of these O(ααs) effects have been calculated in ref. [49].

In this paper, we complete and extend the existing results on radiative corrections to

the NC Drell-Yan process in various respects:

1. We rederive the O(α) electroweak corrections and document the analytical results

for the one-loop corrections explicitly. Moreover, we define and numerically compare
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different treatments of the Z-boson resonance in the presence of weak corrections.

Specifically, we discuss the “complex-mass scheme” [50, 51], the “pole scheme” [52–

55], and a scheme employing a simple factorization into the LO cross section contain-

ing the Z resonance and a factor for the weak correction.

2. We consistently include dilepton production processes involving photons in the initial

state, which proceed via the partonic processes γγ → l−l+, qγ → l−l+ + q, and

q̄γ → l−l++q̄. We even take into account the known NLO electroweak corrections [56]

to the process γγ → l−l+, which contributes to the LO signal process.

3. Beyond NLO we consider universal two-loop contributions from ∆α and ∆ρ, the

leading two-loop corrections in the high-energy Sudakov regime, and multi-photon

radiation off muons in the structure-function approach [57–62].

4. Finally, we calculate the NLO electroweak and QCD corrections within the MSSM.

For the Standard Model (SM) the presentation in this paper widely follows refs. [31, 42],

where the electroweak NLO corrections and the same type of effects beyond NLO are dis-

cussed for the CC Drell-Yan process. Similarly our discussion of the NLO corrections in

the MSSM, presented here for the NC case, proceeds along the same lines as in ref. [42] for

the CC case.

The paper is organized as follows. In section 2 we set up our conventions and give the

lowest-order cross sections. Furthermore we describe and discuss the different treatments

of the Z-boson resonance and the different input-parameter schemes considered in this

paper, as far as it is necessary for the LO process. In section 3 the electroweak radiative

corrections of points 1.–3. given above as well as NLO QCD corrections are discussed. The

NLO corrections within the MSSM are described in section 4. Our discussion of numerical

results, which is presented in section 5, comprises integrated cross sections as well as

differential distributions for the LHC and integrated results for the Tevatron. We also

compare our results to results previously given in the literature and discuss how effects

of incoming photons can be enhanced. Our conclusions are drawn in section 6. In the

appendix we describe the factorization of QED-like collinear singularities into the photon

distribution function, give explicit expressions for the vertex and box corrections in the SM

and provide details on the considered SUSY scenarios.

2 Conventions and lowest-order cross sections

In this section we set up our conventions for the discussion of the various partonic processes

contributing to the production of a charged lepton pair. Apart from the Drell-Yan-like

process qq̄ → γ/Z → l−l+ and its radiative corrections we consider the photon-induced

process γγ → l−l+ and its radiative corrections. Although the latter does not have a

Z resonance, it is an irreducible background to qq̄ → γ/Z → l−l+ and therefore should be

included. The (electroweak) NLO corrections to γγ → l−l+ have been calculated in ref. [56],

and we only briefly review some of the results given there.
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Figure 1. Partonic lowest-order diagrams for pp/pp̄ → l−l+ + X .

The momenta of the incoming particles will be denoted with pi, i = 1, 2, and the ones

of the outgoing particles with kj , j = 1, 2, 3. Explicitly we assign the external momenta

and helicities (σi, τi, λ) according to

q(p1, σ1) + q̄(p2, σ2) → l−(k1, τ1) + l+(k2, τ2) [+γ/g(k3, λ)], (2.1)

γ(p1, σ1) + γ(p2, σ2) → l−(k1, τ1) + l+(k2, τ2) [+γ(k3, λ)], (2.2)

where q generically denotes the light up- and down-type quarks, q = d,u, s, c,b, and l

denotes the charged leptons l = e, µ, τ . The possible photons or gluons in the final state

deliver part of the real radiation contribution to the NLO corrections. The remaining part

of the real NLO corrections is induced by the crossed processes qγ/g → l−l+ + q and

q̄γ/g → l−l+ + q̄. The Mandelstam variables are defined by

ŝ = (p1 + p2)
2, t̂ = (p1 − k1)

2, û = (p1 − k2)
2, sll = (k1 + k2)

2. (2.3)

We neglect the fermion masses of the light quarks, mq, and of the leptons, ml, whenever

possible, i.e. we keep these masses only as regulators in the logarithmic mass singularities

originating from collinear photon emission or exchange. Obviously, we have ŝ = sll for the

non-radiative processes qq̄ → l−l+ and γγ → l−l+. At LO the Feynman diagrams shown

in figure 1 contribute to the scattering amplitudes. For qq̄ → l−l+ the polarized Born

amplitude MLO
qq̄ can be written as

MLO,στ
qq̄ = −e2

ŝ

∑

V =γ,Z

gσ
qqV gτ

llV χV (ŝ)Aστ ≡ fLO,στ
qq̄ Aστ , (2.4)

where e is the electric unit charge, gσ
ffV are the chiral couplings of the fermions f to the

vector bosons V , the functions χV (ŝ) describe the propagation of V , and Aστ are “standard

matrix elements” containing the spin information of the fermions.

The standard matrix element Aστ for the quark and lepton chiralities, σ = σ1 = −σ2

and τ = τ1 = −τ2, is defined as

Aστ = [v̄q(p2) γµωσ uq(p1)] [ūl(k1) γµωτ vl(k2)] , (2.5)

with an obvious notation for the Dirac spinors v̄q(p2), etc., and the chirality projectors

ω± = 1
2 (1 ± γ5). Explicitly the Aστ are given by

A±± = 2 û , A±∓ = 2 t̂ . (2.6)
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For a fermion f with charge Qf and third component I3
W,f of its weak isospin the left- and

right-handed couplings to V = γ,Z are given by

g±ffγ = −Qf , g+
ffZ = −sW

cW

Qf , g−ffZ =
I3
W,f − s2

W
Qf

sWcW

. (2.7)

The sine and cosine, sW and cW, of the weak mixing angle are fixed by the W- and Z-boson

masses MW and MZ as described below in more detail.

The propagator functions are defined by

χγ(ŝ) = 1, χZ(ŝ) =
ŝ

ŝ − µ2
Z

, (2.8)

where the complex quantities

µ2
Z = M2

Z − iMZΓZ , µ2
W = M2

W − iMWΓW (2.9)

denote the locations of the poles of the Z- and W-boson propagators (with momentum

transfer p) in the complex p2 plane. The gauge-boson widths ΓV enter the propagator

denominators only after performing the Dyson summation of all insertions of the (imagi-

nary parts of the) gauge-boson self-energies, i.e. using the above χZ(ŝ) already goes beyond

the lowest perturbative order. It is well known that this unavoidable mixing of perturba-

tive orders jeopardizes the gauge invariance of predictions, in particular in the presence

of radiative corrections.1 Before describing our solutions to this problem, we recall an

important feature of the explicit form of the propagator function. While we have chosen

a constant imaginary part in the denominator of χZ(ŝ), the frequently used on-shell (OS)

renormalization scheme, as for instance defined in ref. [66], naturally leads to a running

width in the denominator. In the approximation of massless decay products of the boson

V , the OS version of χV (ŝ) is

χV (ŝ)
∣

∣

OS
=

ŝ

ŝ − M2
V,OS + iMV,OSΓV,OS × ŝ/M2

V,OS × θ(ŝ)
. (2.10)

The two versions of χV (ŝ) are formally equivalent in the resonance region if mass and width

of V are properly translated [67, 68]

MV =
MV

√

1 + Γ2
V /M2

V

∣

∣

∣

∣

∣

OS

, ΓV =
ΓV

√

1 + Γ2
V /M2

V

∣

∣

∣

∣

∣

OS

. (2.11)

Since the W and Z masses and widths are usually quoted in the OS scheme, we shall perform

this translation before our evaluations. For the masses, the impact of this conversion

typically is MZ,OS−MZ ≈ 34MeV and MW,OS−MW ≈ 27MeV. We perform our evaluation

in the following schemes for treating the Z-boson resonance, where at this point we describe

the various procedures only as far as relevant in LO and give the details for the corrections

in the next section:
1More details on this issue, specific examples as well as proposed solutions can, e.g., be found in refs. [63–

65] and references therein.
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• Complex-mass scheme (CMS): The CMS was introduced in ref. [50] for LO calcu-

lations and generalized to NLO in ref. [51]. In this approach the squared W- and

Z-boson masses are consistently identified with µ2
W and µ2

Z, respectively, i.e. with the

location of the poles of the propagators in the complex p2 plane. This leads to complex

couplings and, in particular, a complex weak mixing angle via c2
W

= 1−s2
W

= µ2
W/µ2

Z.

The scheme fully respects all relations that follow from gauge invariance (Ward or

Slavnov-Taylor identities, gauge-parameter cancellation), because the gauge-boson

masses are modified only by an analytic continuation. Beyond LO the complex

masses are introduced directly at the level of the Lagrangian by splitting the real

bare masses into complex renormalized masses and complex counterterms, so that

the usual perturbative calculus with Feynman rules and counterterms works with-

out modification. In contrast to gauge invariance, unitarity is not respected order

by order in perturbation theory. However, spurious terms spoiling unitarity are of

(N)NLO in an (N)LO calculation without any unnatural amplification, because uni-

tarity cancellations, which are ruled by gauge invariance, are respected. More details

of this scheme can also be found in ref. [63].

In the CMS the LO amplitude (2.4) is, thus, evaluated with complex couplings g±ffV

and a complex Z-boson mass.

• Pole scheme (PS): The PS exploits the fact that both the location µ2
V of the V propa-

gator pole and its residue in amplitudes are gauge-independent quantities [52, 69–73].

The idea [52–55] is, thus, to first isolate the residue for the considered resonance and

subsequently to introduce a finite decay width only in the gauge-independent reso-

nant part. If done carefully this procedure respects gauge invariance, but it should be

kept in mind that the resonant part of an amplitude is not uniquely determined by the

propagator structure alone, but depends on a specific phase-space parameterization

and in most cases also on the separation of polarization-dependent parts. A “pole

approximation” — in contrast to a full PS calculation as performed in this paper — re-

sults from a resonant amplitude defined in the PS upon neglecting non-resonant parts.

The LO amplitude (2.4) with real couplings defined via the usual on-shell relation

c2
W

= 1 − s2
W

= M2
W/M2

Z, but with the complex Z-boson mass in χZ(ŝ), repre-

sents the result of a particular PS variant. The PS operation here first splits off the

polarization-dependent structure Aστ and subsequently introduces the Z-boson width

in the resonant part of the form factors via 1/(ŝ − M2
Z) → 1/(ŝ − M2

Z + iMZΓZ) =

χZ(ŝ)/ŝ, while the non-resonant photon part is not changed.

• Factorization scheme (FS): Many variants of factorizing resonant structures from am-

plitudes have been suggested and used in the literature, but they all share the idea

to separate a simple resonant factor from a potentially complicated amplitude that

does not involve resonances anymore. In ref. [31], for instance, the virtual electroweak

correction to Drell-Yan-like W production was factorized from the resonant LO ampli-

tude, so that the relative correction factor did not involve resonance factors anymore.2

2The relative electroweak correction defined in this way involves the W-boson width ΓW only in loga-
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For the present case of NC dilepton production we start from the LO amplitude (2.4)

with real couplings, as in the PS, and define the relative correction factor for the weak

(i.e. non-photonic) one-loop correction in the strict limit of vanishing gauge-boson

widths.

We can, thus, compare two different versions of LO cross sections for qq̄ → γ/Z → l−l+:

one version delivered by the CMS, another by the PS and FS, which coincide in LO.

The electromagnetic coupling α = e2/(4π) yields an overall factor to the LO predic-

tions. Although the electric charge is always defined (renormalized) in the Thomson limit,

the value for α can be fixed in different input-parameter schemes. We support the following

three different schemes:

• α(0)-scheme: The fine-structure constant α(0) and all particle masses define the

complete input. In this scheme, the relative corrections to the qq̄ → γ/Z → l−l+

cross sections sensitively depend on the light-quark masses via α lnmq terms that

enter the charge renormalization.

• α(MZ)-scheme: The effective electromagnetic coupling α(MZ) and all particle masses

define the basic input. Tree-level couplings are derived from α(MZ), and the relative

corrections receive contributions from the quantity ∆α(MZ), which accounts for the

running of the electromagnetic coupling from scale Q = 0 to Q = MZ (induced

by light fermions) and cancels the corresponding α ln mq terms that appear in the

corrections to the qq̄ channels in the α(0)-scheme.

• Gµ-scheme: The Fermi constant Gµ and all particle masses define the basic input.

Tree-level couplings are derived from the effective coupling αGµ =
√

2GµM2
W(1 −

M2
W/M2

Z)/π, and the relative corrections receive contributions from the quantity

∆r [74–76], which describes the radiative corrections to muon decay. Since ∆α(MZ)

is contained in ∆r, there is no large effect on the qq̄ channels induced by the running

of the electromagnetic coupling in the Gµ-scheme either.

Since light-quark masses are perturbatively ill-defined and can only play the role of phe-

nomenological fit parameters, the α(MZ)- and Gµ-schemes are preferable over the α(0)-

scheme for the qq̄ annihilation processes. More details on the difference of the three schemes

are provided in the next section, where we deal with electroweak radiative corrections (see

also ref. [31]).

The differential LO cross section dσ̂LO
qq̄ /dΩ̂ is easily obtained by squaring the LO matrix

element MLO
qq̄ ,

(

dσ̂LO
qq̄

dΩ̂

)

=
1

12

1

64π2ŝ

∑

pol

|MLO
qq̄ |2 =

α2

12 ŝ3

{

2Q2
qQ

2
l (t̂2 + û2) (2.12)

+ 2QqQl Re
[

[

(g+
qqZg+

llZ + g−qqZg−llZ) û2 + (g+
qqZg−llZ + g−qqZg+

llZ) t̂2
]

χZ(ŝ)
]

rithms ∝ α ln(ŝ − M
2
W + iMWΓW), which result from soft-photon exchange.
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Figure 2. LO cross sections for uū/dd̄ → γ/Z → l−l+ in the vicinity of the Z resonance using

the different schemes (CMS and PS/FS) for treating finite-width effects, employing the Gµ-scheme,

and the LO cross section for γγ → l−l+.

+
[

(|g+
qqZ |2|g+

llZ |2 + |g−qqZ |2|g−llZ |2) û2 + (|g+
qqZ |2|g−llZ |2 + |g−qqZ |2|g+

llZ |2) t̂2
]

|χZ(ŝ)|2
}

.

The explicit factor 1/12 results from the average over the quark spins and colours, and

Ω̂ is the solid angle of the outgoing l− in the partonic centre-of-mass frame. In figure 2

we show the integrated partonic LO cross sections σ̂LO
qq̄ (ŝ) for the different schemes (CMS

and PS/FS) to treat the finite Z width, as obtained in the Gµ-scheme. We also show the

relative difference rPS/FS = σ̂LO|PS/FS / σ̂LO|CMS−1 of the results obtained in the different

schemes, which turns out to be at the 0.01 per-cent level.

For completeness we state the contribution of γγ → l−l+, dσ̂LO
γγ /dΩ̂, to the LO differ-

ential cross section,

(

dσ̂LO
γγ

dΩ̂

)

=
1

4

1

64π2ŝ

∑

pol

|MLO
γγ |2 =

α2

2ŝ

(

t̂

û
+

û

t̂

)

. (2.13)

For details we refer to ref. [56]. Here we just mention that we consider γγ → l−l+ cross

sections always in the α(0)-scheme, because the natural scale for the coupling of the external

photons is Q = 0. In fact, using the α(MZ)- or Gµ-scheme here would result in large

corrections containing α ln mq terms, which should be avoided.

3 Radiative corrections to the partonic cross sections in the SM

In this section we discuss the NLO radiative corrections to the partonic subprocesses con-

tributing to the hadronic process pp/pp̄ → l−l+ + X. For the main contribution of qq̄
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annihilation, many issues discussed here are very similar to the case of e+e− → γ/Z → f f̄

as measured in the LEP and SLD experiments, for which precision calculations have been

performed in the last two decades (see, e.g., refs. [77, 78] and references therein).

3.1 Survey of radiative corrections and calculational details

The electroweak radiative NLO corrections can be divided into photonic and weak correc-

tions. The photonic corrections consist of real and virtual corrections that are induced by

the emission and exchange of an additional photon. Since only electrically neutral gauge

bosons are involved at LO, the photonic subset of the complete O(α) electroweak correc-

tions is separately invariant under U(1)elmg gauge transformations. For the qq̄ channel this

classification is, e.g., discussed in ref. [65] in more detail, for the γγ channel this separation

was introduced in ref. [56]. For qq̄ annihilation the photonic corrections can be further

classified into separately U(1)elmg gauge-invariant parts. Specifically, the photonic contri-

butions can be split into initial-state corrections, final-state corrections, and interference

terms, according to their charge proportionality to Q2
q, Q2

l , and Qq Ql, respectively. In this

sense the photonic corrections to the γγ channel are final-state corrections proportional to

Q2
l . The virtual photonic corrections to the qq̄ channel are composed of the one-loop photon

exchange diagrams shown in figure 3a) and the corresponding counterterm contributions;

the counterparts for γγ scattering can be found in ref. [56]. The real photonic corrections

consist of processes with single-photon emission, qq̄ → γ/Z → l−l+ +γ and γγ → l−l+ +γ,

and of the processes q/q̄ γ → γ/Z → l−l+ + q/q̄, which deliver a correction to both LO

processes qq̄ → l−l+ and γγ → l−l+. On the hadronic level the photon-induced processes

are, of course, suppressed due to the smallness of the photon PDF, but on the partonic

level all processes are of the same order O(α) compared to the LO processes. Since real

photons effectively couple with α(0) and since virtual and real photonic corrections are

intrinsically linked to each other, it is natural to identify the relative coupling of the whole

photonic correction with α(0), independent of the choice of the input-parameter scheme

chosen in LO. This means in qq̄ annihilation (and in the crossing-related q/q̄γ scattering)

and in the γγ channel we scale the cross section contributions of the photonic corrections

with α(0)α2 and α(0)3, respectively, where α depends on the input-parameter scheme as

discussed in section 2.

