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Abstract

Both acquired and congenital immunodeficiencies may be associated with increased susceptibility to invasive fungal infections (IFIs),

depending on the type of immune deficit. IFIs frequently occur in patients with phagocytic and cellular immune defects, but are rarely

observed in those with humoral or complement deficits. Among congenital immune disorders, chronic granulomatous disease and

hyper-IgE syndrome are most frequently associated with IFIs; variable susceptibility to fungal pathogens is also seen in patients with

severe combined immunodeficiency, X-linked hyper-IgM syndrome, Wiskott–Aldrich syndrome, DiGeorge syndrome, common variable

immunodeficiency, defects in the interferon-c–interleukin-12 axis, and myeloperoxidase deficiency. Aspergillus, Candida, Cryptococcus,

Histoplasma and other fungal genera are variably implicated in causing invasive infections in these patients. Prompt diagnosis of IFIs in

this patient population requires a high degree of suspicion, together with a knowledge of their clinical presentation and the limitations

of diagnostic modalities. Apart from administration of appropriate antifungal agents, successful management often requires the addition

of surgical intervention. Adjunctive immunotherapy may be considered, although this has not been systematically studied. Prophylactic

interferon-c and itraconazole administration have been shown to reduce the risk of IFIs in patients with chronic granulomatous disease;

however, the possibility of infections with azole-resistant organisms following long-term itraconazole prophylaxis should not be over-

looked.
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Introduction

Although fungi are often implicated in superficial infections in

humans, they rarely cause invasive disease in healthy individu-

als; the latter tends to occur in patients with impaired

immune responses or in the presence of certain predisposing

factors. Among immunocompromised patients at risk for

invasive fungal infections (IFIs), those with congenital immuno-

deficiencies constitute a distinct group that has attracted sci-

entific interest over the last decades, in view of important

advances in immunology and mycology.

Congenital immunodeficiencies are hereditary disorders,

mainly single-gene abnormalities, that result in impaired

immune responses to a number of infectious stimuli. As a

consequence, patients may present with recurrent, pro-

tracted or severe infections caused by common pathogens,

or with infections caused by opportunistic organisms,

including fungi [1]. Despite the well-described orchestrated

interplay between innate and adaptive, humoral and cellular,

immunity, congenital immunodeficiencies are still classified

for practical purposes as those affecting mainly the humoral

or cellular component, the phagocytic component, and the

complement. A number of distinct, well-characterized immu-

nodeficiency syndromes have also been described that do

not clearly fall in one of the previous categories [1–3].

An effective host response against fungal pathogens

requires the coordinated contribution of both innate and

adaptive immunity. Neutrophils, mononuclear leukocytes and

dendritic cells are involved in fungal cell recognition and

damage. Both oxidative and non-oxidative mechanisms medi-

ate intracellular killing or extracellular damage of fungal ele-

ments. Oxidative fungal damage is achieved through reactive

oxygen intermediates generated by the enzymatic activity of

NADPH oxidase and nitric oxide synthase [4].

Over the last two decades, the adaptive immune response

against fungi has been thought to be regulated by the differ-

entiation of CD4+ T-cells towards T-helper type 1 (Th1) and
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T-helper type 2 (Th2) cells. The Th1 response is mediated

by the interleukin (IL)-12/interferon (IFN)-c axis, and stimu-

lates phagocytic activity, resulting in protection from fungal

infections. The Th2 response involves the production of IL-4

and IL-10, which downregulate the action of Th1 cytokines

[4,5]. Recently, a third subset of T-helper cells has been

described, the T-helper type 17 (Th17) cells, which produce

a distinct cytokine profile, including IL-17A (IL-17), IL-17F,

IL-21 and IL-22. Th17 responses appear to be important for

protection against mucosal Candida infections [6]. Recent

studies, however, suggest that human host defences against

Aspergillus fumigatus rely more on Th1 than on Th17

responses [7]. The role of humoral responses in host

defence against fungal pathogens is less clearly defined than

that of cellular immunity.

Consistent with the immune mechanisms involved in

human host defences against fungi, IFIs rarely occur in

patients with humoral or complement defects. Instead, they

can be observed with increased frequency in those with

phagocytic and cellular immune deficits (Table 1) [8]. In the

present review, we will discuss IFIs in patients with congeni-

tal immune deficits, beginning with chronic granulomatous

disease (CGD), which carries a higher risk of fungal infec-

tions than other immunodeficiencies.

