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a b s t r a c t

Searching for medical images and patient reports is a significant challenge in a clinical setting. The con-
tents of such documents are often not described in sufficient detail thus making it difficult to utilize the
inherent wealth of information contained within them. Semantic image annotation addresses this prob-
lem by describing the contents of images and reports using medical ontologies. Medical images and
patient reports are then linked to each other through common annotations. Subsequently, search algo-
rithms can more effectively find related sets of documents on the basis of these semantic descriptions.
A prerequisite to realizing such a semantic search engine is that the data contained within should have
been previously annotated with concepts from medical ontologies. One major challenge in this regard is
the size and complexity of medical ontologies as annotation sources. Manual annotation is particularly
time consuming labor intensive in a clinical environment. In this article we propose an approach to
reducing the size of clinical ontologies for more efficient manual image and text annotation. More pre-
cisely, our goal is to identify smaller fragments of a large anatomy ontology that are relevant for anno-
tating medical images from patients suffering from lymphoma. Our work is in the area of ontology
modularization, which is a recent and active field of research. We describe our approach, methods and
data set in detail and we discuss our results.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

We conceive of a semantic medical search engine which enables
radiologists to find medical images, patient reports and scientific
publications more efficiently. For details please refer to [8,9]. How-
ever, a prerequisite to realizing such a semantic search engine is
the annotation of medical image and patient report data.

Semantic annotations consisting of concepts and relations from
domain ontologies1, encode information contained in images and
texts at a fine level of granularity, thus allowing for specific and de-
tailed searches. This makes it possible to find similar patients based
on the similarity of their semantic annotations as well as images and
reports which summarize the disease history of one particular pa-
tient. The work reported in this paper is conducted towards realizing
this vision.

Medical ontologies, particularly those relating to human anat-
omy and radiology, are important sources for semantic annotation.
Moreover, use of medical ontologies requires a systematic approach.
ll rights reserved.
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Our experiences toward this end have shown us that certain issues
arise that need to be addressed before the ontologies can be effec-
tively used in realizing applications such as a semantic medical
search engine. For example, many medical ontologies are too large
and complex to be utilized efficiently, so that it becomes necessary
to identify smaller ontology fragments.

This issue can be addressed by techniques that fall under the
research area of ontology modularization. In earlier work we
developed and reported on a medical knowledge engineering
methodology which structures and coordinates separate but re-
lated activities involving medical ontologies that address these
and other related issues (see [1,3,29]).

In this article, we present the techniques that we developed in
identifying smaller fragments of large medical ontologies in order
to address the size and complexity problems that are typical of
medical ontologies.2

Ontology modularization can be seen as a specialized branch of
knowledge engineering that is concerned with the development
and maintenance of knowledge-based systems [31]. These systems
typically include an ontology that contains specific domain knowl-
edge. Ontology modularization as a research field is increasing in
2 We concentrated on statistical and structural techniques and worked only with
hierarchical (taxonomical) is-a relationship.
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popularity. This is particularly evident in the life sciences due to
the extensive use of large and complex ontologies in this domain.
In keeping with this trend, the research we present in the current
study explores corpus based methods of ontology modularization.

In the present article we explain the need for ontology modular-
ization with the help of a use case. We then present our approach
to ontology modularization and discuss our own findings.The rest
of this article is structured as follows: The next section explains
the need for ontology modularization and presents a use case. Sec-
tion 3 on Corpus based ontology modularization describes our ap-
proach with examples and reports on the results and evaluation.
This is followed by Section 4 on Related work. The article concludes
in Section 5 with Conclusions and outlook.

2. Need for ontology modularization

Clinical and life science ontologies are typically difficult to nav-
igate or process efficiently due to their size and complexity. Fur-
thermore, much of the knowledge they contain may only be
relevant in a particular application context. In most cases, there
is a specific set of ontology concepts and relations that sufficiently
provide the required information needed for a given application.
When describing a liver carcinoma, for example, generally only
those concepts and relations from a disease ontology relating to li-
ver diseases will be relevant.