The weak O(α) corrections to the qq̄ channel comprise contributions of the transverse

parts of the photon, the Z, and the γZ mixing self-energies (Σγγ
T , ΣZZ

T , and ΣγZ
T ), of weak

corrections to the γ/Z q̄q and γ/Z l−l+ vertices, the ZZ and WW box diagrams, and coun-

terterms. The diagrams for the vertex and box corrections are shown in figure 3b) for

incoming quarks other than b’s. For incoming b-quarks, the same diagrams as for incom-

ing d- or s-quarks exist, but in diagrams with internal W bosons the b-quark turns into

its massive iso-spin partner, the top-quark. For this reason, in ‘t Hooft-Feynman gauge

there are additional versions of those diagrams in which one or two W bosons are replaced

by would-be Goldstone bosons; these diagrams are shown in figure 3c). Details and ex-

plicit results on the weak corrections to the γγ channel can be found in ref. [56]. In our

explicit evaluation we scale the relative weak correction with the coupling α as defined
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Figure 3. Vertex and box diagrams for the electroweak virtual corrections to qq̄ → l−l+: a) pho-

tonic corrections, b) weak corrections with light incoming quarks q = u, d, c, s, b, and c) additional

diagrams for incoming b-quarks, where G stands for would-be Goldstone boson fields.

in the respective input-parameter scheme, i.e. the cross section contributions of the weak

corrections scale like α3 and αα(0)2 in the qq̄ and γγ channels, respectively.

The NLO QCD corrections to qq̄ → l−l+ are easily obtained from the photonic initial-

state corrections, i.e. by setting the lepton charge Ql to zero within the photonic corrections,

and replacing α(0)Q2
q → αs(µR)CF, with CF = 4/3 and αs(µR) representing the strong

coupling constant at renormalization scale µR. For squared amplitudes with an incoming

gluon, q/q̄ g → γ/Z → l−l+ + q/q̄, we omit diagrams with the external photon coupling to

l and replace α(0)Q2
q → αs(µR)TF/3 with TF = 1/2 in the respective squared amplitudes

with an incoming photon instead of a gluon.

For this work we have rederived the NLO corrections to the qq̄ channel with stan-
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dard methods. More precisely, we performed two independent calculations, with results

in mutual agreement. The one-loop diagrams and amplitudes are generated with Fey-

nArts versions 1.0 [79, 80] and 3.2 [81]. The subsequent algebraic reductions to standard

forms are done with inhouse Mathematica routines in one version and with the help of

FormCalc [82, 83] and FeynCalc [84, 85] in the other. In this reduction the appearing

tensor integrals are reduced to scalar integrals with the Passarino-Veltman algorithm [86].

The scalar integrals are evaluated using the methods and results of ref. [87–89], where

UV divergences are treated in dimensional regularization and the soft and collinear sin-

gularities are regularized by small fermion masses and an infinitesimal photon or gluon

mass mγ/g. Since the application of the CMS requires complex gauge-boson masses, the

results of refs. [87–89] on the loop integrals had to be generalized accordingly.3 The am-

plitude of the virtual correction, Mvirt, στ
qq̄ , can be expressed in terms of a “form factor”

fvirt, στ
qq̄ = fvirt, στ

qq̄,phot + fvirt, στ
qq̄,weak + fvirt, στ

qq̄,QCD times the LO Dirac structure Aστ ,

Mvirt, στ
qq̄ = (fvirt, στ

qq̄,phot + fvirt, στ
qq̄,weak + fvirt, στ

qq̄,QCD)Aστ . (3.1)

For self-energy and vertex corrections this is obviously possible, since all external fermions

are considered in the massless limit. In D 6= 4 space-time dimensions the calculation of

box diagrams actually leads to combinations of Dirac chains that are not present at LO.

However, since the box diagrams are UV finite the four-dimensionality of space-time can be

used to reduce all Dirac structures to the one of MLO
qq̄ , as explained in appendix B in more

detail. Finally, we have rederived the photonic and QCD corrections for massless external

fermions, photons, and gluons within dimensional regularization by making use of the re-

sults of ref. [92] for translating the IR-divergent scalar integrals from mass into dimensional

regularization and by employing the statements made in the appendix of ref. [93] on the

structure of rational terms of IR origin. The results of mass and dimensional regularization

for IR divergences are in perfect agreement.

Details of our calculation of real photonic (or gluonic) corrections are provided in

the following section, where we present our results on the photonic and QCD corrections.

The contributions resulting from the factorization of mass-singular initial-state photonic

or gluonic corrections are also reviewed there.

We conclude this overview by summarizing the structure of the hadronic cross section

including the full NLO corrections,

σNLO
h1h2

(P1, P2) =

∫ 1

0
dx1

∫ 1

0
dx2

{

∑

q=u,d,c,s,b

f (h1)
q (x1, µ

2
F)f

(h2)
q̄ (x2, µ

2
F)

×
[
∫

dσ̂LO
qq̄ (x1P1, x2P2)

(

1 + δvirt
qq̄,QCD + δvirt

qq̄,phot + δvirt
qq̄,weak

)

+

∫

dσ̂real
qq̄,QCD(x1P1, x2P2) +

∫

dσ̂fact
qq̄,QCD(x1P1, x2P2)

3In detail, the scalar two- and three-point functions with complex masses can be explicitly found

in refs. [90] and [87], respectively. The IR-divergent four-point integral of ref. [88] is also valid for an

internal complex mass, so that only the regular four-point functions, as e.g. given in ref. [89] for real mass

parameters, had to be analytically continued to complex masses. General results on singular and regular

four-point integrals with complex masses will be published elsewhere [91].
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+

∫

dσ̂real
qq̄,phot(x1P1, x2P2) +

∫

dσ̂fact
qq̄,phot(x1P1, x2P2)

]

+
∑

q=u,d,c,s,b

f (h1)
g (x1, µ

2
F)

[

f (h2)
q (x2, µ

2
F)

(
∫

dσ̂LO
gq (x1P1, x2P2) +

∫

dσ̂fact
gq (x1P1, x2P2)

)

+ (q → q̄)

]

+
∑

q=u,d,c,s,b

f (h1)
γ (x1, µ

2
F)

[

f (h2)
q (x2, µ

2
F)

(
∫

dσ̂LO
γq (x1P1, x2P2) +

∫

dσ̂fact
γq (x1P1, x2P2)

)

+ (q → q̄)

]

+
1

2
f (h1)

γ (x1, µ
2
F)f (h2)

γ (x2, µ
2
F)

[
∫

dσ̂LO
γγ (x1P1, x2P2)

(

1 + δvirt
γγ,phot + δvirt

γγ,weak

)

+

∫

dσ̂real
γγ,phot(x1P1, x2P2) +

∫

dσ̂fact
γγ,phot(x1P1, x2P2)

]}

+ (h1 ↔ h2). (3.2)

Here f
(hi)
a (x, µ2

F) are the NLO PDF for finding the parton a with momentum fraction

x in the hadron hi with momentum Pi at the factorization scale µF. The contributions

σ̂fact
ab,QCD/phot result from the PDF redefinitions that describe the absorption of collinear

initial-state singularities of gluonic or photonic origin (see next section). The factors δvirt
ab,X

represent the virtual corrections to the squared LO matrix elements for the ab initial state,

2Re{Mvirt
ab,X(MLO

ab,X )∗} ≡ δvirt
ab,X |MLO

ab,X |2 . (3.3)

3.2 Photonic and QCD corrections

The issue of a gauge-invariant treatment of the photonic and QCD corrections has been

discussed in ref. [65] in detail (including even massive fermions). From the arguments given

there and the discussion above, it is clear that a consistent way of evaluating the photonic

and QCD corrections is to use the complex Z-boson mass µZ wherever it appears. Since

the weak mixing angle is derived from the ratio of the W and Z masses, and MW does not

appear elsewhere in these corrections, the quantity cW can be treated as free parameter in

the context of photonic and QCD corrections, and sW as well as the couplings g±ffZ are

derived from cW. Specifically, we set cW to µW/µZ in the CMS and to MW/MZ in the PS

and FS; the numerical difference is, however, marginal, as expected.

The virtual photonic corrections can be decomposed into vertex and box contributions,

fvirt, στ
qq̄, phot = fvert, στ

qq̄, phot(ŝ) + fbox, στ
qq̄, phot(ŝ, t̂) , (3.4)

where the vertex part contains also the photonic contributions to the fermionic wave-

function corrections. The vertex correction fvert
phot(ŝ) consists of an initial- and a final-state

part and reads

fvert, στ
qq̄, phot(ŝ) = −e2

ŝ

[

F̂qqV,phot(ŝ) + F̂llV,phot(ŝ)
]

[

QqQl + gσ
qqZ gτ

llZ χZ(ŝ)
]

, (3.5)
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Figure 4. Diagrams for real-photon emission.
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Figure 5. Diagrams for photon-induced processes with incoming quarks.

with the renormalized vertex form factor

F̂ffV,phot(ŝ)=−
Q2

fα

2π

[

ln

(

m2
γ

ŝ

)

ln

(

m2
f

ŝ

)

+ln

(

m2
γ

ŝ

)

+
1

2
ln

(

m2
f

ŝ

)

−1

2
ln2

(

m2
f

ŝ

)

−2π2

3
+2

]

,

(3.6)

where irrelevant imaginary parts have been discarded. The interference terms of the virtual

photonic corrections are due to the photonic box diagrams and can be written as

fbox, στ
qq̄, phot(ŝ, t̂) = fγγ, στ

qq̄ (ŝ, t̂) + fZγ, στ
qq̄ (ŝ, t̂) . (3.7)

The correction factors fV V ′,στ
qq̄ are given in appendix B.

The real photonic bremsstrahlung corrections to qq̄ → γ/Z → l−l+, whose diagrams are

shown in figures 4 and 5, are calculated using the Weyl-van-der-Waerden spinor formalism

adopting the conventions of ref. [94]. This results in very compact expressions for the

helicity amplitudes Mσ1,σ2,τ1,τ2
ab (λ) =

∑

V =γ,Z M
σ1,σ2,τ1,τ2
ab,V (λ), where ab = qq̄, qγ, q̄γ refers

to the partonic initial states and V to the exchanged bosons in the respective diagrams.

For real-photon emission we get

M−++−
qq̄,V (+)= 2

√
2 e3g−qqV g+

llV 〈p2 k2〉2
[

Qq

sll−µ2
V

〈k1 k2〉∗
〈p1 k3〉〈p2 k3〉

− Ql

ŝ−µ2
V

〈p1 p2〉∗
〈k1 k3〉〈k2 k3〉

]

,

M−+−+
qq̄,V (+)=−2

√
2 e3g−qqV g−llV 〈p2 k1〉2

[

Qq

sll−µ2
V

〈k1 k2〉∗
〈p1 k3〉〈p2 k3〉

− Ql

ŝ−µ2
V

〈p1 p2〉∗
〈k1 k3〉〈k2 k3〉

]

(3.8)

in the limit of massless fermions, and we have defined µγ = 0. The spinor products are

defined by

〈pq〉 = ǫABpAqB = 2
√

p0q0

[

e−iφp cos
θp

2
sin

θq

2
− e−iφq cos

θq

2
sin

θp

2

]

, (3.9)
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where pA, qA are the associated momentum spinors for the light-like momenta

pµ = p0(1, sin θp cos φp, sin θp sin φp, cos θp),

qµ = q0(1, sin θq cos φq, sin θq sin φq, cos θq). (3.10)

Owing to helicity conservation in the case of massless fermions all amplitudes with σ1 = σ2

or τ1 = τ2 vanish. The remaining six non-zero helicity amplitudes are obtained from the

amplitudes (3.8) via a parity (P) transformation

M−σ1,−σ2,−τ1,−τ2
ab,V (−λ) = sgn(σ1σ2τ1τ2)

(

Mσ1,σ2,τ1,τ2
ab,V (λ)

)∗ ∣
∣

∣

g±
ffV

↔g∓
ffV

, (3.11)

and a CP transformation

M−σ2,−σ1,−τ2,−τ1
ab,V (−λ) = − sgn(σ1σ2τ1τ2)

(

Mσ1,σ2,τ1,τ2
ab,V (λ)

)∗ ∣
∣

∣

p1↔p2
k1↔k2

. (3.12)

Note that in the above formulas the complex masses in the propagators and the couplings

are not complex conjugated, since P and CP transformations only act on the wave functions

and momenta entering the amplitudes.

Apart from the partonic channels with a qq̄ pair in the initial state, we also include the

photon-induced processes whose diagrams are shown in figure 5 for incoming quarks. Of

course, there are also the corresponding channels for incoming anti-quarks. The amplitudes

for the photon-induced processes

q(p1, σ1) + γ(p2, λ) → l−(k1, τ1) + l+(k2, τ2) + q(k3, σ1),

γ(p1, λ) + q̄(p2, σ2) → l−(k1, τ1) + l+(k2, τ2) + q̄(k3, σ2) (3.13)

are related to the ones for real-photon emission by crossing symmetry,

Mσ1,−σ2,τ1,τ2
qγ (−λ) = − sgn(σ2)Mσ1,σ2,τ1,τ2

qq̄ (λ)
∣

∣

∣

p2↔−k3

, (3.14)

M−σ1,σ2,τ1,τ2
γq̄ (−λ) = − sgn(σ1)Mσ1,σ2,τ1,τ2

qq̄ (λ)
∣

∣

∣

p1↔−k3

. (3.15)

In terms of Weyl-van-der-Waerden spinors the crossing transformation p → −p of a four-

momentum p is obtained by inverting the conjugated parts only,

pȦ → −pȦ, pA → pA . (3.16)

The contributions σ̂real
qq̄ and σ̂real

q/q̄γ to the partonic cross section are given by

∫

dσ̂real
ab =

Nc,ab

4

1

2ŝ

∫

dΦγ

∑

pol

∣

∣

∣
Mσ1,σ2,τ1,τ2

ab (λ)
∣

∣

∣

2
, (3.17)

where the colour factors for the different initial states are Nc,qq̄ = 1/3 and Nc,qγ = Nc,q̄γ =

1. The phase-space integral is defined by

∫

dΦγ =

∫

d3k1

(2π)32k1,0

∫

d3k2

(2π)32k2,0

∫

d3k3

(2π)32k3,0
(2π)4δ(p1 + p2 − k1 − k2 − k3). (3.18)
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The phase-space integrals in the real corrections σ̂real
qq̄ and σ̂real

q/q̄γ contain logarithmic

collinear divergences in the limit of massless fermions. Moreover, the real-photon emission

integral contains a logarithmic soft singularity because of the masslessness of the photon.

To regularize the soft and collinear singularities we introduce small fermion masses and

an infinitesimal photon mass according to the generally known factorization properties of

the squared amplitudes in the singular phase-space regions. This step is usually performed

via phase-space slicing, which isolates singular regions in phase space, or via a subtraction

formalism, which employs an auxiliary function in the whole phase space in order to cancel

all singularities. In our calculation we proceed as in the treatment of hadronic W production

as described in refs. [31, 42], i.e. we employ three different methods:

(i) soft phase-space slicing with effective collinear factors [31],

(ii) two-cutoff phase-space slicing [27] for soft and collinear singularities, and

(iii) dipole subtraction [95, 96].

Since the detailed formulas for the CC case can be transferred to the present NC case in

a straightforward way, we do not go into formal details here, but restrict ourselves to the

most important features of the singularity structure in the final result.

The analytical results on the photonic corrections to γγ → l−l+ can be found

in ref. [56]. The following discussion of final- and initial-state singularities includes both

qq̄ and γγ scattering.

Two types of final-state collinear singularities arise. First, there is a collinear singu-

larity if the l−l+ system in the final state receives a small invariant mass Mll, e.g., via a

collinear γ∗ → l−l+ splitting. Since we, however, set a lower limit on Mll, this singular

configuration is excluded from our region of interest. Second, collinear photon radiation off

the final-state charged leptons is enhanced by the mass-singular factor α ln(Q/ml) (with

Q denoting a typical hard scale). The nature of this singularity is discussed in more detail

in section 3.4.3, where an effective treatment of collinear multi-photon emission is described.