CGD

This inherited disorder occurs with a prevalence of approx-

imately 1/250 000 live births, and is characterized by the

lack or significant reduction of superoxide-generating

NADPH oxidase activity in phagocytic cells. In the absence

of superoxide anion and other reactive oxygen species, the

patient’s neutrophils are unable to kill catalase-producing

bacteria and fungi, including Staphylococcus aureus and A. fu-

migatus. They are also deficient in forming neutrophil extra-

cellular traps, a distinct mechanism by which neutrophils

entrap and kill microorganisms [9]. This ineffective phagocy-

tic response in patients with CGD is associated with

chronic inflammation and formation of granulomas [10,11].

The lack of reactive oxygen derivatives was recently shown

to contribute to the hyperinflammatory phenotype through

a dysfunctional kynurenine pathway of tryptophan catabo-

lism [12]. Two-thirds of CGD patients have the X-linked

recessive form, which results from defects in the CYBB gene

encoding the gp91-phox subunit of the NADPH oxidase

complex. The remaining one-third have the autosomal

recessive form, which results from defects in the CYBA,

NCF-1 and NCF-2 genes, encoding subunits p22-phox, p47-

phox and p67-phox, respectively. Patients with autosomal

recessive CGD have a milder course than those with the

X-linked form [11]. Most IFIs among CGD patients are

caused by Aspergillus species and, to a lesser extent, by Can-

dida species and other fungal species [8].

Invasive aspergillosis (IA) in CGD patients

Data regarding the prevalence, clinical presentation and man-

agement of IA among individuals suffering from CGD origi-

nate from small series, case reports and two large patient

groups; the first comprises 368 patients from the US CGD

registry, and the second 429 European patients [13,14].

When data from these two large cohorts are analysed, it

appears that Aspergillus species are the most commonly iso-

lated organisms from CGD patients with pneumonia (18–

41% of cases), the most common organisms isolated from

brain abscesses (38% of cases), and the first or second most

common causes of osteomyelitis (22–35% of cases). Aspergil-

lus species are rarely implicated in cases of liver abscess,

lymphadenitis, arthritis and fungaemia among CGD patients.

In these and other series, IA was the most common cause of

death, accounting for at least one-third of fatalities [13–15].

Among the Aspergillus species causing invasive infection in

CGD patients, A. fumigatus is the most common, followed by

Aspergillus nidulans (teleomorph: Emericella nidulans). In a

cohort of 23 cases of IA in CGD patients, 17 were caused

by A. fumigatus and six by A. nidulans [16]. The relatively

increased frequency of A. nidulans infections in this patient

population contrasts with the fact that A. nidulans is an

uncommon pathogen in individuals with other types of

immunosuppression. Recently, infections caused by other

Emericella species, including Emericella quadrilineata, Emericella

rugulosa and E. nidulans var. echinulata, have been docu-

TABLE 1. Congenital immune defects and risk of invasive

fungal infection (IFI)

IFI unlikely Variable risk for IFI

Humoral Phagocytic
X-linked/autosomal
recessive
agammaglobulinaemia

Chronic granulomatous disease,
Myeloperoxidase deficiency

IgA deficiencya
Leukocyte adhesion deficiency,
Congenital neutropenias

Complement Cellular and combined
Classic, late or
alternative complement
defects

Severe combined immunodeficiency,
DiGeorge syndrome

Mannose-binding
lectin pathway
defects

X-linked hyper-IgM syndrome,
Wiskott–Aldrich syndrome

Other
Hyper-IgE syndrome, defects in
the IFN-c–IL-12 axis

IL, interleukin; IFN, interferon.
aIFIs have been observed in patients with common variable immunodeficiency,
possibly because of associated T-cell defects.
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mented in a small number of CGD patients. In most of these

cases, Emericella species had been previously identified incor-

rectly as A. nidulans by conventional methods [17]. Indeed,

there are subtle morphological differences among Emericella

species, which cannot be appreciated using light microscopy;

molecular techniques are required for correct identification.

Finally, IA caused by Aspergillus flavus has been recently

reported in a CGD patient [18].