This situation has consequences for the development of new soft-
ware as well as for the human experts who manually annotate and
navigate large medical and life science ontologies. In particular on
three specific scenarios: (a) manual annotation of medical images
by human experts, (b) exploration and navigation of large (medical
and life science) ontologies by humans, and (c) computation of these
ontologies by algorithms for different purposes such as reasoning
(for examples of this approach please see [10,11,24–26]). The first
two scenarios primarily have the common goal to support humans,
whereas the second scenario concerns software applications.

In this work we concentrate on the first two scenarios as the
third scenario imposes different requirements on the modules. If
the modules are designed, for example, to support reasoning then
it becomes important to account for various aspects; (a) the for-
malism that is used for the original ontology and that will be used
for the modules, (b) logical completeness, and (c) logical consis-
tency. In the current study we concentrate on supporting human
experts that are expected to annotate large volumes of medical
images and patient text.3

2.1. Modularization use case

For our use case, we consider a human expert who is responsi-
ble for annotating large volumes of medical images manually with
the help of an annotation tool and an annotation ontology. The
data will usually be annotated for a specific purpose, for example,
the annotation of images that show symptoms of lymphoma. This
is what we refer to as the annotation context. Using the annotation
tool a radiologist retrieves images and reports and enters his obser-
vations, such as names of organs and abnormal structures, inside
the images using the concepts from the annotation ontology.

Fig. 1 below displays the interface of a typical medical image
annotation tool. Using the tool, medical image contents on the left
hand side will be annotated with organ names and anatomy ontol-
ogy concepts that are suggested on the right hand side. The anno-
tator’s job is to go through this long list of concepts and pick the
3 Manual annotation of large volumes of images is not only common in the medical
domain. This scenario is also valid in large industrial settings such as automotive or
construction industry where large volumes of product texts and images need to be
annotated for subsequent information management.
ones that relate to the contents of the images being displayed. In
this particular case, the images will be annotated for lymphoma.
Hence, all concepts that partially match ‘Lymph’ (e.g. ‘Lymph node’,
‘Set of lymph nodes’, etc.) are suggested to the radiologist. The list
of suggested concepts is comprehensive due to the size of the
ontology and due to the naive concept matching strategy-in this
case, any concepts relating to ‘Lymph’. It is important to note that
only concepts which match ‘Lymph’ in an anatomical sense are dis-
played. This explains why the concept ‘Lymphoma’, which relates
to a disease, is not present in the anatomy ontology in this partic-
ular instance.

Ontology modularization supports the radiologist during man-
ual annotation by presenting him with a subset of the anatomy
ontology that is relevant for lymphoma. He selects the context,
i.e. lymphoma, prior to the annotation process and the modulariza-
tion algorithm returns the pre-computed lymphoma relevant frag-
ments of the ontology.
3. Corpus based ontology modularization

The approach we propose here represents the context by a cor-
pus of text documents that report on a specific disease or imaging
modality (e.g. X-ray). In our example the context is a text corpus
consisting of documents about various types of lymphomas or
imaging modalities. Additionally, corpus based ontology modular-
ization requires the ontology fragments to have been identified
previously based on the domain corpora. For each new context,
e.g., breast cancer, a new representative corpus must be created.
The modules are then created by applying various linguistic and
statistical techniques to the corpus. Once the modules are created,
they are stored in a repository and displayed to the radiologist via
the user interface.

The principle behind corpus based modularization is to incorpo-
rate empirical information to the theoretical view provided by an
ontology. In other words, we understand a domain ontology as a the-
oretical view or as a certain perspective about a domain such as radi-
ology. Consequently, our goal is to study how much the theory is
represented by real data, where the data are the corpora. As a result,
our objective is to assign every concept (theoretic) a statistical value
(empiric) to display its representativeness in the domain relevant
data. We have explained this approach also in earlier work [4].