Singularities connected to collinear splittings in the initial state result from q → g/γq∗,

q̄ → g/γq̄∗ (gluon/photon bremsstrahlung in qq̄ annihilation), g/γ → qq̄∗, g/γ → q̄q∗

(gluon/photon splittings into qq̄ pairs in g/γq and g/γq̄ scattering), q → qγ∗, q̄ → q̄γ∗

(forward scattering of q or q̄ in γq/q̄ scattering), and γ → l±l∓∗ (photon splitting into l+l−

pairs in γq/q̄ and γγ scattering). The last splitting corresponds to configurations with

a charged lepton l± lost in the beam direction (proton remnant), i.e. it only contributes

if not both charged leptons are required in the event signature; the contribution of this

configuration is enhanced by the factor α ln(Q/ml) (again with Q denoting a typical hard

scale). The other splittings lead to l+l− pairs in the final state with a gluon, (anti-)quark, or

photon lost in the proton remnant; the corresponding contributions are enhanced by factors

αs ln(Q/mq) and αQ2
q ln(Q/mq) for gluonic and photonic splittings, respectively. These

(non-perturbative) singular contributions are absorbed into the PDF via factorization,

where finite contributions to this PDF redefinition define the factorization scheme. In

detail the LO PDF f
(h)
a (x), describing the emission of parton a out of the hadron h with
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longitudinal momentum fraction x, are split according to (see, e.g., ref. [27, 97])

f
(h)
q/q̄(x) → f

(h)
q/q̄(x, µ2

F) − αsCF

2π

∫ 1

x

dz

z
f

(h)
q/q̄

(x

z
, µ2

F

)

×
{

ln

(

µ2
F

m2
q

)

[Pff (z)]+−[Pff (z) (2 ln(1−z)+1)]++CMS
ff (z)

}

− αsTF

2π

∫ 1

x

dz

z
f (h)

g

(x

z
, µ2

F

) {

ln

(

µ2
F

m2
q

)

Pfγ(z) + CMS
fγ (z)

}

−
αQ2

q

2π

∫ 1

x

dz

z
f

(h)
q/q̄

(x

z
, µ2

F

)

(3.19)

×
{

ln

(

µ2
F

m2
q

)

[Pff (z)]+−[Pff (z) (2 ln(1−z)+1)]++CDIS
ff (z)

}

− 3
α Q2

q

2π

∫ 1

x

dz

z
f (h)

γ

(x

z
, µ2

F

)

{

ln

(

µ2
F

m2
q

)

Pfγ(z) + CDIS
fγ (z)

}

,

f (h)
γ (x) → f (h)

γ (x, µ2
F) −

αQ2
q

2π

∑

a=q,q̄

∫ 1

x

dz

z
f (h)

a

(x

z
, µ2

F

)

(3.20)

×
{

ln

(

µ2
F

m2
q

)

Pγf (z) − Pγf (z) (2 ln z + 1)+CDIS
γf (z)

}

into NLO PDF f
(h)
a (x, µ2

F), which now include parton emission up to a scale of the order

of the factorization scale µF. The splitting functions are given by

Pff (z) =
1 + z2

1 − z
, Pfγ(z) = z2 + (1 − z)2 , Pγf (z) =

1 + (1 − z)2

z
. (3.21)

The coefficient functions Cij(z), defining the finite parts, coincide with the usual definition

in D-dimensional regularization for exactly massless partons where the ln mq terms appear

as 1/(D − 4) poles. Details about the photon PDF redefinition are given in appendix A.

Following standard definitions of QCD, we distinguish the MS and DIS-like schemes which

are formally defined by the coefficient functions

CMS
ff = CMS

fγ = CMS
γf = 0 , (3.22)

CDIS
ff (z) =

[

Pff (z)

(

ln

(

1 − z

z

)

− 3

4

)

+
9 + 5z

4

]

+

, (3.23)

CDIS
fγ (z) = Pfγ(z) ln

(

1 − z

z

)

− 8z2 + 8z − 1 , (3.24)

CDIS
γf (z) = −CDIS

ff (z) . (3.25)

We use the MRST2004qed PDF [98] which consistently include O(αs) QCD and O(α)

photonic corrections. These PDF include a photon distribution function for the proton

and thus allow to take into account photon-induced partonic processes. As explained
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in ref. [97], the consistent use of these PDF requires the MS factorization scheme for the

QCD, but the DIS scheme for the photonic corrections.4

The contributions σ̂fact
ab,QCD/phot appearing in (3.2) result from the corrections in the

PDF replacements (3.19) and (3.20) after these substitutions are made in the LO predic-

tion for the hadronic cross section. More precisely, σ̂fact
ab,QCD/phot corresponds to the NLO

QCD/photonic contribution (i.e. linearized in αs or α) proportional to the PDF combina-

tion f
(h1)
a (x1, µ

2
F)f

(h2)
b (x2, µ

2
F) of the partonic ab initial state.

3.3 Weak corrections

In the following we sketch the structure of the weak corrections and emphasize those

points that are relevant for the treatment of the resonance and for the change from one

input-parameter scheme to another. The correction factor fvirt
qq̄,weak, which is introduced

in eq. (3.1), is decomposed according to the splitting into self-energy, vertex, and

box diagrams,

fvirt, στ
qq̄,weak = f self, στ

qq̄,weak(ŝ) + fvert, στ
qq̄,weak(ŝ) + fbox, στ

qq̄,weak(ŝ, t̂) . (3.26)

The self-energy corrections comprise contributions from the γγ, γZ, and ZZ self-energies,

the results of which can be found in ref. [66] in ‘t Hooft-Feynman gauge. Self-energy

corrections to the external fermion states are absorbed into vertex counterterms, as usually

done in on-shell renormalization schemes. The one-loop diagrams for the weak vertex and

box corrections are shown in figures 3b) and c), their complete expressions are provided

in appendix B.

(i) Complex-mass scheme.

We first describe the calculation in the CMS. The self-energy corrections explicitly

read

f self,στ
qq̄,weak(ŝ) = e2 Qq Ql

ŝ2
Σ̂γγ

T (ŝ) + e2
gσ
qqZ gτ

llZ

(ŝ − µ2
Z)2

Σ̂ZZ
T (ŝ) − e2

Ql g
σ
qqZ + Qq gτ

llZ

ŝ (ŝ − µ2
Z)

Σ̂γZ
T (ŝ) ,

(3.27)

where Σ̂V V ′

T denote the renormalized (transverse) gauge-boson self-energies,

Σγγ
T (ŝ) = Σγγ

T (ŝ) + δZγγ ŝ ,

ΣZZ
T (ŝ) = ΣZZ

T (ŝ) − δM2
Z + δZZZ(ŝ − µ2

Z) ,

ΣγZ
T (ŝ) = ΣγZ

T (ŝ) +
1

2
δZγZ ŝ +

1

2
δZZγ (ŝ − µ2

Z) . (3.28)

As mentioned above, the explicit results of ref. [66] on the unrenormalized self-energies

ΣV V ′

T can be used, however, we stress that complex gauge-boson masses and couplings

4Note that our choice of the factorization scheme and coefficient functions for incoming photons differs

from the previously presented results [36, 41]. In ref. [41] the MS scheme was employed, and the coefficient

function C
DIS
γf (z) of ref. [36] was fixed somewhat ad hoc. Our redefined photon PDF is fixed in such a way

that the momentum sum rule for the total proton momentum is respected, i.e. our fixation of the photon

PDF follows the same logic as the gluon PDF redefinition in the DIS scheme for QCD factorization. In the

first preprint version of this paper we employed a different factorization prescription that also respected the

proton momentum sum rule, but was not in line with the standard NLO QCD conventions for factorization

schemes. Therefore, we switched to the scheme described here (see comments at the end of appendix A).
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have to be inserted everywhere. The renormalization constants δM2
Z and δZV V ′ are

defined in eqs. (4.9) and (4.10) of ref. [51] for the CMS. They are expressed in terms

of gauge-boson self-energies and consistently evaluated with complex parameters

(but real-valued momenta); in particular, no real part is taken in their definition, in

contrast to the usual on-shell renormalization scheme, as, e.g., defined in ref. [66].

The vertex corrections can be written as

fvert, στ
qq̄,weak(ŝ) = −e2 QqQl

ŝ

[

F̂ σ
qqγ,weak(ŝ) + F̂ τ

llγ,weak(ŝ)
]

(3.29)

−e2
gσ
qqZgτ

llZ

ŝ − µ2
Z

[

F̂ σ
qqZ,weak(ŝ) + F̂ τ

llZ,weak(ŝ)
]

,

with the renormalized vertex form factors

F̂ σ
ffV,weak(ŝ) = F σ

ffV,weak(ŝ) + δct, σ
ffV,weak . (3.30)

The explicit expressions for the unrenormalized form factors FffV,weak(ŝ) are

given in appendix B. The subscript “weak” indicates that the contributions from

photon-exchange diagrams are omitted both in the form factors and in the vertex

counterterms δct, σ
ffV,weak. In the α(0)-scheme, the counterterms are given by

δct,σ
ffγ,weak =

δe

e
+

1

2
δZγγ + δZσ

f,weak −
1

2

gσ
ffZ

Qf
δZZγ ,

δct,σ
ffZ,weak =

δgσ
ffZ

gσ
ffZ

+
1

2
δZZZ + δZσ

f,weak − 1

2

Qf

gσ
ffZ

δZγZ , (3.31)

with

δg+
ffZ = −sW

cW

Qf

(

δe

e
+

1

c2
W

δsW

sW

)

,

δg−ffZ =
I3
w,f

sWcW

(

δe

e
+

s2
W
− c2

W

c2
W

δsW

sW

)

+ δg+
ffZ . (3.32)

Note that the subscript “weak” appears only on the fermionic wave-function renor-

malization constants δZσ
f , obtained from the the fermion self-energies, because only

those receive a photonic contribution. We again emphasize the difference between

the renormalization constants in the CMS [51] and the usual on-shell scheme [66].

In the CMS, all quantities are derived from complex masses and couplings, and no

real parts are taken from the self-energies that enter the renormalization constants.

Explicit results can be found in ref. [51]. In particular, the renormalization constant

of the weak mixing angle, δsW, is connected to the mass renormalization of the

complex gauge-boson masses.

The charge renormalization constant δe/e contains logarithms of the light-fermion

masses, inducing large corrections proportional to α ln mf , which are related to the

running of the electromagnetic coupling α(Q) from Q = 0 to a high-energy scale.

In order to render these quark-mass logarithms meaningful, it is necessary to adjust
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these masses to the asymptotic tail of the hadronic contribution to the vacuum polar-

ization Πγγ(Q2) = Σγγ
T (Q2)/Q2 of the photon. Using α(MZ), as defined in ref. [99],

as input this adjustment is implicitly incorporated, and the counterterm reads

δct, σ
ffV

∣

∣

∣

α(MZ)
= δct, σ

ffV

∣

∣

∣

α(0)
− 1

2
∆α(MZ), (3.33)

where

∆α(MZ) = Πγγ
f 6=t(0) − Re{Πγγ

f 6=t(M
2
Z)} ≈ α(0)

3π

∑

f 6=t

N c
fQ2

f

[

ln

(

M2
Z

m2
f

)

− 5

3

]

, (3.34)

with Πγγ
f 6=t denoting the photonic vacuum polarization induced by all fermions other

than the top quark (see also ref. [66]), and N c
l = 1 and N c

q = 3 are the colour

factors for leptons and quarks, respectively. In contrast to the α(0)-scheme the

counterterm δct, σ
ffV

∣

∣

α(MZ)
does not involve light-quark masses, since all corrections

of the form αn lnn(m2
f/M2

Z) are absorbed in the LO cross section parametrized by

α(MZ) = α(0)/[1 − ∆α(MZ)]. In the Gµ-scheme, the transition from α(0) to Gµ is

ruled by the quantity ∆r(1), which is deduced from muon decay,

αGµ ≡
√

2GµM2
W(M2

Z − M2
W)

πM2
Z

= α(0)
(

1 + ∆r(1)
)

+ O(α3). (3.35)

The counterterm δct, σ
ffV in the Gµ-scheme reads

δct, σ
ffV

∣

∣

∣

Gµ

= δct, σ
ffV

∣

∣

∣

α(0)
− 1

2
∆r(1), (3.36)

where the one-loop correction ∆r(1) is evaluated with complex masses and couplings

in the CMS. This translation of ∆r(1) into the CMS is easily obtained upon analytical

continuation of the result given in ref. [66] in the on-shell scheme. Note that ∆r(1)

implicitly contains large contributions from ∆α(MZ) ∼ 6% and the (one-loop)

correction (c2
W

/s2
W

)∆ρ(1) ∼ 3% induced by the ρ-parameter, where ∆ρ(1) ∝ Gµm2
t .

Thus, the large fermion-mass logarithms are also resummed in the Gµ-scheme,

and the LO cross section in Gµ-parametrization absorbs large universal corrections

induced by the ρ-parameter. In section 3.4.1 we further elaborate on higher-order

effects induced by ∆α and ∆ρ.

The box correction fbox, στ
qq̄ (ŝ, t̂) is the only virtual correction that depends also

on the scattering angle, i.e. on the variables t̂ and û = −ŝ − t̂. The boxes are

decomposed into the contributions of the ZZ and WW box diagrams,

fbox, στ
qq̄,weak(ŝ, t̂) = fZZ, στ

qq̄ (ŝ, t̂) + fWW, στ
qq̄ (ŝ, t̂) . (3.37)

The individual correction factors are given in appendix B. In appendix B we also

give the explicit expressions for the vertex and box corrections for incoming b-quarks,

where due to the large mass of the top quark additional diagrams [see figure 3c)]

have to be taken into account.
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(ii) Pole scheme.

As explained in section 2, the application of the pole scheme [52–55] starts from a

fixed-order calculation without any special treatment of the resonance. Specifically

we calculate the weak corrections in the on-shell renormalization scheme of ref. [66],

i.e. in our PS calculation all masses and couplings are real quantities and the Z decay

width ΓZ only appears where it is made explicit in the following formulas. The

input-parameter schemes are defined as in the previous section, with ∆α and ∆r(1)

derived from real input parameters.

In a second step, the resonance pole is isolated from the non-resonant remainder

and dressed by a properly Dyson-summed Breit-Wigner propagator. The definition

of a gauge-independent residue on resonance, in general, involves some freedom in

the more-dimensional phase space, because the resonance location fixes only a single

invariant. In our case, for instance, two different definitions of the residue result if

we write the resonant contribution to the LO amplitude either as r1(ŝ, t̂)/(ŝ − M2
Z)

or as r2(ŝ, û)/(ŝ − M2
Z) and simply set ŝ → M2

Z in the numerators. Off resonance

(ŝ 6= M2
Z) the two versions for the residue, r1(M

2
Z, t̂) and r2(M

2
Z, û), obviously are

not the same due to ŝ + t̂ + û = 0. We apply the pole scheme to the form factors

fvirt, στ
qq̄,weak as defined in (3.1), i.e. we single out the resonance pole after splitting off

the spin-dependent standard matrix elements Aστ from the amplitude. Note that

the resonant part of fvirt, στ
qq̄,weak comprises self-energy and vertex corrections only, which

merely depend on ŝ, but not on the variables t̂ and û.

For the vertex corrections this procedure is very simple. The contributions involving

Z-boson exchange, fvert,Z, στ
qq̄ , are modified as follows,

fvert,Z, στ
qq̄,weak (ŝ)= −e2

gσ
qqZgτ

llZ

ŝ − M2
Z

[

F̂ σ
qqZ,weak(ŝ) + F̂ τ

llZ,weak(ŝ)
]

(3.38)

→ −e2 gσ
qqZgτ

llZ

[

F̂ σ
qqZ,weak(M

2
Z) + F̂ τ

llZ,weak(M
2
Z)

ŝ − M2
Z + iMZΓZ

+
F̂ σ

qqZ,weak(ŝ)−F̂ σ
qqZ,weak(M

2
Z)+F̂ τ

llZ,weak(ŝ)−F̂ τ
llZ,weak(M

2
Z)

ŝ − M2
Z

]

,

while the non-resonant contributions involving photon exchange are kept unchanged.

Off resonance the introduction of the finite Z-decay width ΓZ in the denominator of

the vertex corrections changes the amplitude only in O(α2) relative to LO, i.e. the

effect is beyond NLO.

The treatment of the self-energy corrections is somewhat more involved and requires

the inclusion of the LO amplitude. The sum of the LO and self-energy contributions

is modified as follows,

fLO, στ
qq̄ +f self, στ

qq̄,weak = −e2

{

Qq Ql

ŝ

[

1 − Σ̂γγ
T (ŝ)

ŝ

]

+
gσ
qqZ gτ

llZ

ŝ − M2
Z

[

1 − Σ̂ZZ
T (ŝ)

ŝ − M2
Z

]

+
Ql g

σ
qqZ + Qq gτ

llZ

ŝ

Σ̂γZ
T (ŝ)

ŝ − M2
Z

}
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= −e2

{

Qq Ql

ŝ

[

1 − Σ̂γγ
T (ŝ)

ŝ

]

+
gσ
qqZ gτ

llZ

ŝ − M2
Z

[

1 − Σ̂ZZ
T (M2

Z)

ŝ − M2
Z

−Σ̂
′ZZ
T (M2

Z)− Σ̂ZZ
T (ŝ)−Σ̂ZZ

T (M2
Z)−

(

ŝ − M2
Z

)

Σ̂
′ZZ
T (M2

Z)

ŝ − M2
Z

]

+
Ql g

σ
qqZ + Qq gτ

llZ

ŝ

[

Σ̂γZ
T (M2

Z)

ŝ − M2
Z

+
Σ̂γZ

T (ŝ) − Σ̂γZ
T (M2

Z)

ŝ − M2
Z

]}

→ −e2

{

Qq Ql

ŝ

[

1 − Σ̂γγ
T (ŝ)

ŝ

]

+ gσ
qqZ gτ

llZ

[

1 − Σ̂
′ZZ
T (M2

Z)

ŝ − M2
Z + iMZΓZ

− Σ̂ZZ
T (ŝ) − Σ̂ZZ

T (M2
Z) −

(

ŝ − M2
Z

)

Σ̂
′ZZ
T (M2

Z)
(

ŝ − M2
Z

)2

]

+
(

Ql g
σ
qqZ + Qq gτ

llZ

)

[

1

ŝ − M2
Z + iMZΓZ

Σ̂γZ
T (M2

Z)

M2
Z

+
1

ŝ − M2
Z

(

Σ̂γZ
T (ŝ)

ŝ
− Σ̂γZ

T (M2
Z)

M2
Z

)]}

(3.39)

with Σ̂
′ZZ
T (ŝ) = ∂Σ̂ZZ

T (ŝ)/∂ŝ. Here we have used the fact that in the on-shell renor-

malization scheme the renormalized Z-boson self-energy fulfills Re Σ̂ZZ
T (M2

Z) = 0 and

that the resummed terms account for some imaginary parts via Im Σ̂ZZ
T (M2

Z) = MZΓZ,

which holds in O(α). Off resonance the modification changes the amplitude only in

O(α2), i.e. beyond NLO. In the resonance region (ŝ ≈ M2
Z) the terms involving ΓZ in

the denominators do not count as O(α) corrections, but as LO terms. Thus, in order

to achieve NLO accuracy there, ΓZ has to be inserted with NLO precision (or better),

or the experimental value should be used. Since the residue of the propagator is a

gauge-independent quantity, this modification can be done in the resonant parts with-

out spoiling gauge invariance. In our numerical evaluation we use the experimental

value. We finally note that the result (3.39) of the PS substitution can also be ob-

tained upon considering the resonance region of an amplitude that results from the full

Dyson summation of the matrix propagator of the γ/Z system (see, e.g., refs. [77, 78]).