IA may be the presenting manifestation of CGD, usually

occurring during the first two decades of life of affected indi-

viduals. The site most commonly affected is the lung. Up to

one-third of patients may be asymptomatic, and IA can pres-

ent as a pulmonary infiltrate in routine chest radiographs. If

signs and symptoms of respiratory illness exist, these are not

specific. The differential diagnosis in this case should include

other causes of pulmonary infection commonly observed in

CGD patients, including S. aureus, Nocardia species, Burk-

holderia cepacia and non-Aspergillus fungal pathogens; mixed

infections may occur [13]. IA caused by A. fumigatus may also

primarily affect other sites, including the bones, brain, liver

and lymph nodes [18,19]. In contrast, primary extrapulmo-

nary sites are rarely observed for A. nidulans; infections

caused by this species usually originate from the lungs, and

appear to be more aggressive than those caused by A. fumig-

atus. Dissemination or local extension to the adjacent pleura,

chest wall and vertebrae frequently complicates A. nidulans

pulmonary infections [16,19]. Indeed, most of the osteomy-

elitis cases caused by A. nidulans in CGD patients involve the

ribs and vertebrae, as a result of contiguous spread of a pri-

mary lung lesion. This is not the case for A. fumigatus osteo-

myelitis, where at least half of the cases represent primary

infections of the cranium, humerus, femur and tibia [20].

The histological picture of IA lesions in CGD patients con-

trasts with that in neutropenic hosts, which is characterized

by angio-invasion, coagulative necrosis and paucity of neu-

trophils. By comparison, in CGD patients, discrete pyogra-

nulomatous lesions are observed, with an abundance of

neutrophils but intact hyphae, which are surrounded by his-

tiocytes and lymphocytes. Occasionally, giant cell formation

and foci of necrosis with microabscesses are found [19,21].

As for all opportunistic infections in immunocompromised

hosts, a high degree of clinical suspicion is important for

timely diagnosis of IA in CGD patients. High-resolution com-

puted tomography is the imaging study of choice in cases of

pulmonary infection. The so-called ‘classic’ radiological signs

of IA (halo and air-crescent sign) are not usually observed;

the findings are non-specific, including nodular lesions, perihi-

lar infiltrates, and segmental or lobar consolidation. Magnetic

resonance imaging has a role in the diagnosis of extrapulmonary

lesions, including brain abscesses [22]. Among non-invasive

diagnostic modalities, the serum galactomannan antigen assay

appears to have reduced sensitivity in CGD hosts, possibly

because of the lack of angio-invasion by fungal hyphae

[21,23]. In addition, false-positive results have been frequently

observed in young infants, and variable results have been

reported regarding the specificity of the galactomannan assay

in older children [24–27]. Aspergillus PCR and detection of

(1,3)-b-D-glucan have not yet been standardized or adequately

studied in CGD patients. Detection of fungal elements in

bronchoalveolar lavage fluid and biopsy specimens may

provide significant help in diagnosis [18,19].

The introduction of newer antifungal agents, including lipid

formulations of amphotericin B, the newer triazoles and ech-

inocandins, has broadened the therapeutic options for inva-

sive aspergillosis. Species identification and in vitro

susceptibility testing may help to optimize treatment choices.

For example, A. nidulans appears to be less susceptible than

E. quadrilineata to amphotericin B and more susceptible to

caspofungin [17]. Azole resistance may be observed after

long-term azole prophylaxis in CGD patients (see below)

[28,29].

Besides antifungal agents, adjunctive therapy with inter-

feron (IFN)-c has been used in a number of cases [30,31].

Limited clinical data also suggest a role for granulocyte trans-

fusions from healthy donors in order to partially restore the

patients’ impaired phagocytic activity [32–34]. Finally, appro-

priate surgical debridement should not be delayed when

needed, particularly in cases of localized (liver abscess and

osteomyelitis) or aggressive lung infection [16].

The increased risk of infectious complications in CGD

patients has led to the introduction of prophylactic strategies

over the last two decades. Prophylactic subcutaneous admin-

istration of IFN-c, three times a week, was associated with a

reduction in the frequency of serious infections [35,36]. Daily

administration of itraconazole was well tolerated, and signifi-

cantly reduced the frequency of severe IFIs among CGD

patients [37]. However, the possibility of breakthrough infec-

tions with azole-resistant Aspergillus strains following long-

term itraconazole prophylaxis should not be overlooked

[28,29]. Haematopoietic stem cell transplantation is currently

the only proven curative treatment for CGD in selected

patients; gene replacement therapy has been used experi-

mentally in patients lacking a suitable stem cell donor

[9,38,39].