Corpus based modularization has two main components. The
first component is concerned with the identification of the most
context relevant concepts that compose the ontology module. To-
ward this end, we discuss two statistical approaches that we use
in determining the most relevant concepts. The second component
is concerned with the identification of actual modules from the
ontology structure.

The optimal module is the smallest one that sufficiently delivers
the relevant information required to accomplish a task. For exam-
ple, if our task is the annotation of lymphoma images and related
patient data, then the optimal module would be the smallest por-
tion of the anatomy ontology that includes all the concepts related
to lymphoma.

The core assumption common of our approach is that the appli-
cation relevant ontology modules can be identified by corpus anal-
ysis. Therefore, in order to determine their context relevance, we
compute corpus statistics for ontology concepts. The first approach
is based on a v2 analysis, whereas the second approach is more
complex and uses Eigenvectors to overcome the shortcomings of
the first approach.

Modules essentially consist of concepts that are statistically the
most context relevant as well as other concepts that are hierarchi-
cally related to them. In other words, if ‘Left lung’ is statistically
relevant then ‘Lung’ is also as relevant as its parent concept and



Fig. 1. Medico image annotation tool.

Fig. 2. Modularization architecture. The radiologist sets the annotation context, e.g. lymphoma, which retrieves the corresponding pre-computed lymphoma module from
the module library and presents it to the radiology as the relevant annotation subvocabulary.
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will therefore be included in the module. Likewise, if ‘Lymph node’
is relevant then ‘Peripancreatic lymph node’ is also potentially rel-
evant as it is its direct child.

Thus, the resulting set of concepts and hierarchical relations
that comprise the subset of the original ontology are presented
to the radiologist as the context relevant module. In this way the
radiologist has a significantly smaller number of concepts to
choose from for annotation purposes. Fig. 2 displays the architec-
ture of our corpus based modularization approach. Context mod-
ules are computed a priori based on statistical methods applied
to domain corpora. When radiologist selects the context for
example lymphoma, the related module is retrieved from the
module library and is displayed to the annotator.

3.1. Semantic sources and corpora

As our modularization approach is based on corpus analysis, we
constructed a domain corpus for our experiments. Additionally, we
used a publicly available, domain-independent corpus that reflects
general English language use. We applied two statistical analysis
techniques to these corpora to determine the most relevant con-
cepts for annotation.



Table 1
FMA concept frequencies (number of occurrences) in the PubMed
Lymphoma vs. BNC corpus.

FMA concept BNC PubMed lymphoma

cage 1100 5
zone 3223 1591
basis 14420 663
differentiation 912 1148
border 5028 30

Table 2
Ten most lymphoma relevant FMA concepts in the PubMed
Lymphoma corpus according to their v2 scores.

FMA concept Score

1. Normal cell 240175,31
2. Cell morphology 197495,31
3. Stem cell 193389,88
4. Plasma cell 190968,82
5. Cell membrane 189984,02
6. Cell surface 189981,54
7. Lymphoid tissue 152765,58
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3.1.1. PubMed lymphoma corpus (BNC)
This corpus is based on medical publication abstracts on lym-

phoma research from the PubMed4 scientific abstracts database.
Its purpose is to provide domain-specific information about
lymphoma. We concentrated on the five most commonly reported
lymphoma types: ‘Non-Hodgkin’s Lymphoma’, ‘Burkitt’s Lymphoma’,
‘T-Cell Non-Hodgkin’s Lymphoma’, ‘Hodgkin’s Lymphoma’ and
‘Diffuse Large B-Cell Lymphoma’. For each lymphoma type we com-
piled a set of XML documents generated from the PubMed abstracts.
Thus, the resulting corpus consists of 12.865 XML files in total.