The weak box corrections do not become resonant, so that they are not modified in

the pole scheme.

(iii) Factorization scheme.

As a third option to define the weak corrections, we make use of the fact that

the relative weak corrections δvirt
qq̄,weak to the differential partonic cross sections are

regular functions of ŝ, even in the resonance region (ŝ → M2
Z) without introducing

a finite Z width. For the virtual photonic corrections this is not the case because of

the appearance of corrections proportional to α ln(ŝ−M2
Z). We, thus, can define the

weak NLO correction to the differential partonic cross section in the FS scheme by

dσ̂qq̄,weak

∣

∣

∣

FS
= δvirt

qq̄,weak

∣

∣

∣

ΓZ=0, δMZ=ΣZZ
T

(M2
Z
)
× dσ̂LO

qq̄ , (3.40)
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Figure 6. Weak corrections δvirt
qq̄,weak and δvirt

γγ,weak to the total partonic cross sections for the different

initial states and the differences ∆X between scheme X and the CMS for treating the Z resonance.

where the LO cross section dσ̂LO
qq̄ , as given in (2.12), contains the Z resonance struc-

ture. The subscripts on δvirt
qq̄,weak indicate that the Z width is set to zero everywhere

and that the Z-mass counterterm is derived from the full on-shell Z-boson self-energy

(i.e. including both real and imaginary parts), in order to avoid double counting of

the width effect already present in the LO cross section. This simple scheme respects

gauge invariance, because the LO contribution does (see section 2) and the relative

correction is derived from the ratio of two gauge-invariant quantities, viz. the weak

correction and the LO contribution without any Dyson summation.

As in the PS, the FS calculation only employs real masses and couplings; the width

ΓZ merely enters the LO cross section. The input-parameter schemes are defined in

complete analogy to the PS.

In figure 6 we show the relative weak corrections δvirt
qq̄,weak to the total partonic qq̄ cross

sections for incoming up-type, down-type, and b-quarks, and δvirt
γγ,weak , the weak corrections

to γγ → l−l+. The difference between δvirt
dd̄,weak

and δvirt
bb̄,weak

is due to diagrams involving

W bosons and top quarks. It turns out that the differences

∆X = δvirt
qq̄,weak

∣

∣

∣

X
− δvirt

qq̄,weak

∣

∣

∣

CMS
(3.41)

between the different schemes for treating the resonance are below one per mille (apart

from the W-pair threshold at
√

ŝ = 2MW where only the CMS delivers smooth results).
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We, therefore, conclude that all three schemes are equally good in describing the weak

corrections to the Z resonance.

3.4 Higher-order electroweak effects

In this section we describe the inclusion of leading higher-order electroweak corrections to

the parton processes qq̄ → γ/Z → l−l+. First, we discuss the inclusion of the leading uni-

versal higher-order corrections originating from the renormalization of the electroweak cou-

plings in the various input-parameter schemes. Second, we consider the leading electroweak

corrections in the Sudakov regime which are enhanced by large logarithms ln2(ŝ/M2
W). Last

we discuss the inclusion of multi-photon final-state radiation, which is treated using the

structure-function approach.

3.4.1 Leading electroweak effects and choice of couplings

At moderate scales the leading electroweak non-photonic corrections in the SM are due to

the running of the electromagnetic coupling e2 = 4πα from zero-momentum transfer to the

electroweak scale, and the large mass splitting between the bottom and the top quark and

the associated breaking of the weak isospin symmetry. These leading effects are usually

quantified by ∆α and ∆ρ, respectively, and their two-loop effects can be included in a

straightforward way, as described in refs. [66, 97, 101, 102]. Starting from the calculation

within the on-shell renormalization scheme with the electromagnetic coupling fixed by α(0),

i.e. within the α(0) input parameter scheme defined above, the corrections associated with

the running of α are included by the resummation of ∆α via the substitution

α(0) → α(MZ) =
α(0)

1 − ∆α(MZ)
(3.42)

in the LO prediction, where ∆α is defined in (3.34). For ∆ρ the leading effects are taken

into account via the replacements

s2
W
→ s̄2

W
≡ s2

W
+ ∆ρ c2

W
, c2

W
→ c̄2

W
≡ 1 − s̄2

W
= (1 − ∆ρ) c2

W
. (3.43)

This recipe is correct up to O(∆ρ2) and also reproduces correctly terms of

O(∆α(MZ)∆ρ) [101, 102] in processes with four light external fermions. Note that in

O(∆ρ2) both one- and two-loop corrections to ∆ρ become relevant; explicitly we use the

result

∆ρ = 3xt

[

1 + ρ(2)
(

M2
H/m2

t

)

xt

]

[

1 − 2αs

9π
(π2 + 3)

]

, 3xt =
3
√

2Gµm2
t

16π2
= ∆ρ(1)

∣

∣

∣

Gµ

,

(3.44)

with the function ρ(2) given in eq. (12) of ref. [103]. In the following we isolate the genuine

two-loop effects induced by ∆α and ∆ρ after properly subtracting the corresponding one-

loop contributions ∆α and ∆ρ(1) already contained in the full NLO electroweak corrections.

The leading one- and two-loop effects of ∆α and ∆ρ in the α(0) scheme are included

in the LO cross section (2.12) upon performing the substitutions (3.42) and (3.43). In this

context, the basic ingredients in (2.12) are the products α(0)2Q2
qQ

2
l , α(0)2QqQlg

σ
qqZgτ

llZ ,
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and α(0)2(gσ
qqZgτ

llZ)2 of the electroweak couplings defined in (2.7). In the following we define

ḡσ
ffZ to result from gσ

ffZ upon applying (3.43). Carrying out the above substitutions and

keeping terms up to two-loop order, the results for these products can be written as

α(0)2 Q2
qQ

2
l → α(MZ)2 Q2

qQ
2
l =α(0)2 Q2

qQ
2
l

[

1+2∆α(MZ)+3∆α(MZ)2+. . .
]

,

α(0)2 QqQl g
σ
qqZgτ

llZ → α(MZ)2 QqQl ḡ
σ
qqZ ḡτ

llZ

= α(0)2QqQl

{

gσ
qqZgτ

llZ

[

1 + 2∆α(MZ) + 3∆α(MZ)2
]

+ ∆ρ aστ
ql + ∆ρ2 bστ

ql + 2∆α(MZ)∆ρ aστ
ql + . . .

}

,

α(0)2 (gσ
qqZgτ

llZ)2 → α(MZ)2 (ḡσ
qqZ ḡτ

llZ)2

= α(0)2
{

(gσ
qqZgτ

llZ)2
[

1 + 2∆α(MZ) + 3∆α(MZ)2
]

+ 2∆ρ aστ
ql gσ

qqZgτ
llZ +∆ρ2

(

(aστ
ql )2+2bστ

ql gσ
qqZgτ

llZ

)

+ 4∆α(MZ)∆ρ aστ
ql gσ

qqZgτ
llZ + . . .

}

, (3.45)

where we have introduced the shorthands

aστ
ql =

YqσYlτ

4c2
W

−
c2
W

I3
W,qσI3

W,lτ

s4
W

, bστ
ql =

YqσYlτ

4c2
W

+
c4
W

I3
W,qσI3

W,lτ

s6
W

, (3.46)

with Yfσ = 2(Qf − I3
W,fσ) denoting the weak hypercharge of fermion fσ with chirality

σ = ±. Dropping the LO contribution and subtracting the relevant one-loop terms, which

are proportional to ∆α(MZ) and ∆ρ(1), the leading two-loop contributions to the coupling

combinations read

α2 Q2
qQ

2
l

∣

∣

∣

α(0)

LL2
= 3α(0)2 Q2

qQ
2
l ∆α(MZ)2,

α2 QqQl g
σ
qqZgτ

llZ

∣

∣

∣

α(0)

LL2
= α(0)2QqQl

{

3gσ
qqZgτ

llZ ∆α(MZ)2 +

(

∆ρ − ∆ρ(1)
∣

∣

∣

α(0)
)

aστ
ql

+ ∆ρ2 bστ
ql + 2∆α(MZ)∆ρ aστ

ql

}

,

α2 (gσ
qqZgτ

llZ)2
∣

∣

∣

α(0)

LL2
= α(0)2

{

3(gσ
qqZgτ

llZ)2 ∆α(MZ)2

+ 2

(

∆ρ − ∆ρ(1)
∣

∣

∣

α(0)
)

aστ
ql gσ

qqZgτ
llZ

+ ∆ρ2
(

(aστ
ql )2 + 2bστ

ql gσ
qqZgτ

llZ

)

+ 4∆α(MZ)∆ρ aστ
ql gσ

qqZgτ
llZ

}

, (3.47)

where we have indicated the α(0) input parameter scheme by superscripts. In ∆ρ(1) the

superscript means which value of α is used in its evaluation.
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The transition from the α(0) to the α(MZ) scheme is rather easy. Since α(MZ) is

already used as LO coupling, only the replacement (3.43) applies, but not (3.42). Thus,

starting from the formulas in the α(0) scheme given above, the terms involving ∆α(MZ)

should be dropped, and we obtain for the leading two-loop terms

α2 Q2
qQ

2
l

∣

∣

∣

α(MZ)

LL2
= 0,

α2 QqQl g
σ
qqZgτ

llZ

∣

∣

∣

α(MZ)

LL2
= α(MZ)2QqQl

{(

∆ρ − ∆ρ(1)
∣

∣

∣

α(MZ)
)

aστ
ql + ∆ρ2 bστ

ql

}

,

α2 (gσ
qqZgτ

llZ)2
∣

∣

∣

α(MZ)

LL2
= α(MZ)2

{

2

(

∆ρ − ∆ρ(1)
∣

∣

∣

α(MZ)
)

aστ
ql gσ

qqZgτ
llZ

+ ∆ρ2
(

(aστ
ql )2 + 2bστ

ql gσ
qqZgτ

llZ

)

}

, (3.48)

In the Gµ-scheme, αGµ effectively involves a factor α(MZ)s2
W

, so that the basic replace-

ments read αGµ → αGµ s̄W
2/s2

W
and gσ

ffZ → ḡσ
ffZ . This procedure leads to the following

leading two-loop terms,

α2 Q2
qQ

2
l

∣

∣

∣

Gµ

LL2
= α2

Gµ
Q2

qQ
2
l

{

2

(

∆ρ − ∆ρ(1)
∣

∣

∣

Gµ

)

c2
W

s2
W

+ ∆ρ2 c4
W

s4
W

}

,

α2 QqQl g
σ
qqZgτ

llZ

∣

∣

∣

Gµ

LL2
= α2

Gµ
QqQl

{(

∆ρ − ∆ρ(1)
∣

∣

∣

Gµ

) (

aστ
ql +

2c2
W

s2
W

gσ
qqZgτ

llZ

)

+ ∆ρ2

(

bστ
ql +

2c2
W

s2
W

aστ
ql +

c4
W

s4
W

gσ
qqZgτ

llZ

)}

,

α2 (gσ
qqZgτ

llZ)2
∣

∣

∣

Gµ

LL2
= α2

Gµ

{

2

(

∆ρ − ∆ρ(1)
∣

∣

∣

Gµ

)

gσ
qqZgτ

llZ

(

aστ
ql +

c2
W

s2
W

gσ
qqZgτ

llZ

)

+ ∆ρ2

[

(aστ
ql )2 + 2gσ

qqZgτ
llZ

(

bστ
ql +

2c2
W

s2
W

aστ
ql

)

+
c4
W

s4
W

(gσ
qqZgτ

llZ)2
]}

. (3.49)

We recall that in the CC case [42] the Gµ scheme absorbs the full ∆α and ∆ρ terms into

the LO prediction (at least up to two loops), because the CC coupling factor αGµ/s2
W

does not receive such universal corrections. In the present NC case this absorption is

not complete, and only a numerical analysis can assess the size of the remaining explicit

universal two-loop corrections.

In figure 7 we show the weak corrections δvirt
uū,weak and δvirt

dd̄,weak
to the partonic cross

sections for the different input parameter schemes, including the corresponding higher-order

corrections due to ∆α and ∆ρ. It is clearly visible that the impact of the universal two-

loop corrections is largest in the α(0) scheme and smallest in the Gµ scheme, as expected.

We, therefore, conclude that the Gµ scheme should be the most stable w.r.t. higher-order

electroweak effects among the discussed input parameter schemes. From the above formulas

it is also clear that none of the schemes is fully optimized to absorb the effects of ∆α and
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Figure 7. Weak corrections δvirt

uū,weak and δvirt
dd̄,weak

to the partonic cross sections for the different

input parameter schemes, with (dashed lines) and without leading higher-order corrections due to

∆α and ∆ρ.

∆ρ into the LO prediction as much as possible. While the α(MZ) scheme is more suited

for photon exchange, where no leading ∆ρ corrections arise, the Gµ scheme describes Z-

exchange diagrams better, because the generic NC coupling e/(sWcW) is closer to the weak

gauge coupling e/sW than to e. In view of the accuracy required for hadron collider physics

we do not see, however, the necessity to switch to a mixed optimized scheme and take the

Gµ scheme as default in the following.

3.4.2 Leading weak corrections in the Sudakov regime

For dilepton production at large lepton transverse momenta, the parton kinematics is

restricted to the Sudakov regime, characterized by large Mandelstam parameters ŝ, |t̂|,
|û| ≫ M2

W. The structure of electroweak corrections beyond O(α) in this high-energy

regime has been investigated in detail by several groups in recent years (see e.g. refs. [104–

112] and references therein).

As described for example in refs. [109, 112], the leading electroweak logarithmic cor-

rections, which are enhanced by large factors L = ln(ŝ/M2
W), can be divided into an

SU(2)×U(1)-symmetric part, an electromagnetic part, and a subleading part induced by

the mass difference between W and Z bosons. The last part does not contribute to cor-

rections ∝ (αL2)n and is neglected in the following. The leading (Sudakov) logarithms

∝ (αL2)n of electromagnetic origin cancel between virtual and real (soft) bremsstrahlung

corrections; for the subleading logarithms such cancellations should strongly depend on

the observable under consideration. The only source of leading logarithms is, thus, the

symmetric electroweak (sew) part, which can be characterized by comprising W bosons,

Z bosons, and photons of a common mass MW. In the following we consider this type

of corrections to the qq̄ annihilation channels of the light quarks, i.e. q = u,d, c, s, which

deliver the dominating contribution to the dilepton cross section.

The one-loop correction δ
(1),στ
qq̄,sew to the squared amplitude, with chiralities σ and τ as

defined above, can be obtained by expanding the full result for the virtual correction δvirt,στ
qq̄
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(given in the appendix) for large ŝ, |t̂|, |û| ≫ M2
W. The explicit result can be written as

δ
(1),στ
qq̄,sew =

α

2π

{

−L2Csew,στ
1,NC + LCad,στ

1,NC /Cστ
0,NC

}

(3.50)

with factors

Cστ
0,NC = e2

(

gσ
qqZgτ

llZ + QqQl

)

,

Csew,στ
1,NC = (gσ

qqZ)2 + Q2
q + (gτ

llZ)2 + Q2
l +

δσ− + δτ−

2s2
W

,

Cad,στ
1,NC =

4

e2
(Cστ

0,NC)2 ln

(

û

t̂

)

+
e2

s4
W

δσ−δτ− ln

(−r̂

ŝ

)

with r̂ =

{

t̂ for I3
W,qI

3
W,l > 0,

û for I3
W,qI

3
W,l < 0,

(3.51)

which have been introduced in section 8.4.1 of ref. [112]. In eq. (3.50) we did not only

include the leading Sudakov logarithms ∝ αL2, but also the related “angular-dependent”

contributions ∝ αL ln(−t̂/ŝ) or αL ln(−û/ŝ). Our explicit O(α) result is in agreement with

the general results presented in refs. [109, 112], where the corresponding corrections are

also given at the two-loop level. These O(α2) corrections can be obtained from the O(α)

result by an appropriate exponentiation [107]. For the leading “sew” corrections (including

α2L4, α2L3 ln(−t̂/ŝ), and α2L3 ln(−û/ŝ) terms) this exponentiation simply reads [112]

|Mqq̄|2 ∼ |MLO
qq̄ |2 exp

{

δ
(1)
qq̄,sew

}

= |MLO
qq̄ |2

(

1 + δ
(1)
qq̄,sew + δ

(2)
qq̄,sew + . . .

)

(3.52)

with

δ
(2)
qq̄,sew =

(

α

2π

)2{1

2
L4(Csew

1,NC)2 − L3Csew
1,NCCad

1,NC/C0,NC

}

, (3.53)

where we have suppressed the chirality indices σ, τ in the notation.