Invasive candidiasis (IC) in CGD patients

IC is far less common than IA in this patient population. In

the US registry of 368 CGD patients, Candida species were

isolated from 20% of meningitis cases (most common cause),

11% of bacteraemia/fungaemia cases, and 7% of suppurative
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adenitis cases. However, they were rarely (2%) isolated from

patients with pneumonia or liver abscesses. IC was the cause

of death in 4% of patients [13]. In the European cohort of

429 patients, Candida species were recovered from 3% of

patients with septicaemia, 2% of those with pneumonia, <1%

of liver abscesses, and 0.5% of lymphadenitis cases [14].

IFIs caused by other species in CGD patients

Among other fungi causing infection in these patients, Paecil-

omyces species have been most frequently reported, being

the third most common cause of osteomyelitis in the US

registry (8% of cases) [13]. Paecilomyces variotii is the Paecil-

omyces species commonly implicated, whereas Paecilomyces li-

lacinus has been rarely isolated. Besides osteomyelitis,

Paecilomyces have been implicated in cases of pneumonia, soft

tissue infection and abscess formation [40–43].

A number of other species also have been reported to

cause IFIs in CGD patients, including members of the genera

Scedosporium, Trichosporon, Acremonium, Exophiala, Penicillium,

Rhizopus, Absidia, Fusarium, Microascus, Inonotus, Chrysosporium,

Cladophialophora, Neosartorya and Alternaria. In the majority of

these cases, IFIs have manifested as pneumonia, soft tissue

infection or bone infection [8,13,44–55].

Other Phagocytic Disorders

Myeloperoxidase deficiency

Myeloperoxidase deficiency has a prevalence of one in 2000–

4000 in Europe and the USA. Myeloperoxidase is produced

in neutrophils and monocytes and released into the phago-

somes, playing an adjunctive role in phagocytosis; its absence

is associated with impaired killing of Candida species in vitro

and in animal models. The vast majority of myeloperoxidase-

deficient individuals are, however, asymptomatic [3,56,57].

The susceptibility to invasive Candida infections appears to

be increased in the presence of other predisposing condi-

tions, such as diabetes. Overall, IFIs occur in fewer than 5%

of myeloperoxidase-deficient individuals. IC in these patients

may present as candidaemia, disseminated infection, pneumo-

nia, osteomyelitis, meningitis or liver abscess. Antifungal pro-

phylaxis is not indicated [3,8,57–60].

Leukocyte adhesion deficiency (LAD)

LAD comprises a group of rare inherited disorders of leuko-

cyte rolling, adhesion and cytoskeletal regulation [1].

Although older reviews concerning LAD patients suggested

increased susceptibility to infections caused by Candida and

Aspergillus species, there have been very few case reports of

IFIs in these patients in recent years [3,8].

Congenital neutropenias

Patients with cyclic neutropenia are at low risk of IFIs, owing

to the short duration of the neutropenia phase and the bone

marrow’s residual capacity to produce neutrophils when

stimulated. Similarly, reports of IFIs among patients with

other forms of congenital neutropenia (Kostmann syndrome,

and neutropenias associated with metabolic or immunological

disorders) are scarce in the literature [3,61,62].

Cellular and Combined Immunodeficiencies

Severe combined immunodeficiency (SCID)

An expanding group of distinct congenital immune defects,

affecting both T-cell and B-cell function, is represented under

the term SCID [1,2]. Increased susceptibility to fungal infec-

tions is observed among these patients. Candida and Aspergil-

lus are the genera most commonly implicated in previous

reports. IC may manifest as meningitis or pneumonia [63,64];

aspergillosis may present as lung infection [65,66]. Isolated

cases involving other fungi, namely Acremonium and Pichia

species, have also been published [67,68].

DiGeorge syndrome

Patients with DiGeorge syndrome have variably decreased

T-cell numbers and, in the case of significant thymic hypopla-

sia or aplasia, they present with a SCID-like picture [1].

There are few reports of IA in these patients; it may mani-

fest as lung or disseminated infection [69,70].

X-linked hyper-IgM syndrome

Patients with X-linked hyper-IgM syndrome have a combined

cellular and humoral defect, and should be distinguished from

those with the autosomal hyper-IgM syndrome, where cellu-

lar immunity is not affected [71]. Increased susceptibility to

fungal infections has been observed in these patients, with

Candida, Cryptococcus and Histoplasma being the genera most

commonly implicated. IC may present as a bloodstream

infection, and cryptococcosis as central nervous system, lym-

phonodular, bloodstream or disseminated disease [71–73].

Histoplasmosis may manifest as pneumonia, hepatitis or dis-

seminated disease, involving the lungs, bone marrow and

bloodstream [71,74].