3.1.2. The British national corpus
This is a 100 million word collection of samples of written and

spoken British English.5 The latest edition is the BNC XML Edition
released in 2007. We used the written part of the BNC that includes
samples from regional and national newspapers, academic books,
specialist periodicals and journals for all ages and interests.

3.1.3. Foundational model of anatomy (FMA)
This is the most comprehensive machine processable resource

on human anatomy. The FMA is developed by the University of
Washington and the US National Library of Medicine. It covers
71,202 distinct anatomical concepts and more than 1.5 million
relations instances from 170 relation types [5].

3.2. Identifying relevant concepts based on v2 statistics

We applied a v2 test to our corpora to identify the domain spe-
cific, i.e., lymphoma related, relevance of FMA concepts, relative to
distributions in the lymphoma corpus. The motivation behind our
use of a v2 analysis is to determine the statistical significance of
each FMA concept based on its frequency in a domain corpus (Pub-
Med Lymphoma) relative to that in a general corpus (BNC). This is
in line with the approach taken by Kastrin and Hristovski [32]. The
underlying assumption is that domain relevant concepts occur
more often in a domain corpus than in a general corpus.

Assumption 1. Domain relevant concepts occur more often in a
domain corpus than in a general corpus.

The most statistically relevant concepts are identified on the ba-
sis of v2 scores computed for nouns and adjectives as these lexical
items are the most information bearing. More precisely, the v2

scores for nouns and adjectives were computed by comparing their
frequencies in the domain specific corpus with those in the general
corpus. Formulas (1) and (2) show the computation of the v2

scores,

v2 ¼ ðOG � EGÞ2

EG
þ ðOC � ECÞ2

EC
ð1Þ

where EG and EC are expected frequencies and OG and OC are ob-
served frequencies, respectively. The expected frequencies are cal-
culated as follows:

EG ¼
NGðOG þ OCÞ2

NG þ NC
EC ¼

NCðOG þ OCÞ2

NG þ NC
ð2Þ

where NG and NC are the total frequency of FMA concepts in a generic
(i.e. BNC) and context (PubMed lymphoma) corpus, respectively.

Ontology concepts that consist of single words and that occur in
the corpus correspond directly to the noun or adjective of which
the concept is built. For example, the noun ‘ventricle’ from the cor-
pus corresponds to the FMA concept ‘Ventricle’. So, the statistical
relevance of the ontology concept is the v2 score of the corre-
4 http://www.ncbi.nlm.nih.gov/pubmed/
5 http://www.natcorp.ox.ac.uk/.
sponding noun/adjective. For multi-word ontology concepts, the
statistical relevance is computed on the basis of the v2 score for
each constituting noun and/or adjective in the concept name,
summed and normalized over its length. Thus the relevance value
for ‘Left ventricle’, for example, is the sum of the respective v2

scores for ‘Left’ and ‘ventricle’ divided by 2.
Table 1 displays a selection of FMA concepts with their frequen-

cies in the Lymphoma vs. BNC corpus. Table 2 lists the most lym-
phoma relevant FMA concepts identified as a result of this
process. In Table 1 we can see that the concept ‘differentiation’ oc-
curs more often in the Lymphoma corpus than in the BNC corpus.

3.2.1. Results and discussion
One drawback we have observed with v2 ranking is that the

identified concepts tend to be generic high level concepts. This
eventually leads to rather large and less focused ontology modules.
One possible way to avoid too large and too generic ontology mod-
ules may be by allowing only a certain number of concepts that
were identified as statistically relevant and then by locating only
these in the hierarchy. However, this approach may be too simplis-
tic because it does not select the concepts based on their informa-
tion content. So, it would be possible to exclude concepts that
would have been relevant.

We investigated another statistical approach that allows for a
more focused and strategic selection of ontology concepts. The
more specific concepts are again located in the ontology hierarchy.
In the next section we report on our experiments with a statistical
approach based on Eigenvector values to select more domain fo-
cused ontology concepts that will be used to identify the potential
modules.