Particularly in the case of NC fermion-antifermion scattering processes it was ob-

served [110, 111] that large cancellations take place between leading and subleading loga-

rithms. In view of this uncertainty, we do not include the two-loop high-energy logarithms

in our full predictions. Instead, we evaluate the leading two-loop part δ
(2)
qq̄,sew as a measure

of missing electroweak corrections beyond O(α) in the high-energy Sudakov regime.

Moreover, since the electroweak high-energy logarithmic corrections are associated

with virtual soft and/or collinear weak-boson or photon exchange, they all have counter-

parts in real weak-boson or photon emission processes which can partially cancel (but not

completely, see ref. [105]) the large negative corrections. To which extent the cancellation

occurs depends on the experimental possibilities to separate final states with or without

weak bosons or photons. This issue is discussed for example in refs. [113, 114]. The nu-

merical analysis presented in ref. [114] demonstrates the effect of real weak-boson emission

in the distributions in the transverse lepton momentum pT,l and in the invariant mass Mll

of the lepton pair. At the LHC, at Mll = 2TeV the electroweak corrections are reduced

from about −11% to −8% by weak-boson emission. At pT,l = 1TeV the corresponding

reduction from about −10% to −3% is somewhat larger. This illustrates the sensitivity

of weak-boson emission effects to the details of experimental event selection, in particular,

how dilepton production is separated from diboson production.
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3.4.3 Multi-photon final-state radiation

The emission of photons collinear to the outgoing charged lepton leads to corrections that

are enhanced by large logarithms of the form α ln(m2
l /Q

2) with Q denoting a characteristic

scale of the process. The Kinoshita-Lee-Nauenberg (KLN) theorem [115, 116] guarantees

that these logarithms cancel if photons collinear to the lepton are treated fully inclusively.

However, since we apply a phase-space cut on the momentum of the outgoing lepton,

contributions enhanced by these logarithms survive if the momentum of the bare lepton

is considered, i.e. if no photon recombination is performed. While the concept of a bare

lepton is not realistic for electrons, it is phenomenologically relevant for muon final states.

The first-order logarithm α ln(m2
l /Q

2) is, of course, contained in the full O(α) correc-

tion, so that Q is unambiguously fixed in this order. However, it is desirable to control

the logarithmically enhanced corrections beyond O(α). This can be done in the so-called

structure-function approach [57–62], where these logarithms are derived from the univer-

sal factorization of the related mass singularity. The incorporation of the mass-singular

logarithms takes the form of a convolution integral over the LO cross section σLO,

σLLFSR =

∫

dσLO(p1, p2; k1, k2)

∫ 1

0
dz1 ΓLL

ll (z1, Q
2)Θcut(z1k1)

×
∫ 1

0
dz2 ΓLL

ll (z2, Q
2)Θcut(z2k2), (3.54)

where the step function Θcut is equal to 1 if the event passes the cut on the rescaled lepton

momentum ziki and 0 otherwise. The variables zi are the momentum fractions describing

the respective lepton energy loss by collinear photon emission. Note that in contrast to the

parton-shower approaches to photon radiation (see e.g. refs. [43, 46]), the structure-function

approach neglects the photon momenta transverse to the lepton momentum.

For the structure function ΓLL
ll (z,Q2) we take into account terms up to O(α3) improved

by the well-known exponentiation of the soft-photonic parts [57–62]; our precise formula

can also be found in eq. (2.21) of ref. [42]. Technically, we add the cross section (3.54) to

the one-loop result and subtract the LO and one-loop contributions

σLL1FSR =

∫

dσLO(p1, p2; k1, k2)

∫ 1

0
dz1

∫ 1

0
dz2

[

δ(1 − z1) δ(1 − z2)

+ ΓLL,1
ll (z1, Q

2) δ(1−z2)+δ(1−z1) ΓLL,1
ll (z2, Q

2)

]

Θcut(z1k1)Θcut(z2k2) (3.55)

contained in (3.54) in order to avoid double counting. The one-loop contribution to the

structure function reads

ΓLL,1
ll (z,Q2) =

βl

4

(

1 + z2

1 − z

)

+

(3.56)

with the variable

βl =
2α(0)

π

[

ln

(

Q2

m2
l

)

− 1

]

, (3.57)
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which quantifies the large logarithm. In this context it should be noted that both the full

photonic one-loop corrections (see section 3.2) and the multi-photon effects discussed in

this section are evaluated with α(0) as the photonic coupling in the corrections. Thus, when

subtracting the one-loop part of eq. (3.55) from the full one-loop result, the logarithmic

terms ∝ α(0) ln ml cancel exactly in all our considered input parameter schemes.

The uncertainty that is connected with the choice of Q2 enters in O(α2), since all

O(α) corrections, including constant terms, are taken into account. As default we choose

the value

Q = ξ
√

ŝ (3.58)

with ξ = 1. In order to quantify the scale uncertainty, we vary ξ between 1/3 and 3.

4 Radiative corrections to the partonic cross sections in the MSSM

In this section we examine the effect of corrections to pp/pp̄ → γ/Z → l−l+ +X within the

supersymmetric extension of the SM. A similar study for the case of W-boson production

was performed in ref. [42]. Even though Drell-Yan processes do not represent discovery

channels for supersymmetry it is important to study the influence of SUSY on Drell-Yan

processes since they will be used at the LHC to calibrate detectors, to monitor luminosity,

and to extract information on PDF. Measurements on Drell-Yan processes will also allow

for precision tests of the SM and its extensions through radiative corrections. If there were

large corrections due to SUSY particles all this information would be biased and therefore

not very useful to extract information about the underlying physics.

As an estimate of the impact of supersymmetric extensions of the SM we calculate

the SUSY corrections to pp/pp̄ → γ/Z → l−l+ + X within the MSSM. As in ref. [42] we

calculate the full MSSM corrections and subtract the SM corrections, so that the MSSM

corrections can be added to the SM corrections without double counting,

δqq̄,SUSY ≡ δqq̄,MSSM − δqq̄,SM (MH = Mh0) . (4.1)

Note that we identify the mass MH of the SM Higgs boson with the mass Mh0 of the

lightest Higgs boson h0 of the MSSM for the subtraction of the SM corrections.

We divide the SUSY corrections into the SUSY-QCD and the SUSY electroweak

(SUSY-EW) corrections. The SUSY-QCD corrections are due to corrections to the

qq̄γ/Z vertices as shown in figure 8 and the quark wave-function renormalization via

squark-gluino loops.

To obtain the SUSY-EW corrections, we proceed as in ref. [42] and calculate the com-

plete electroweak O(α) corrections in the MSSM and subtract the SM corrections. The

SUSY-EW corrections can be further divided into Two-Higgs-Doublet-Model (THDM) and

pure SUSY corrections. The THDM corrections are due to the extension of the Higgs sector

to two Higgs doublets. It is this part of the corrections where we subtract the SM correc-

tions, since in the decoupling limit where the mass MA0 of the pseudoscalar Higgs boson

A0 becomes large, both the THDM sector of the MSSM and the SM Higgs sector coincide if

we identify the light neutral Higgs boson of the MSSM with the SM Higgs boson. The pure

SUSY corrections consist of sfermion, neutralino, and chargino loops (see figures 9 and 10).
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Figure 8. Example diagram for SUSY-QCD corrections, which are due to squark (q̃) and gluino

(g̃) exchange.
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Figure 9. Example diagrams for pure SUSY vertex corrections, which involve squark (q̃), slepton

(l̃), sneutrino (ν̃l), chargino (χ̃), and neutralino (χ̃0) exchange.

q

q

l

l

q̃′
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χ̃0

l̃

Figure 10. Example diagrams for pure SUSY box corrections, which involve squark (q̃), slepton

(l̃), sneutrino (ν̃l), chargino (χ̃), and neutralino (χ̃0) exchange.

For the computation of the SUSY corrections we have again performed two independent

calculations, one using the FeynArts/FormCalc/LoopTools [81–83] framework and

the other one using FeynArts and inhouse Mathematica routines. The calculation is

done using the on-shell-scheme as defined in ref. [66]. Since the LO process is a pure SM

process the renormalization of ref. [66] can be applied without modification. To treat the

resonance at the Z-boson peak we use the LO cross section evaluated in the FS and multiply
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with a correction factor,

σ̂qq̄,SUSY = δqq̄,SUSY

∣

∣

∣

ΓZ=0
× σ̂LO

qq̄

∣

∣

FS
, (4.2)

where the relative SUSY correction δqq̄,SUSY, as defined in (4.1), can be evaluated without

any special treatment of the Z-boson resonance, i.e. with a zero Z-boson decay width. We

find that for the SPS benchmark scenarios [119] (see appendix C) both the SUSY-QCD

and the SUSY-EW corrections stay below 2% for partonic centre-of-mass energies up to

2TeV. As an example we show in figure 11 the partonic LO cross section and radiative

corrections for dd̄ initial-states for the different MSSM scenarios.

5 Numerical results for the cross section pp/pp̄→γ/Z→l−l++X

In this section we describe our numerical setup and discuss the numerical results for the

proton–(anti-)proton cross section σ of the processes pp/pp̄ → γ/Z → l−l+ + X in the SM

and the MSSM.

5.1 Input parameters and setup for the SM

The relevant SM input parameters are

Gµ = 1.16637 × 10−5 GeV−2,

α(0) = 1/137.03599911, α(MZ) = 1/128.93, αs(MZ) = 0.1189,

MW,OS = 80.403GeV, MZ,OS = 91.1876GeV, MH = 115GeV,

ΓW,OS = 2.141GeV, ΓZ,OS = 2.4952GeV,

me = 0.51099892MeV, mµ = 105.658369MeV, mτ = 1.77699GeV,

mu = 66MeV, mc = 1.2GeV, mt = 174.2GeV,

md = 66MeV, ms = 150MeV, mb = 4.6GeV,

(5.1)

which essentially follow ref. [117]. The masses of the light quarks are adjusted to reproduce

the hadronic contribution to the photonic vacuum polarization of ref. [118]. The CKM

matrix is set to unity. We keep finite light-quark masses in closed fermion loops, their

numerical impact is, however, extremely small in the α(MZ)- and Gµ-schemes. The O(α)-

improved MRST2004qed set of PDF [98] is used throughout. If not stated otherwise, the

QCD and QED factorization scales are identified and set to the Z-boson mass MZ.

5.2 Phase-space cuts and event selection

For the experimental identification of the processes pp/pp̄ → γ/Z → l−l+ + X we impose

the set of phase-space cuts

Mll > 50GeV, pT,l± > 25GeV, |yl± | < 2.5, (5.2)

where Mll is the invariant mass of the dilepton system, pT,l± are the transverse momenta

and yl± the rapidities of the respective charged leptons. The cuts are not collinear safe

with respect to the lepton momenta, so that observables in general receive corrections that
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Figure 11. SUSY radiative corrections (MSSM − SM) to the partonic process dd̄ → l−l+.
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involve large lepton-mass logarithms of the form α ln(ml/MZ). This is due to the fact that

photons within a small collinear cone around the momenta of the leptons are not treated

inclusively, i.e. the cuts assume perfect isolation of photons from the leptons. While this is

(more or less) achievable for muon final states, it is not realistic for electrons. In order to

be closer to the experimental situation for electrons, the following photon recombination

procedure is applied:

1. Photons with a rapidity |yγ | > 3, which are close to the beams, are considered part

of the proton remnant and are not recombined with the (anti-)lepton.

2. If the photon survived the first step, and if the resolution Rl±γ =
√

(yl± − yγ)2 + φ2
l±γ

is smaller than 0.1 (with φl±γ denoting the angles between the (anti-)lepton and the

photon in the transverse plane), then the photon is recombined with the (anti-)lepton,

i.e. the momenta of the photon and of the (anti-)lepton l± are added and associated

with the momentum of l±, and the photon is discarded.

3. Finally, all events are discarded in which the resulting momentum of the (anti-)lepton

does not pass the cuts given in (5.2).

The same recombination procedure was also used in ref. [42] for single-W production.

While the electroweak corrections differ for final-state electrons and muons without

photon recombination, the corrections become universal in the presence of photon recom-

bination, since the lepton-mass logarithms cancel in this case, in accordance with the KLN

theorem. Numerical results are presented for photon recombination and for bare muons.

5.3 SM predictions for cross sections at the LHC and the Tevatron

In tables 1 and 2 we present the integrated LO cross section together with the electroweak

and QCD correction factors δab for the LHC with a centre-of-mass energy
√

s = 14TeV

and for the Tevatron with
√

s = 1.96TeV. The subscripts a, b of the correction factors

δab denote the various partonic initial states for pp/pp̄ collisions. The results are given for

six different ranges of the dilepton invariant mass Mll.

By definition, our LO cross section σLO includes only contributions from qq̄ initial

states, i.e. we consistently treat all effects from photons in the initial state as corrections.

To show the effect of the different treatments of the Z-boson resonance (see section 3.3) we

give results for the LO cross section in the FS/PS schemes σLO|FS/PS, which differ from

the CMS only in the sub-permille range (< 0.01%). The γγ-induced contribution to the

LO cross section is given separately by the factor δγγ,0. Apart from the suppression by

the photon PDF, the partonic process γγ → l−l+ does not involve a Z-boson resonance

and therefore is strongly suppressed for low invariant mass Mll. However, at the LHC for

higher Mll the γγ-induced contribution reaches up to 5−6% in our default setup. The

O(α) corrections δγγ,phot and δγγ,weak have very small effect on the integrated cross section

at both the LHC and the Tevatron. In section 5.5 we shall pay particular attention to the

question how an enhancement of effects of incoming photons may be achieved, a question

that is interesting for a possible empirical fit of the photon PDF.
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pp → l+l− + X at
√

s = 14 TeV

Mll/GeV 50–∞ 100–∞ 200–∞ 500–∞ 1000–∞ 2000–∞

σ0/pb 738.733(6) 32.7236(3) 1.48479(1) 0.0809420(6) 0.00679953(3) 0.000303744(1)

σ0|FS/PS/pb 738.773(6) 32.7268(3) 1.48492(1) 0.0809489(6) 0.00680008(3) 0.000303767(1)

δγγ,0/% 0.17 1.15 4.30 4.92 5.21 6.17

δrec
qq̄,phot/% −1.81 −4.71 −2.92 −3.36 −4.24 −5.66

δµ+µ−

qq̄,phot/% −3.34 −8.85 −5.72 −7.05 −9.02 −12.08

δµ+µ−

multi−γ/% 0.073+0.027
−0.024 0.49+0.18

−0.15 0.17+0.06
−0.05 0.23+0.07

−0.06 0.33+0.09
−0.08 0.54+0.13

−0.12

δqq̄,weak/% −0.71 −1.02 −0.14 −2.38 −5.87 −11.12

δh.o.weak/% 0.030 0.012 −0.23 −0.29 −0.31 −0.32

δ
(2)
Sudakov/% −0.00046 −0.0067 −0.035 0.23 1.14 3.38

δq/q̄γ,phot/% −0.11 −0.21 0.38 1.53 1.91 2.34

δrec
γγ,phot/% −0.0060 −0.032 −0.11 −0.14 −0.16 −0.23

δµ+µ−

γγ,phot/% −0.011 −0.058 −0.22 −0.30 −0.39 −0.59

δγγ,weak/% 0.000045 0.00056 −0.025 −0.14 −0.31 −0.64

δQCD/% 4.0(1) 13.90(6) 26.10(3) 21.29(2) 8.65(1) −11.93(1)

Table 1. Integrated LO cross section and relative correction factors at the LHC for different values

of the invariant mass cut Mll.

For the photonic corrections we give results for bare muons (δµ+µ−

qq̄,phot) and with the

recombination procedure described in the previous section (δrec
qq̄,phot), where large logarithms

∝ α ln
(

ml

MZ

)

cancel, so that the resulting corrections are smaller. The effect of higher-

order final-state bremsstrahlung beyond O(α), as described in section 3.4.3, is small for

the integrated cross section, as δµ+µ−

multi−γ never exceeds the 0.1% level. However, as discussed

below they become relevant for the invariant-mass distribution around the resonance. The

correction δµ+µ−

multi−γ is given for the central scale choice Q =
√

ŝ with an uncertainty estimate

obtained from varying the scale Q between Q = 3
√

ŝ (upper number) and Q =
√

ŝ/3 (lower

number). Although the q/q̄γ-induced photonic processes can be considered as being part

of the O(α) photonic corrections to the qq̄-induced LO process, we do not include them in

δqq̄,phot, but give them separately by δq/q̄γ,phot. They are small for all considered Mll ranges
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pp̄ → l+l− + X at
√

s = 1.96 TeV

Mll/GeV 50–∞ 100–∞ 150–∞ 200–∞ 400–∞ 600–∞

σ0/pb 142.7878(7) 6.62280(3) 0.824114(3) 0.294199(1) 0.01775063(5) 0.001778465(5)

σ0|FS/PS/pb 142.7948(7) 6.62338(3) 0.824183(3) 0.294222(1) 0.01775188(5) 0.001778585(5)

δγγ,0/% 0.15 0.72 1.54 1.44 0.83 0.57

δrec
qq̄,phot/% −1.85 −4.87 −3.65 −3.83 −5.16 −6.56

δµ+µ−

qq̄,phot/% −3.44 −8.93 −6.46 −6.86 −9.56 −12.42

δµ+µ−

multi−γ/% 0.082+0.032
−0.026 0.48+0.18

−0.15 0.19+0.07
−0.06 0.20+0.07

−0.06 0.34+0.10
−0.09 0.55+0.15

−0.14

δqq̄,weak/% −0.70 −1.01 0.12 0.15 −1.25 −2.60

δh.o.weak/% 0.036 −0.00094 −0.23 −0.29 −0.35 −0.36

δ
(2)
Sudakov/% −0.00014 −0.00044 0.012 0.047 0.35 0.78

δq/q̄γ,phot/% −0.070 −0.14 −0.16 −0.063 0.090 0.15

δrec
γγ,phot/% −0.0059 −0.024 −0.054 −0.052 −0.035 −0.029

δµ+µ−

γγ,phot/% −0.010 −0.043 −0.098 −0.098 −0.072 −0.061

δγγ,weak/% 0.000056 0.00081 0.0023 −0.0038 −0.012 −0.014

δQCD/% 14.19(7) 18.07(4) 19.15(1) 17.72(1) 9.47(1) 1.48(1)

Table 2. Integrated LO cross section and relative correction factors at the Tevatron for different

values of the invariant mass cut Mll.

in our default setup, as expected from the suppression by a factor α and by the photon PDF.