Wiskott–Aldrich syndrome

The clinical course and infectious complications in patients

with Wiskott–Aldrich syndrome are more severe in those

with undetectable or truncated Wiskott–Aldrich syndrome

protein (WASP) than in those with normal or reduced

amounts of full-length mutated WASP. IFIs appear to affect
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exclusively WASP-negative patients; in a series of 23 WASP-

negative individuals, nine episodes of IC and three of asper-

gillosis were observed [1,75].

Humoral Immunodeficiencies

Common variable immunodeficiency (CVID)

Patients suffering from humoral immunodeficiencies (such as

X-linked or autosomal recessive agammaglobulinaemia and IgA

deficiency) do not generally exhibit increased susceptibility to

fungal infections. CVID, however, comprises a heterogeneous

group of disorders, which often include abnormalities in T-cell

phenotype and function, secretion of cytokines, or T-cell

receptor signalling events [1,64,76]. A number of case reports

of IFIs in CVID patients have been published, including histo-

plasmosis (meningitis and disseminated infection), aspergillosis

(lung infection and liver abscess) and disseminated infection

caused by Penicillium marneffei [77–82].

Other Congenital Immunodeficiencies

Hyper-IgE syndrome (HIES)

HIES is characterized by elevated IgE and eosinophilia, eczema,

and recurrent skin and pulmonary infections. The autosomal

dominant (AD) form of HIES is further characterized by con-

nective tissue and skeletal abnormalities (coarse facial features

and retention of primary teeth) as well as disordered inflam-

mation [83,84]. Recently, AD HIES was shown to result from

mutations in the signal transducer and activator of transcrip-

tion (STAT) 3 gene [85]. HIES patients display a distorted Th1/

Th2 cytokine production pattern favouring Th2 responses,

which is manifested by decreased production of IFN-c in

response to infectious stimuli (S. aureus and Candida albicans)

[86–88]. In addition, a profound reduction in the number of

Th17 cells has been recently described, and proposed to be

one of the diagnostic features for HIES [89,90].

Increased susceptibility to IFIs has been reported for HIES

patients, including yeast infections caused mainly by Candida

species (bloodstream infection, disseminated disease, visceral

candidiasis, endocarditis, and endophthalmitis) [91–94], Cryp-

tococcus neoformans (meningitis and gastrointestinal disease)

[95,96] and Histoplasma capsulatum (ileocecal histoplasmosis)

[97]. Aspergillus species may also affect HIES patients, usually

by colonizing pre-existing pneumatocoeles and forming

aspergillomas. Occasionally, however, local invasion of the

lung parenchyma may occur, and this can rarely be followed

by dissemination to the central nervous system and forma-

tion of mycotic aneurysms [98–101]. In a series of 64 AD

HIES patients, 28.1% developed mould infections caused by

Aspergillus (n = 16) or Scedosporium (n = 2) species. The

attributed mortality was 17%. Fungicidal activity and chemo-

taxis were not different between neutrophils from AD HIES

patients and those from healthy controls. IFIs in HIES

patients commonly occurred in their fourth decade of life.

This late-onset risk of IFI despite normal phagocytic function

was associated with bronchiectasis/pneumatocoeles, and was

probably related to the role of STAT3 in lung epithelial

homeostasis and defence [102].

Defects in the IFN-c–IL-12 axis

A number of distinct defects in components of IL-12, the IL-

12 receptor, IFN-c receptor or STAT1 have been described

[1,3]. Affected patients have been reported to develop dis-

seminated infections caused by endemic fungi (H. capsulatum

and Paracoccidioides brasiliensis) [103,104].

Conclusions

Patients with congenital phagocytic, cellular or combined

immune defects exhibit increased susceptibility to IFIs. CGD

and AD HIES are associated with the highest incidence of

IFIs among congenital immunodeficiencies. Knowledge of the

spectrum of implicated fungal pathogens and clinical presen-

tation of IFIs in these patients, together with a high degree

of suspicion, are essential for timely diagnosis. Uncommon

species isolated from these individuals should not readily be

discarded as contaminants. The limitations of newer diagnos-

tic modalities (e.g. galactomannan antigen detection in CGD

patients) should be taken into account. Administration of

antifungal agents alone may not suffice for successful manage-

ment of IFIs in patients with congenital immunodeficiencies.

Surgical intervention is often necessary; adjunctive immuno-

therapy may be considered, although this has not been sys-

tematically studied. Prophylaxis with IFN-c and itraconazole

is recommended for CGD patients.
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