3.3. Relevant concepts based on HITS algorithm

Our goal is to reduce the module size by using a more strictly
selected and therefore more domain-specific set of ontology con-
cepts. We expect that modules resulting from this set of concepts
will be more domain focused. We adopt a statistical approach
based on Eigenvectors along the lines of Seidel [34], which is an
8. Lymph 99856,00
9. Immunoglobulin 53361,00
10. Inguinal lymph node 34943,38

http://www.ncbi.nlm.nih.gov/pubmed/
http://www.natcorp.ox.ac.uk/


Table 3
Ten highest ranking FMA concepts for Burkitt’s
Lymphoma according to adapted HITS.

FMA concept Score

1. Cell 1,000000
2. Line 0,287337
3. Gene 0,181194
4. Surface 0,131989
5. Protein 0,131047
6. Immunoglobulin 0,101872
7. Blood 0,090374
8. Genome 0,087076
9. Membrane 0,085013
10. Bone 0,059269
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adaptation of the Hypertext Induced Topic Search (HITS) algorithm
by Kleinberg [33].

Seidel’s goal was to identify a domain specific vocabulary on the
basis of compound words (e.g., ‘Iliac lymph node’) as these are
good representatives of a given domain. We on the other hand
view an ontology as a domain specific vocabulary. Proceeding on
this assumption, we argue that all ontology concepts are good do-
main representatives as they are specific to topics such as anatomy
or radiology. Subsequently, our goal is to identify the most specific
ontology concepts according to a given context such as lymphoma.

While v2 ranking processed the PubMed lymphoma corpus as a
whole, here we break it down to its sub-corpora. Thus, the PubMed
lymphoma corpus becomes a collection of its five parts containing
text about five different lymphoma types. Consequently, each Pub-
Med file is classified under one sub-corpus. No file is left unclassi-
fied. In this way we achieve a finer level of granularity in terms of
categorization so that the resulting modules become more specific
yielding one module for each lymphoma type.

Each text in each sub-corpus is represented in terms of the
ontology concept labels it contains. Also here, we work with ontol-
ogy concept labels6 that contain up to four words. Multiple occur-
rences of one concept are kept. For example, 1513068.xml in the
Burkitt’s Lymphoma sub-corpus is represented in terms of FMA con-
cept labels:

Cell
Maxillary sinus
Maxillary sinus
Orbit

In other words, 1513068.xml contains theFMA concepts ‘Cell’,
‘Maxillary sinus’ and ‘Orbit’, whereby ‘Maxillary sinus’ occurs
two times. Subsequently, each file in each corpus is represented
in this way. Hence, Burkitt’s Lymphoma sub-corpus for example,
consists of 1258 concepts � 19169 texts including the multiple
occurrences of a concept label.

The adapted version of the HITS algorithm starts with building
an adjacency matrix over PubMed abstracts (documents) from sub-
corpora and ontology concept labels (terms). If a concept c occurs
in document d its entry value acd in the matrix is 1. Otherwise, it
is 0. For example, matrix A below shows the representation of con-
cepts ‘Cell’, ‘Skin’ and ‘Bone marrow’ in texts ‘1.xml’, ‘2.xml’ and
‘3.xml’.
‘Cell’) ‘1:xml’; ‘2:xml’
‘Skin’) ‘2:xml’; ‘3:xml’
‘Bone marrow’) ‘3:xml’
documents

#

terms
!