Our results on the weak correction are given by δqq̄,weak. For low Mll the corrections

to the integrated cross section are of the order of a per cent. For the LHC at high invariant

mass the weak corrections are enhanced due to large Sudakov logarithms, eventually getting

of the same order as the photonic and QCD corrections. The smallness of the higher-order

weak effects δh.o.weak and the leading two-loop Sudakov logarithms δ
(2)
Sudakov , as described

in sections 3.4.1 and 3.4.2, points towards the stability of the results concerning higher or-

ders in α, especially in the resonance region. Following the attitude of ref. [42] we consider

the size of δ
(2)
Sudakov as a measure for the missing EW higher-order effects beyond NLO. For

the LHC this estimate indicates a corresponding uncertainty at the level of 1−3% for invari-

ant masses in the range of 1−2TeV. For the Tevatron δ
(2)
Sudakov does not even reach the per-

cent level up to invariant masses of ∼ 600GeV, which suggests that EW effects beyond NLO
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do not significantly contribute to the theoretical uncertainty for Tevatron measurements.

The NLO QCD corrections δQCD are evaluated for a fixed scale µR = µF = MZ

and vary strongly depending on the size of the cut on the dilepton invariant mass. The

statistical error is somewhat larger for the QCD corrections since very large cancellations

take place between the qq̄ and the qg/q̄g induced channels.

5.4 SM predictions for distributions at the LHC

For brevity we restrict our investigation of distributions for the NC Drell-Yan process to

the situation at the LHC. Already the results for integrated cross sections indicate that the

relative corrections in the Z resonance region at the LHC and Tevatron are qualitatively

very similar.

Figures 12, 13, and 14 show differential distributions and correction factors at the

LHC. The uppermost plots show absolute distributions, followed below by the relative

NLO corrections (QCD, photonic, and weak corrections) normalized to the qq̄ LO result.

Note that for some distributions the correction factors are rescaled. The plots at the bottom

show the higher-order electroweak and photon-induced corrections. The distributions for

σNLO and σNLO,rec are our best estimates for a µ+µ− final state and a recombined final

state, respectively, and include all corrections shown in figures 12, 13, and 14.

In figure 12 we present the dilepton invariant-mass distribution dσ/dMll in the res-

onance and the high-invariant-mass region at the LHC. The Mll distribution on the left

shows the well-known large corrections due to the final-state photon bremsstrahlung which

significantly change the shape of the resonance peak, since events belonging to the Z pole

are shifted to smaller values of the invariant mass Mll. Using photon recombination these

corrections are somewhat smaller but still in the range of 40−45% at maximum. In the

high-energy tail of the distribution, where the leptons are an important background for new

physics searches, the photonic corrections rise in size up to the order of −10%. At 2TeV

they are of the same generic size as the QCD and the genuinely weak corrections, which

are enhanced due to large Sudakov logarithms at high energies. At the lower end of the

invariant-mass distribution the QCD corrections reach ≈ −170% which demonstrates that

the inclusion of QCD corrections to NLO only is insufficient there. In order to properly

describe this end of the distribution, which is determined by the phase-space cuts, most

probably QCD resummations are necessary — a task that is beyond the scope of this paper.

The genuinely weak NLO corrections amount to some per cent in the resonance region and

tend to negative values for increasing Mll, reaching about −10% at Mll = 2TeV. This effect

is mainly due to the well-known EW Sudakov logarithms. The multi-photon final-state and

photon-induced corrections around the resonance region are in the range of some per cent

and thus comparable in size to the weak NLO corrections. In particular, the higher-order

multi-photon final-state radiation reduces the effect of bremsstrahlung at resonance. The

effect of universal weak corrections beyond NLO is very small over the whole Mll range.

The photon-induced corrections are strongly suppressed at the Z pole, but reach the level

of a few per cent away from the pole. As we observed for the integrated cross section,

in the high-energy range the γγ-induced processes contribute with ∼ 5% to σNLO in our

– 36 –



J
H
E
P
0
1
(
2
0
1
0
)
0
6
0

ÆÆq=�q;photÆh:o:weakÆ�+��multi�
Mll

Æ[%℄
20001800160014001200100080060040020050

543210�1�2�3�4�5

ÆQCDÆq�q;weakÆreq�q;photÆ�+��q�q;phot

Mll
Æ[%℄

20001800160014001200100080060040020050

302520151050�5�10�15

�NLO;re�NLO�LO

Mll
d�=dM ll[pb=
GeV℄

20001800160014001200100080060040020050

1001010:10:010:00110�410�510�610�7

ÆÆq=�q;photÆh:o:weakÆ�+��multi�
Mll[ GeV℄

Æ[%℄
1501401301201101009080706050

43210�1�2�3�4�5�6

ÆQCD=10Æq�q;weakÆreq�q;phot=10Æ�+��q�q;phot=10

Mll[ GeV℄
Æ[%℄

1501401301201101009080706050

1086420�2

�NLO;re�NLO�LO

Mll[ GeV℄
d�=dM ll[pb=
GeV℄

1501401301201101009080706050

10001001010:10:01

Figure 12. Dilepton invariant-mass distribution and correction factors at the LHC in the resonance

region (left) and the high-invariant-mass region (right).

default setup, where not only the γγ LO contribution but also the corresponding photonic

and weak corrections are included in the plots.

The lepton pT distribution dσ/dpT,l− is shown in figure 13. The distribution has the

well-known Jacobian peak at pT,l− ≈ MZ/2. The EW corrections to the pT,l− distribution

are similar in shape to the CC case [27–32]. The photonic corrections, which are dominated

by final-state radiation, distort the shape of the peak and are particularly sensitive to

the fact whether photons are recombined with the outgoing leptons or not. The weak

corrections are qualitatively similar to the Mll distribution, i.e. they are at the per-cent

level and grow negative for increasing transverse momenta. As for the dilepton invariant-
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Figure 13. Lepton pT,l− -distribution and correction factors at the LHC in the resonance region

(left) and the high-pT region (right).

mass distribution, close to the lower cut on pT,l− the QCD corrections become negative

and very large. In contrast to the Mll distribution, where the NLO QCD corrections

show a moderate size away from the lower end point, the NLO QCD corrections to the

pT distribution are insufficient to describe the spectrum at all — an effect that is well-known

in the literature. The reason for the dramatic rise of the QCD corrections for pT,l− & MZ/2

lies in the fact that in LO the spectrum receives contributions from resonant Z bosons only

for pT,l− < MZ/2, but in NLO resonant Z bosons also feed events into the range of larger

pT via the recoil of the Z boson against an emitted hard jet in the real corrections. A

proper description of the transition between the two regions of Z and Z+jet production
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Figure 14. Dilepton (left) and lepton (right) rapidity distributions and correction factors at the

LHC.

requires careful QCD resummations [16–26]. At pT,l− ≈ MZ/2 the QCD corrections are of

the order of −75% and together with the negative EW corrections this leads to the dip we

observe for σNLO, and at high energies grow huge, reaching the level of several hundred per

cent. The photon-induced corrections are again small at the peak related to the Z-boson

resonance, but reach the level of a few per cent at very low and at high pT,l− . The weak

corrections beyond NLO are suppressed in the whole considered pT region. The photonic

corrections beyond O(α) reduce the size of the NLO photonic corrections for very low pT,l−

and at the resonance peak, but do not exceed 1% in size.

Figure 14 shows the dilepton and the lepton rapidity distributions dσ/dyll and dσ/dyl−,
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respectively. The dilepton rapidity yll is defined by

yll =
1

2
ln

(

k0
ll + k3

ll

k0
ll − k3

ll

)

, kll = k1 + k2. (5.3)

All NLO QCD and EW corrections to the yll distribution are at the level of few per

cent, indicating the perturbative stability of this observable. This is confirmed by the

extremely small size (below 0.2%) of the higher-order EW effects shown in the lower left

plot of figure 14. Qualitatively these statements also hold true for the distribution in the

rapidity of the lepton, where the QCD corrections reach the 5% level.

5.5 Enhancing effects of incoming photons by cuts

In this section we study how the effect of photons in the initial state can be further en-

hanced by choosing different phase-space cuts. If the impact of incoming photons can be

significantly extracted, dilepton production lends itself as a possible candidate for fitting

the photon PDF. In this discussion, however, it is essential to include also QCD and pho-

tonic corrections, which are potentially large and especially sensitive to kinematical cuts.

We consider the following three “γγ scenarios”, which are defined by cuts in addition to

our default setup, in order to enhance the effect of incoming photons:

(a) pT,l± < Mll/4.

This cut is motivated by the consideration that γγ fusion involves t- and u-channel

diagrams, while the qq̄ annihilation proceeds via s-channel diagrams only, i.e. γγ

fusion prefers a small value of sin θ∗, with θ∗ denoting the scattering angle of the lep-

ton in the partonic centre-of-mass frame, while qq̄ annihilation favours intermediate

angles. In LO we have Mll =
√

ŝ and pT,l± = 1
2

√
ŝ sin θ∗ = 1

2Mll sin θ∗, i.e. the above

cut translates into sin θ∗ < 1
2 .

(b) pT,l± < 50GeV.

Following the same considerations this cut translates into the condition sin θ∗ <

100GeV/Mll for the LO contribution. For increasing invariant masses Mll only

smaller and smaller scattering angles are included.

(c) pT,l± < 100GeV.

This case is similar to (b), but with the more relaxed LO condition sin θ∗ <

200GeV/Mll.

In table 3 we present the integrated LO cross section and the photon-induced processes

as well as the photonic and QCD corrections for the three scenarios. The corresponding

dilepton invariant-mass distributions and the same types of corrections are shown in fig-

ure 15, where the bands around the central lines correspond to a variation of the renor-

malization and factorization scale in the range MZ/2 < µR = µF < 2MZ.

The Z-resonance region is clearly dominated by qq̄ annihilation and therefore not suited

to access effects from photonic initial states. Scenario (a) excludes this region by the

applied cut completely, since the lower cut on pT,l± implies Mll > 100GeV, so that the
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γγ scenario (a):

pp → l+l− + X at
√

s = 14 TeV

Mll/GeV 50–∞ 100–∞ 150–∞ 200–∞ 250–∞
σLO/pb 0.91070(6) 0.28175(1) 0.116082(5) 0.058598(2)

δγγ,0/% 6.90 13.45 16.93 18.48

δrec
γγ,phot/% −0.39 −0.63 −0.71 −0.74

δµ+µ−

γγ,phot/% −0.65 −1.06 −1.25 −1.34

δq/q̄γ,phot/% −4.55(1) −5.79(2) −4.68(2) −3.12(3)

δrec
qq̄,phot/% −10.06(2) −7.64 −7.28(1) −7.23

δµ+µ−

qq̄,phot/% −15.28(2) −11.49 −11.14 −11.28

δQCD/% −121.2(5) −51.0(1) −35.8(1) −29.1(1)

γγ scenario (b):

pp → l+l− + X at
√

s = 14 TeV

Mll/GeV 50–∞ 100–∞ 150–∞ 200–∞ 250–∞
σLO/pb 723.28(1) 17.2883(5) 0.37205(2) 0.052388(3) 0.011037(1)

δγγ,0/% 0.15 1.08 9.98 20.39 31.62

δrec
γγ,phot/% −0.0059 −0.046 −0.46 −0.99 −1.60

δµ+µ−

γγ,phot/% −0.011 −0.081 −0.78 −1.65 −2.65

δq/q̄γ,phot/% −0.13 −0.66 −4.92(2) −8.86(7) −12.8(1)

δrec
qq̄,phot/% −1.91 −6.79 −6.97 −8.09(1) −9.14(2)

δµ+µ−

qq̄,phot/% −3.46 −12.33 −10.69 −11.75(1) −12.89(2)

δQCD/% −20.4(1) −47.9(1) −45.5(2) −51.1(2) −58.2(6)

γγ scenario (c):

pp → l+l− + X at
√

s = 14 TeV

Mll/GeV 50–∞ 100–∞ 150–∞ 200–∞ 250–∞
σLO/pb 737.827(6) 31.8101(3) 2.97905(5) 0.57044(1) 0.130466(6)

δγγ,0/% 0.17 1.11 3.80 6.68 11.21

δrec
γγ,phot/% −0.0060 −0.033 −0.12 −0.24 −0.41

δµ+µ−

γγ,phot/% −0.011 −0.059 −0.23 −0.45 −0.76

δq/q̄γ,phot/% −0.11 −0.31 −0.81 −1.27(1) −1.50(1)

δrec
qq̄,phot/% −1.81 −4.85 −3.87 −5.29 −5.95

δµ+µ−

qq̄,phot/% −3.34 −9.11 −7.30 −9.67 −10.03

δQCD/% 3.0(1) 9.30(6) 1.46(6) −19.2(1) −17.5(1)

Table 3. LO cross section from qq̄ annihilation together with the relative impact from γγ and

q/q̄γ initial states, as well as from photonic and QCD corrections, evaluated in the three different

γγ scenarios (a), (b), and (c) as described in the text.
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γγ scenario (a):
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Figure 15. Dilepton invariant-mass distribution and correction factors at the LHC for the various

γγ scenarios (a), (b), and (c), as described in the text. Within the bands the scale µ = µF = µR is

varied in the range MZ/2 < µ < 2MZ.

first two columns of numbers in table 3 are equal. Phenomenologically these two columns

are useless, since “edge-of-phase-space effects” render QCD corrections unphysically large

there. Scenarios (b) and (c) fully include the Z peak in the first column of numbers

in table 3, and a significant difference between these two scenarios is visible only in the QCD

corrections. This is also trivially visible in figure 15. The interesting region for studying

photonic initial states is the one of higher invariant masses Mll, viz. Mll & 150GeV. In
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scenarios (a) and (b) already for Mll & 150−200GeV the impact of γγ initial states reaches

the order of 10–20%; in case (c) it is still 4–7%. In scenarios (a) and (b) it should, however,

be realized that the effect of γγ initial states is systematically reduced by some per cent by

the contribution of q/q̄γ initial states. The correlation between γγ and q/q̄γ initial states

is also visible in the fact that the sum of the two shows a somewhat smaller sensitivity to

the variation of the factorization scale than the two individual contributions, as seen in the

distributions of figure 15. In view of the smallness of the integrated cross sections, which

are of the order of 0.01 pb to 1 pb depending on the Mll range and the chosen scenario, it

is not clear whether a fit of the photon PDF within a reasonable accuracy will be feasible.

This possibility has to be analyzed in a dedicated study that carefully takes into account all

experimental and theoretical uncertainties, in particular, from higher-order QCD effects.

The QCD corrections, which are given in NLO in table 3 and figure 15, are of the order

of −30% to −50% and thus quite large; the fact that they are negative, however, helps to

further enhance the impact of photonic in initial states. The photonic corrections to qq̄

initial states are about −10% and thus go into the same direction as well, but the main

uncertainty will certainly come from QCD corrections. The photonic corrections, which

are included in δµ+µ−

γγ,0+phot, and the weak (not explicitly shown here) corrections to the γγ

initial states will not play a role in this context. In view of the overall size of the cross

sections and the sizes of the γγ contributions and the QCD corrections, γγ scenario (a)

seems the most promising to access the photon initial states.

5.6 Comparison to SM results of other groups

In order to make contact to results previously presented in the literature [33, 34, 36, 37],

we have added our results on integrated cross sections and NLO EW corrections to the

tuned comparison shown in table 2 of ref. [39]. In detail, for this comparison we conformed

our input to the setup of “bare cuts” described there. Table 4, which shows our results

together with the ones obtained with the HORACE [36], SANC [37], and ZGRAD2 [33,

34] programs, reveals good agreement between the various calculations. The remaining

differences, which are at the 0.1% level, are phenomenologically irrelevant and should be due

to slightly different settings in the programs, such as the treatment of small fermion masses.

In order to demonstrate the agreement of our results on distributions with previously

published results, a comparison of the genuine NLO EW and multi-photon corrections for

various distributions to results obtained with HORACE is shown in figures 16, 17, and 18.

In this comparison the HORACE results and the complete numerical setup and input

are taken over from ref. [36]. There is very good agreement for the genuine O(α) corrections,

as it should be, because these corrections are defined exactly in the same way in the

two calculations. Even the multi-photon corrections perfectly agree, although HORACE

employs a parton-shower approach for their modelling, while we use structure functions for

collinear multi-photon radiation. The band defining our result in figure 16 indicates the

effect from varying the QED scale (3.58) by a factor 3 up and down. A similar comparison

in the case of the CC Drell-Yan process was performed in ref. [42], revealing agreement

between the two approaches at a somewhat lower level of accuracy.
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LHC, pp̄ → Z, γ → e+e−

LO [pb] NLO [pb] δ [%]

HORACE 739.34(3) 742.29(4) 0.40(1)

SANC 739.3408(3) 743.072(7) 0.504(1)

ZGRAD2 737.8(7) 743.0(7) 0.71(9)

our results 739.343(1) 742.68(1) 0.451(1)

LHC, pp̄ → Z, γ → µ+µ−

LO [pb] NLO [pb] δ [%]

HORACE 739.33(3) 762.20(3) 3.09(1)

SANC 739.3355(3) 762.645(3) 3.1527(4)

ZGRAD2 740(1) 764(1) 3.2(2)

our results 739.343(1) 762.21(1) 3.092(1)

Table 4. Extension of the tuned comparison shown in table 2 of ref. [39] for “bare cuts”.

Æ�+��;HORACEmulti�Æ�+��multi�

Mll[ GeV℄
Æ[%℄

12011010090807060

6420�2�4�6�8
Figure 16. Comparison of the multi-photon corrections for the dilepton invariant-mass distribution

to results obtained with HORACE.

5.7 Numerical results on supersymmetric corrections in the MSSM

Our discussion closely follows the one presented in ref. [42] for the CC case of single-W

production. We choose the SM input parameters and the setup of the calculation (input

parameter scheme, PDF, cuts, etc.) as described in section 5.1 and study the dependence

of the corrections on the SUSY breaking parameters by considering all the SPS benchmark

scenarios [119]. Both for the CC and NC case, the generic suppression of the genuine

SUSY corrections is insensitive to a specific scenario. We therefore refrain from further

restricting the SPS coverage by taking into account recent experimental bounds in favour

of a broader scope in the SUSY parameter space. The SPS points are defined by the low-

energy SUSY breaking parameters which determine the spectrum and the couplings. For

the ten benchmark scenarios under consideration in ref. [42] and in this work, this input5

is also tabulated in appendix C.

5See The Snowmass Points and Slopes (SPS) homepage, http://www.cpt.dur.ac.uk/∼georg/sps/.
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Figure 17. Comparison of the NLO EW corrections for the dilepton invariant-mass (left) and the

pT,l− (right) distributions to results obtained with HORACE, with ∆ showing the difference of the

two results on the relative correction δ in the inset, where the HORACE integration error defines

the error bars.

�
2:50�2:5
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yl�

Æ[%℄
210�1�2
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0:20�0:2

Æ�+��;HORACEq�q;ew Æ�+��q�q;ew

yll
Æ[%℄

210�1�2

43:532:521:5
Figure 18. As in figure 17, but for the dilepton (left) and lepton rapidity (right) distributions.

Dependent SUSY parameters, such as Higgs, chargino, neutralino, or sfermion masses,

are calculated from the SPS input using tree-level relations. Since the impact of the

fermion masses of the first two generations is negligible, these masses are set to zero in the

calculation of the corresponding sfermion mass matrices. Following this approach the SUSY

corrections do not depend on the lepton generations in the partonic process qq̄ → l−l+, i.e.

the SUSY corrections presented below are valid both for outgoing electrons and muons.

In table 5 we list our results for the SUSY corrections within the MSSM at the LHC.

The corresponding LO cross sections can be found in table 1. We give results for SUSY-

QCD and SUSY-EW corrections separately as described in section 4. As expected and

similar to the CC case [42], the corrections for low invariant dilepton mass Mll are negligible

at the level of 0.1% or below. Only for very high Mll and only for a few scenarios the

corrections reach the level of 1−2%. Similar to the CC case the maximum is reached for

the SPS2 scenario where the gauginos are particularly light and the squarks and sleptons

are so heavy that their negative contribution becomes effective only at higher invariant

mass. Table 6 essentially shows the same features for the situation at Tevatron (for LO

numbers see table 2), where the SUSY corrections for the highest reachable invariant masses
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pp → l+l− + X at
√

s = 14TeV

Mll/GeV 50–∞ 100–∞ 200–∞ 500–∞ 1000–∞ 2000–∞

SPS1a δSUSY−EW/% 0.0094(3) −0.0041(1) −0.053 −0.43 −0.33 0.73

SPS1a δSUSY−QCD/% 0.0060 0.012 0.062 0.34 1.19 0.61

SPS1b δSUSY−EW/% 0.0076(1) 0.0021 −0.018 −0.31 −0.67 −0.20

SPS1b δSUSY−QCD/% 0.0025 0.0049 0.025 0.13 0.48 1.38

SPS2 δSUSY−EW/% −0.046 −0.12 −0.40 0.30 1.60 1.94

SPS2 δSUSY−QCD/% 0.00093 0.0018 0.0091 0.045 0.15 0.58

SPS3 δSUSY−EW/% 0.0046(1) −0.00072(7) −0.021 −0.32 −0.66 −0.20

SPS3 δSUSY−QCD/% 0.0026 0.0050 0.026 0.14 0.50 1.37

SPS4 δSUSY−EW/% 0.013 0.0005(1) −0.061 −0.24 −0.24 0.27

SPS4 δSUSY−QCD/% 0.0034 0.0066 0.035 0.18 0.68 1.30

SPS5 δSUSY−EW/% 0.025 0.013 0.063 −0.23 −0.51 0.11

SPS5 δSUSY−QCD/% 0.0042 0.0083 0.043 0.23 0.85 1.05

SPS6 δSUSY−EW/% 0.010 0.0004(2) −0.042 −0.42 −0.44 0.32

SPS6 δSUSY−QCD/% 0.0042 0.0082 0.043 0.23 0.85 1.05

SPS7 δSUSY−EW/% 0.0094(2) 0.0002(2) −0.049 −0.42 −0.032 0.23

SPS7 δSUSY−QCD/% 0.0023 0.0046 0.024 0.12 0.45 1.40

SPS8 δSUSY−EW/% 0.012 0.0039 −0.035 −0.34 −0.17 0.22

SPS8 δSUSY−QCD/% 0.0017 0.0033 0.017 0.088 0.31 1.26

SPS9 δSUSY−EW/% −0.015 −0.026 −0.11 0.029 0.095 −0.0059(1)

SPS9 δSUSY−QCD/% 0.0012 0.0023 0.012 0.059 0.20 0.82

Table 5. Relative SUSY-QCD and SUSY-EW correction factors at the LHC for different values of

the invariant-mass cut Mll for the SPS benchmark scenarios. The corresponding LO cross sections

can be found in table 1.

are even smaller compared to the LHC.

In figure 19 we show the invariant-mass distribution dσ/dMll for the LHC. As already

observed for the integrated cross section, the distributions receive per-cent corrections only

for an invariant mass in the TeV range. The maximum correction is again found for SPS2

– 46 –



J
H
E
P
0
1
(
2
0
1
0
)
0
6
0

pp̄ → l+l− + X at
√

s = 1.96TeV

Mll/GeV 50–∞ 100–∞ 150–∞ 200–∞ 400–∞ 600–∞

SPS1a δSUSY−EW/% 0.0022(2) 0.0034(1) 0.052 0.032 −0.14 −0.26

SPS1a δSUSY−QCD/% 0.0059 0.011 0.029 0.047 0.15 0.30

SPS1b δSUSY−EW/% 0.0043(1) 0.0050 0.027 0.021 −0.064 −0.21

SPS1b δSUSY−QCD/% 0.0025 0.0046 0.012 0.019 0.059 0.11

SPS2 δSUSY−EW/% −0.051 −0.12 −0.30 −0.40 0.048 0.41

SPS2 δSUSY−QCD/% 0.00092 0.0017 0.0043 0.0070 0.021 0.040

SPS3 δSUSY−EW/% 0.0017(1) 0.0027 0.026 0.018 −0.074 −0.20

SPS3 δSUSY−QCD/% 0.0026 0.0048 0.012 0.020 0.061 0.12

SPS4 δSUSY−EW/% 0.0076(1) 0.0030 0.015 −0.010 −0.21 −0.059

SPS4 δSUSY−QCD/% 0.0034 0.0063 0.016 0.026 0.081 0.16

SPS5 δSUSY−EW/% 0.020 0.024 0.13 0.14 0.037 −0.0027(1)

SPS5 δSUSY−QCD/% 0.0042 0.0078 0.020 0.033 0.10 0.20

SPS6 δSUSY−EW/% 0.0048(1) 0.0044 0.034 0.019 −0.14 −0.27

SPS6 δSUSY−QCD/% 0.0042 0.0078 0.020 0.033 0.10 0.20

SPS7 δSUSY−EW/% 0.0054(1) 0.0040 0.025 −0.0017 −0.21 −0.30

SPS7 δSUSY−QCD/% 0.0024 0.0044 0.011 0.018 0.056 0.11

SPS8 δSUSY−EW/% 0.0084(1) 0.0067 0.021 0.0059 −0.15 −0.19

SPS8 δSUSY−QCD/% 0.0017 0.0032 0.0082 0.013 0.040 0.077

SPS9 δSUSY−EW/% −0.017 −0.022 −0.028 −0.067 −0.014 0.11

SPS9 δSUSY−QCD/% 0.0012 0.0022 0.0056 0.0090 0.027 0.052

Table 6. Relative SUSY-QCD and SUSY-EW correction factors at the Tevatron for different

values of the invariant-mass cut Mll for the SPS benchmark scenarios. The corresponding LO cross

sections can be found in table 2.

scenario where the SUSY-EW corrections reach the 2% level. The SUSY-QCD corrections

reach 1% for all but the SPS2, SPS8 and SPS9 scenarios but never exceed 2% for all

scenarios in the considered Mll range.
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SPS 9 Mll[ GeV℄Æ[%℄ 2000180016001400120010008006004002005020�2 SPS 8Æ[%℄ 20�2 SPS 7Æ[%℄ 20�2 SPS 6Æ[%℄ 20�2 SPS 5Æ[%℄ 20�2 SPS 4Æ[%℄ 20�2 SPS 3Æ[%℄ 20�2 SPS 2Æ[%℄ 20�2 SPS 1bÆ[%℄ 20�2
SUSY-EWSUSY-QCDSPS 1aÆ[%℄ 20�2

�LO
d�=dM ll[pb=
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Figure 19. Invariant-dilepton-mass distribution and relative SUSY-QCD and SUSY-EW correction

factors at the LHC for the SPS benchmark scenarios.
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6 Conclusions

Neutral-current dilepton production represents one of the most important processes at

hadron colliders, such as the Tevatron and the LHC. On the one hand, the process acts as

a standard candle that is, e.g, indispensable for detector calibration and sensitive to the

parton distribution functions of the proton; on the other, it delivers background to many

new-physics searches, such as for new Z′ bosons. Predictions for this process, thus, ask

for the highest possible precision, i.e. both QCD and electroweak corrections have to be

included as far as possible.

In this paper we have recalculated and further discussed the next-to-leading order

corrections in the Standard Model, where we have compared different methods to include

radiative corrections to the Z-boson resonance in a gauge-invariant way. This discussion

goes beyond previous work, but our numerical results confirm results existing in the lit-

erature. The relevant formulas are listed explicitly and can be used by other groups. We

consistently include channels with incoming photons, which starts already with the leading-

order contribution of the γγ → l−l+ process. We also include the electroweak corrections

to this process and channels induced by γq/γq̄ initial states, i.e. all contributions that are

formally of electroweak next-to-leading order.

Beyond next-to-leading order we consider multi-photon radiation off the final-state

leptons in the structure-function approach, universal electroweak effects, and two-loop

electroweak Sudakov logarithms at high energies, so that our predictions are of state-of-

the-art precision in view of electroweak corrections. On the side of the QCD corrections,

we include next-to-leading order corrections only, so that further improvements via QCD

resummations or interfacing parton showers are desirable.

Our discussion of numerical results comprises a survey of corrections to integrated and

differential cross sections, which shows the impact of the various types of corrections in

detail. In this context we pay particular attention to effects from incoming photons, because

it is not yet clear from results in the literature whether these effects are phenomenologically

important or swamped by other uncertainties as, e.g., originating from QCD effects. Our

results suggest that effects from γγ initial states should be significant in the invariant-mass

distribution of the dilepton pair and that these effects can be enhanced to the level of

10−20% by appropriate cuts. This study is, thus, particularly interesting for a possible

future fit of the photon distribution function that is part of the DGLAP evolution in the

presence of electroweak corrections.

Finally, we have presented results on radiative corrections within the minimal su-

persymmetric extension of the Standard Model, which have not yet been known in the

literature. Similar to known results on charged-current W-boson production, the differ-

ence to the pure Standard Model corrections is small for viable supersymmetry scenarios.

In detail, the supersymmetry corrections are below the 0.1% level and thus irrelevant near

the Z-boson resonance and grow only to about 1−2% in the TeV range for the dilepton

invariant mass. These results confirm the role of dilepton production as a standard candle

at the Tevatron and the LHC.
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A Factorization of the photon PDF

Since the issue of redefining the photon PDF in order to absorb the collinear divergence

arising from the splitting q → qγ∗ of incoming quarks (or anti-quarks) seems not to be

completely settled in the literature yet, we here give a brief account on the analytical

structure of this collinear singularity both in dimensional and mass regularization and

derive the corresponding factorization formula for the photon PDF in the MS and DIS

factorization schemes. To this end, we can make use of existing results, e.g., available in

papers on dipole subtraction to deal with this collinear singularity.

In mass regularization this type of singularity is treated in section 5 of ref. [96] in detail.

After extracting the singularity from the full phase-space integral by simple subtraction,

the singular integration is performed analytically with a small quark mass mq and added

back to the result for the cross section. By construction this procedure can be performed

with a “spectator” particle in the initial or final state, where its choice is arbitrary for

this type of splitting. Writing the (unpolarized) partonic cross-section part that is to be

re-added generically as

σsub
qa→qX(pq, pa) =

Q2
qα

2π

∫ 1

0
dxH(Q2, x)σγa→X (kγ = xpq, pa), (A.1)

where σγa→X is the partonic cross section of the related process with an incoming photon

instead of the q → qγ∗ splitting. The momenta pq and pa correspond to the incoming quark

q and the other massless particle a, respectively, and the functions H read (cf. eqs. (5.19)

and (5.27) of ref. [96])

Hqq,a(s, x) = ln

(

s(1 − x)2

x2m2
q

)

Pγf (x) − 2
1 − x

x
, s = (pq + pa)

2, (A.2)

Hqq
j (P 2, x) = ln

(−P 2(1 − x)

x3m2
q

)

Pγf (x) − 2
1 − x

x
, P 2 = (p̃j − kγ)2, (A.3)

where Hqq,a refers to the situation with the incoming particle a as spectator and Hqq
j to

the case with a massless final-state spectator j of momentum p̃j.

The respective results in dimensional regularization can be deduced from the origi-

nal Catani-Seymour paper [120], where the dipole subtraction method was introduced for

massless QCD. The case with an initial-state spectator is described in section 5.5 there,

and the case with a final-state spectator in section 5.3. Starting from eq. (5.152) in the
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former case and from eq. (5.73) in the latter, and identifying the QCD coupling factor CFαs

with the QED factor Q2
qα, we find

Hqq,a(s, x) =
1

Γ(1 − ǫ)

(

4πµ2

s

)ǫ[

−1

ǫ
Pγf (x) + 2Pγf (x) ln(1 − x) + x

]

, (A.4)

Hqq
j (P 2, x) =

1

Γ(1 − ǫ)

(

4πµ2

−P 2

)ǫ[

−1

ǫ
Pγf (x) + Pγf (x) ln

(

1 − x

x

)

+ x

]

(A.5)

in D = 4−2ǫ dimensions. Note that in the last relation we had to translate the kinematical

variable (p̃kpa) of ref. [120] into our kinematics, which is accomplished by the replacement

(p̃kpa) → (p̃jpq) = (p̃jkγ)/x = −P 2/(2x). Comparing eq. (A.2) with eq. (A.4), or eq. (A.3)

with eq. (A.5), we see the following correspondence between the collinear divergence in

mass and dimensional regularization,

(4πµ2)ǫ

Γ(1 − ǫ)

1

ǫ
Pγf (x) ↔

(

ln m2
q + 2 ln x + 1

)

Pγf (x), (A.6)

which is obtained in either case, i.e. with a spectator in the initial or final state, as it

should be. The correspondence (A.6) can be used to translate a result for the collinear

singularity of the initial-state splitting q → qγ∗ from dimensional to mass regularization, or

vice versa, in any procedure to treat the collinear divergence, i.e. it is universally valid also

in other subtraction procedures or in methods employing phase-space slicing. Applying

this correspondence to the photon PDF redefinition in dimensional regularization,

f (h)
γ (x)→f (h)

γ (x, µ2
F) −

α Q2
q

2π

∑

a=q,q̄

∫ 1

x

dz

z
f (h)

a

(x

z
, µ2

F

)

{

(4π)ǫ

Γ(1−ǫ)

(

µ2

µ2
F

)ǫ 1

ǫ
Pγf (z)+CFS

γf (z)

}

(A.7)

we obtain the result (3.20) for this redefinition in the mass regularization scheme, where the

coefficient function CFS
γf (z) is given by eq. (3.25) for the the two considered factorization

schemes (FS), independent of the chosen regularization. Since the MS scheme merely

rearranges the divergent terms in dimensional regularization (plus some trivial universal

constants), the coefficient function obviously vanishes, CMS
γf (z) ≡ 0. The fixation of CDIS

γf (z)

in the DIS scheme is less trivial. Similar to the gluon PDF redefinition in the DIS scheme

for NLO QCD corrections, the choice (3.25) ensures that the whole PDF redefinition does

not change the proton momentum (see e.g. eq. (6.9) of ref. [120]).