A :

1 1 0
0 1 1
0 0 1

0
B@

1
CA
Subsequently, each concept label that occurs in a document re-
ceives a weight i.e., awd determined after a number of iterations un-
til the algorithm reaches the optimal point. This weight eventually
represents the domain relevance of its related concept. For a more
detailed explanation of the algorithm please refer to Seidel [34].
Each file in each sub-corpus (e.g. Burkitt’s Lymphoma) is subject
to the algorithm in this way.
6 We use the terms concepts and concept labels interchangeably, while statistical
corpus analysis essentially works with concept labels.
The algorithm results in lists containing new rankings for FMA
concepts. More precisely, there is a list of newly ranked FMA con-
cepts for example for sub-corpus ‘Burkitt’s Lymphoma’. There are
five lymphoma ranked lists for FMA for the five lymphoma types:
‘Burkitt’s Lymphoma’, ‘Hodgkin’s Lymphoma’, ‘Non-Hodgkin’s
Lymphoma’, ‘Diffuse Large B-Cell Lymphoma’, ‘T Cell Non-Hodgkin
Lymphoma’. Each list consists of the concept labels from the
respective ontology with an associated numeric ranking value.
Table 3 displays the list with 10 FMA concepts that are highly
relevant for Burkitt’s Lymphoma.

3.3.1. Results and discussion
Having examined all the lists that were output by the algorithm,

we observed that a specific set of concepts with high scores occurred
in every list. These are the so called stop-concepts, which are not dis-
criminative enough, where the discrimination criterion is the spatial
aspect. For example, such concepts as ‘Cell’, ‘Gene’, ‘Protein’, ‘Tissue’,
‘Artery’, ‘Body’, ‘Blood’ occur almost non-exclusively in every list and
they are everywhere in the body. This makes it difficult to conclude
that marking a region in an image and annotating it as a tissue im-
plies annotating the thorax or abdomen. In contrast, annotating
the heart in the same way would indeed imply marking a location
in the thorax as the heart is located in the thorax. A stop-concept list
for FMA with the lymphoma corpus contains StopConceptsFMA =
{Cell, Gene, Protein, Line, Median, Surface, . . .}, etc.

Further, the resulting ranked lists have been presented to a clin-
ical expert for evaluation and additional selection. We have ex-
plained the methods we used to collect expert feedback in earlier
work [2]. According to the expert’s assessment, all concepts that
have been identified by the algorithm as relevant for lymphoma have
actually been relevant. Additionally, he confirmed that concepts
with higher ranks were more relevant than those with lower ranks.

One problem that the expert reported concerned the selection
of the lymphoma types. These lymphomas were closely related
to each other so that it was difficult for the expert to find discrim-
inative criteria that significantly distinguish one type from the
other. As a consequence, the resulting five ranked lists for five lym-
phoma types contained overlapping ontology concepts. This prob-
lem can however be overcome by including other types of diseases
with more discriminative features. Table 4 displays the list with 10
FMA concepts as highly relevant for Burkitt’s and Hodgkin lympho-
mas after stop-concept elimination and expert assessment.

3.4. Identifying modules

A list of ranked ontology concepts is the first step towards iden-
tifying the modules. However, we are also interested in the infor-
mation that is conveyed by the ontology structure. Hence, we
proceed with identifying the ontology subgraphs(or subtrees) on
the basis of the selected concepts. We start by locating the two
highest ranking concepts from the list in the ontology hierarchy.



Table 4
Ten expert selected FMA concepts for Burkitt’s and Hodgkin lymphomas.

Burkitt’s Lymphoma Score Hodgkin Lymphoma Score

1. Immunoglobulin 0,101872 Lymphocyte 0,107332
2. Chromosome 0,100269 Lymph node 0,057859
3. Genome 0,087076 Solid 0,023740
4. Lymphocyte 0,058284 Spleen 0,014441
5. Serum 0,056749 Cell phenotype 0,014242
6. Bone marrow 0,055911 Lymphoid tissue 0,012644
7. Leukocyte 0,021819 Neck 0,010120
8. B lymphocyte 0,015393 Mediastinum 0,009339
9. Cell phenotype 0,014848 Abdomen 0,005737
10. Lymph node 0,012465 B lymphocyte 0,003783
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When entering the ontology hierarchy, our first assumption is that
the parents and ancestors of these concepts are also domain
relevant.