Finally, we mention a subtle point in the fixation of the coefficient functions in the

DIS scheme. The DIS factorization scheme is defined in such a way that the DIS struc-

ture function F2 from electron-proton scattering does not receive any corrections. This

condition uniquely fixes the (anti-)quark PDF redefinition. The gluon PDF redefinition is

performed in such a way that the total proton momentum remains unchanged after the

PDF redefinition. The simplest choice obviously is to subtract the same z-dependent finite

part from the gluon PDF that was added to the (anti-)quark PDFs; this is expressed by

the analogon of eq. (3.25) in NLO QCD. In NLO QED the role of the gluon is taken over by

the photon, which finally leads to eq. (3.25). Obviously, employing the sum rule alone as

criterion to fix CDIS
γf (z) is not unique, but involves some convention, since an integral over z
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does not fix the z dependence. A different choice would result in mass regularization if the

coefficient functions CDIS
ab (z) were just defined to quantify the finite parts in addition to the

divergent contributions that are proportional to lnm2
qPab(z). The result for the redefined

photon PDF would still satisfy the proton momentum sum rule, but the z dependence

of the cross section with the incoming photon would be somewhat different. In the first

preprint version of this paper such a choice was in fact made, and we found results on

the contributions from qγ scattering that differ from the results of this paper at the level

of up to a few per cent in the off-shell tail of the Z-boson resonance; for observables that

are dominated by resonant Z bosons effects due to qγ scattering are negligible in either

scheme. The “correct” choice, i.e. the one that is in line with the standard definitions made

in NLO QCD, is obtained upon first translating the mass-regularized divergence from the

q → qγ∗ splitting into dimensional regularization via the correspondence (A.6) and defining

the remaining part as coefficient functions, as expressed in eq. (3.20).

B Vertex and box corrections

In this section we state explicitly the expressions for the vertex form factors F σ
ffV,weak, V =

γ, Z (3.29), and the photonic (3.7) and weak box diagrams (3.37). The occuring scalar

integrals B0, C0, and D0 depend on their arguments as follows,

B0(p
2
1,m0,m1) =

(2πµ)4−D

iπ2

∫

dDq
1

[q2 − m2
0 + i0][(q + p1)2 − m2

1 + i0]
, (B.1)

C0(p
2
1, (p2 − p1)

2, p2
2,m0,m1,m2) =

(2πµ)4−D

iπ2

∫

dDq

× 1

[q2 − m2
0 + i0][(q + p1)2 − m2

1 + i0][(q + p2)2 − m2
2 + i0]

, (B.2)

D0(p
2
1, (p2 − p1)

2, (p3 − p2)
2, p2

3, p
2
2, (p3 − p1)

2,m0,m1,m2,m3) =
(2πµ)4−D

iπ2

∫

dDq

× 1

[q2 − m2
0 + i0][(q + p1)2 − m2

1 + i0][(q + p2)2 − m2
2 + i0][(q + p3)2 − m2

3 + i0]
, (B.3)

with D denoting the number of space-time dimensions. The evaluation of these scalar

integrals with real or complex masses has been briefly described in section 3. For the form

factors for the weak vertex corrections we obtain

F+
ffγ/Z,weak(ŝ) = −

αQ2
fs2

W

4πc2
W

{

2 − 2
(µ2

Z + 2ŝ)

ŝ
B0(0, 0, µZ) +

3ŝ + 2µ2
Z

ŝ
B0(ŝ, 0, 0)

+
2(µ2

Z + ŝ)2

ŝ
C0(0, 0, ŝ, 0, µZ, 0)

}

, (B.4)

F−
ffγ,weak(ŝ) = +

α

8π

{

1

ŝs2
W

Qf

[

2Qf (2ŝ + µ2
W)B0(0, 0, µW)

+ (2I3
w,f − Qf )

(

2ŝ + (3ŝ + 2µ2
W)B0(ŝ, 0, 0)
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+ 2(ŝ + µ2
W)2C0(0, 0, ŝ, 0, µW, 0)

)

− 2I3
w,f

(

(ŝ + 2µ2
W)B0(ŝ, µW, µW)

− 2µ2
W(2ŝ + µ2

W)C0(0, 0, ŝ, µW, 0, µW)
)

]

+
(I3

w,f − Qfs2
W

)2

ŝc2
W

s2
W

[

− 4ŝ + 4(2ŝ + µ2
Z)B0(0, 0, µZ)

− 2(3ŝ + 2µ2
Z)B0(ŝ, 0, 0)

− 4(ŝ + µ2
Z)2C0(0, 0, ŝ, 0, µZ, 0)

]

}

, (B.5)

F−
ffZ,weak(ŝ) = +

α

8π

{

1

ŝs2
W

(I3
w,f − Qfs2

W
)

[

2(I3
w,f − Qfs2

W
)(2ŝ + µ2

W)B0(0, 0, µW)

+ (I3
w,fc2

W
− I3

w,fs2
W

+ Qfs2
W

)
(

2ŝ + (3ŝ + 2µ2
W)B0(ŝ, 0, 0)

+ 2(ŝ + µ2
W)2C0(0, 0, ŝ, 0, µW, 0)

)

− 2c2
W

I3
w,f

(

(ŝ + 2µ2
W)B0(ŝ, µW, µW)

− 2µ2
W(2ŝ + µ2

W)C0(0, 0, ŝ, µW, 0, µW)
)

]

+
(I3

w,f − Qfs2
W

)2

ŝc2
W

s2
W

[

− 4ŝ + 4(2ŝ + µ2
Z)B0(0, 0, µZ)

− 2(3ŝ + 2µ2
Z)B0(ŝ, 0, 0)

− 4(ŝ + µ2
Z)2C0(0, 0, ŝ, 0, µZ, 0)

]

}

. (B.6)

Due to the heavy mass of the top quark the weak corrections for incoming b-quarks differ

from those for partonic processes with incoming d/s- quarks by δF σ
bbγ/Z,weak = F σ

bbγ/Z,weak−
F σ

dd/ss γ/Z,weak, where

δF+
bbγ,weak(ŝ) = δF+

bbZ,weak(ŝ) = 0, (B.7)

δF−
bbγ,weak(ŝ) = +

α

8π

{

− 2

ŝs2
W

[

(2ŝ + µ2
W)(B0(0, 0, µW) − B0(0,mt, µW))

+ (3ŝ + 2µ2
W)(B0(ŝ, 0, 0) − B0(ŝ,mt,mt))

+ 2(ŝ + µ2
W)2(C0(0, 0, ŝ, 0, µW, 0) − C0(0, 0, ŝ,mt, µW,mt))

+ 3µ2
W(2ŝ + µ2

W)(C0(0, 0, ŝ, µW, 0, µW) − C0(0, 0, ŝ, µW,mt, µW))

]

− m2
t

ŝs2
W

µ2
W

[

(m2
t + µ2

W)

×(B0(0,mt, µW) + 2B0(ŝ,mt,mt) − 3B0(ŝ, µW, µW))

+ ŝ

(

B0(ŝ,mt,mt) −
3

2
B0(ŝ, µW, µW) − 5

2

)
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+(µ2
W(2ŝ + 3µ2

W) − m2
t (m

2
t + ŝ))

× (2C0(0, 0, ŝ,mt, µW,mt)+3C0(0, 0, ŝ, µW,mt, µW))

]

}

, (B.8)

δF−
bbZ,weak(ŝ) = +

α

8π

{

− 1

(2s2
W
− 3)ŝs2

W

[

2(2ŝ + µ2
W)(2s2

W
− 3)

×(B0(0, 0, µW) − B0(0,mt, µW))

+ (3ŝ + 2µ2
W)(4s2

W
− 3)(B0(ŝ, 0, 0) − B0(ŝ,mt,mt))

− 12c2
W

µ2
W(2ŝ + µ2

W)

×(C0(0, 0, ŝ, µW, 0, µW) − C0(0, 0, ŝ, µW,mt, µW))

+ 2(4s2
W
− 3)(ŝ + µ2

W)2

×(C0(0, 0, ŝ, 0, µW, 0) − C0(0, 0, ŝ,mt, µW,mt))

]

− m2
t

(2s2
W
− 3)ŝs2

W
µ2

W

[

(m2
t + µ2

W)(4B0(ŝ,mt,mt)s
2
W

−3B0(ŝ, µW, µW)(s2
W
− c2

W
)

+ B0(0,mt, µW)(2s2
W
− 3)) + (2ŝs2

W
− 6µ2

W)B0(ŝ,mt,mt)

+ŝ

(

3

2
− 5s2

W

)

+

(

6µ2
W − 3

2
ŝ(s2

W
− c2

W
)

)

B0(ŝ, µW, µW)

−12ŝµ2
WC0(0, 0, ŝ,mt, µW,mt)

− 3
(

4µ4
W − 2m2

tµ
2
W − m2

t ŝ
)

×(C0(0, 0, ŝ,mt, µW,mt) + C0(0, 0, ŝ, µW,mt, µW))

− 3
(

3µ4
W − m4

t

)

C0(0, 0, ŝ, µW,mt, µW)

+2s2
W

(µ2
W(2ŝ + 3µ2

W) − m2
t (m

2
t + ŝ))

× (2C0(0, 0, ŝ,mt, µW,mt) + 3C0(0, 0, ŝ, µW,mt, µW))

]

}

. (B.9)

As mentioned in section 3.1, the calculation of the box diagrams leads to additional

Dirac chains. However, these can be reduced to the Dirac structure (2.5) appearing in the

LO matrix element,

Aστ = [v̄qγ
µωσuq] [ūlγµωτvl] . (B.10)

We used the identities [51]

[

v̄qγ
αγβγδω±uq

][

ūlγαγβ′

γδω±vl

]

= 4gββ′A±± ,
[

v̄qγ
αγβγδω±uq

][

ūlγαγβ′

γδω∓vl

]

= 4
[

v̄qγ
β′

ω±uq

][

ūlγ
βω∓vl

]

,
[

v̄q /k1 ω±uq

][

ūl /p2
ω±vl

]

= +ûA±±/2 ,
[

v̄q /k1 ω±uq

][

ūl /p2
ω∓vl

]

= −t̂A±∓/2 , (B.11)
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which are valid in four space-time dimensions, to reduce the Dirac structures of the box

diagrams. The electroweak corrections due to box diagrams can be written in terms of

the functions

b±∓
t (MV ,MV ′ ,mQ,mq,ml)=−2

{

C0(m
2
l ,m

2
l , ŝ,MV ,ml,MV ′)+C0(m

2
q,m

2
q , ŝ,MV ,mQ,MV ′)

− (t̂−m2
Q)D0(m

2
q,m

2
q ,m

2
l ,m

2
l , ŝ, t̂,MV ,mQ,MV ′ ,ml)

}

, (B.12)

b±±
t (MV ,MV ′ ,mQ,mq,ml) =

1

û2

{

2û
(

B0(ŝ,MV ,MV ′) − B0(t̂,mQ, 0)
)

− t̂
(

m2
Q−M2

V −M2
V ′− t̂+û

)(

C0(m
2
l ,m

2
q , t̂, 0,MV ,mQ)+C0(m

2
l ,m

2
q , t̂, 0,MV ′ ,mQ)

)

−
(

t̂2 + û2 + ŝ(m2
Q − M2

V − M2
V ′)
)(

C0(m
2
l ,m

2
l , ŝ,MV ,ml,MV ′)

+ C0(m
2
q ,m

2
q , ŝ,MV ,mQ,MV ′)

)

+
(

t̂(M2
V + M2

V ′ − m2
Q − 2ŝ)2

+ (û(2û − m2
Q) − 2ŝ2)(M2

V + M2
V ′ − m2

Q − 2ŝ) − 2û(û2 − M2
V M2

V ′) + ûŝ(ŝ − m2
Q) − ŝ3

)

× D0(m
2
q,m

2
q ,m

2
l ,m

2
l , ŝ, t̂,MV ,mQ,MV ′ ,ml)

}

, (B.13)

b±±
u (MV ,MV ′ ,mQ,mq,ml) = −b±∓

t (MV ,MV ′ ,mQ,mq,ml)
∣

∣

t̂↔û
, (B.14)

b±∓
u (MV ,MV ′ ,mQ,mq,ml) = −b±±

t (MV ,MV ′ ,mQ,mq,ml)
∣

∣

t̂↔û
. (B.15)

Here the subscripts q and l refer to light quarks and leptons. The heavy mass mQ of

the weak isospin partner of down-type quarks is present only in the case of WW box

diagrams for incoming b-quarks. In terms of these functions the electroweak box correction

factors read

fZZ, στ
qq̄ (ŝ, t̂) = α2(gσ

qqZgτ
llZ)2

(

bστ
t (µZ, µZ, 0, 0, 0) + bστ

u (µZ, µZ, 0, 0, 0)
)

(B.16)

for the ZZ box-diagrams, and

fWW, ++
qq̄ (ŝ, t̂) = fWW,±∓

qq̄ (ŝ, t̂) = 0 , (B.17)

fWW,−−
uū (ŝ, t̂) =

α2

4s4
W

b−−
u (µW, µW, 0, 0, 0) , (B.18)

fWW,−−

dd̄
(ŝ, t̂) =

α2

4s4
W

b−−
t (µW, µW, 0, 0, 0) , (B.19)

fWW,−−

bb̄
(ŝ, t̂) =

α2

4s4
W

b−−
t (µW, µW,mt, 0, 0) (B.20)

for the WW box-diagrams. The photonic box corrections are given by

fγγ, στ
qq̄ = α2 Q2

qQ
2
l

(

bστ
t (mγ ,mγ , 0,mq ,ml) + bστ

u (mγ ,mγ , 0,mq,ml)
)

, (B.21)

fZγ, στ
qq̄ = 2α2 QqQl g

σ
qqZgτ

llZ

(

bστ
t (µZ,mγ , 0,mq,ml) + bστ

u (µZ,mγ , 0,mq,ml)
)

. (B.22)

C SPS benchmark scenarios

For the SPS benchmark [119] scenarios discussed in this work we use the low-energy input

specified in table 7. The input variables are the ratio tβ of the vacuum expectation values
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of the Higgs bosons giving rise to up- and down-type fermion masses, the mass of the

CP-odd Higgs boson, MA0 , the supersymmetric Higgs mass parameter µ, the electroweak

gaugino mass parameters M1,2, the gluino mass mg̃, the trilinear couplings Aτ,t,b, the scale

at which the DR-input values are defined, µR(DR), the soft SUSY-breaking parameters

in the diagonal entries of the squark and slepton mass matrices of the first and second

generations Mfi (where i = L,R refers to the left- and right-handed sfermions, f = q, l to

quarks and leptons, and f = u,d, e to up and down quarks and electrons, respectively),

and the analogous soft SUSY-breaking parameters for the third generation M3G
fi .
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SPS 1a SPS 1b SPS 2 SPS 3 SPS 4 SPS 5 SPS 6 SPS 7 SPS 8 SPS 9

tβ 10 30 10 10 50 5 10 15 15 10

MA0[GeV] 393.6 525.5 1443.0 572.4 404.4 693.9 463.0 377.9 514.5 911.7

µ[GeV] 352.4 495.6 124.8 508.6 377.0 639.8 393.9 300.0 398.3 869.9

M1[GeV] 99.1 162.8 120.4 162.8 120.8 121.4 195.9 168.6 140.0 −550.6

M2[GeV] 192.7 310.9 234.1 311.4 233.2 234.6 232.1 326.8 271.8 −175.5

mg̃[GeV] 595.2 916.1 784.4 914.3 721.0 710.3 708.5 926.0 820.5 1275.2

Aτ [GeV] −254.2 −195.8 −187.8 −246.1 −102.3 −1179.3 −213.4 −39.0 −36.7 1162.4

At[GeV] −510.0 −729.3 −563.7 −733.5 −552.2 −905.6 −570.0 −319.4 −296.7 −350.3

Ab[GeV] −772.7 −987.4 −797.2 −1042.2 −729.5 −1671.4 −811.3 −350.5 −330.3 216.4

µR(DR)[GeV] 454.7 706.9 1077.1 703.8 571.3 449.8 548.3 839.6 987.8 1076.1

MqL[GeV] 539.9 836.2 1533.6 818.3 732.2 643.9 641.3 861.3 1081.6 1219.2

MdR[GeV] 519.5 803.9 1530.3 788.9 713.9 622.9 621.8 828.6 1029.0 1237.6

MuR[GeV] 521.7 807.5 1530.5 792.6 716.0 625.4 629.3 831.3 1033.8 1227.9

MlL[GeV] 196.6 334.0 1455.6 283.3 445.9 252.2 260.7 257.2 353.5 316.2

MeR[GeV] 136.2 248.3 1451.0 173.0 414.2 186.8 232.8 119.7 170.4 300.0

M3G
qL [GeV] 495.9 762.5 1295.3 760.7 640.1 535.2 591.2 836.3 1042.7 1111.6

M3G
dR [GeV] 516.9 780.3 1519.9 785.6 673.4 620.5 619.0 826.9 1025.5 1231.7

M3G
uR [GeV] 424.8 670.7 998.5 661.2 556.8 360.5 517.0 780.1 952.7 1003.2

M3G
lL [GeV] 195.8 323.8 1449.6 282.4 394.7 250.1 259.7 256.8 352.8 307.4

M3G
eR [GeV] 133.6 218.6 1438.9 170.0 289.5 180.9 230.5 117.6 167.2 281.2

Table 7. The low-energy input for the SPS scenarios. See text for details.
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[79] J. Küblbeck, M. Böhm and A. Denner, FeynArts: computer algebraic generation of Feynman

graphs and amplitudes, Comput. Phys. Commun. 60 (1990) 165 [SPIRES].
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