Assumption 2. Parents and ancestors of the domain relevant
concepts are also domain relevant.

Their next common parent, i.e. the common denominator, is
treated as the module root, while the sum of the shortest paths
from each concept to the common parent is appended to it as its
children. Further, those paths to the root concept are excluded that
are too generic to be sufficiently informative. For example, such
concepts as ‘Anatomical entity’ or ‘Anatomical structure’ are in al-
most every concept’s ancestor hierarchy and they do not have the
sufficient level of granularity.

In this way the following concepts have been excluded from al-
most every concept ancestor hierarchy: ‘Non-physical anatomical
entity’, ‘Physical anatomical entity’, ‘Immaterial anatomical entity’,
‘Material anatomical entity’, ‘Anatomical set’, ‘Anatomical struc-
ture’, ‘Acellular anatomical structure’, ‘Anatomical cluster’. After
the removal, some solitary concepts remain that have no ancestors
such as ‘Genome’ or ‘Serum’, or that have only one like ‘Head’.
These are also eliminated.

For example, as shown in Table 5 below, the three concepts
‘Lymphocyte’, ‘Leukocyte’ and ‘B Lymphocyte’ share the first com-
mon denominator concept ‘Differentiated hemal cell’. This is
marked as the root of the module. We then move upwards in the
Table 5
FMA concepts with their ancestors after too generic concepts have been removed.
Solitary concepts are removed as next.

FMA concept Ancestors

Immunoglobulin Biological macromolecule, Protein
Chromosome Cardinal cell part, Cell component
Genome –
Lymphocyte Cell, Nucleated cell, Somatic cell, Hemal cell,

Differentiated hemal cell, Leukocyte, Nongranular
leukocyte

Serum –
Bone marrow Cardinal organ part, Organ region, Organ zone, Zone of

bone organ
Leukocyte Cell, Nucleated cell, Somatic cell, Hemal cell,

Differentiated hemal cell
B lymphocyte Cell, Nucleated cell, Somatic cell, Hemal cell,

Differentiated hemal cell, Leukocyte, Nongranular
leukocyte, Lymphocyte

Cell phenotype –
Lymph node Cardinal organ part, Organ component
Spleen Organ, Solid organ, Parenchymatous organ,

Corticomedullary organ
Head Cardinal body part
Abdomen Subdivision of cardinal body part, Subdivision of body

proper, Subdivision of trunk, Subdivision of trunk proper
Cervical lymph

node
Cardinal organ part, Organ component, Lymph node
hierarchy until we find the most commonly occurring denomina-
tor. In this case, ‘Nucleated cell’ occurs three times as ancestors
of three different concepts, while the rest of the ancestors occur
only once. Consequently, we reduce the module to those three con-
cepts sharing the ancestors, in this case ‘Lymphocyte’, ‘Leukocyte’
and ‘B Lymphocyte’ together with their ancestors. Solitary concepts
(‘Genome’, ‘Serum’, etc.) as seen in the table are also removed.

Having worked with the ancestors, we proceed with the chil-
dren and descendants. As lower levels of the hierarchy include
more specific concepts, our expectation is to increase the context
specificity of the modules and thus provide more focus.

Assumption 3. Children and descendants of the domain relevant
ontology concepts are also domain relevant.

The list of concepts for which we would like to see the children
and descendants include only the three concepts ‘Lymphocyte’,
‘Leukocyte’ and ‘B Lymphocyte’ as explained earlier. Most of the
time the number of descendants that one concept has is several
times higher than that of the ancestors as they may have numerous
direct children (fan out), each of which may have a long descen-
dant path before arriving at the leaf. Starting with a reduced num-
ber of concepts from the beginning helps to address this problem.
Table 6 shows a portion of the resulting FMA module for Burkitt’s
Lymphoma.

The resulting module for Burkitt’s Lymphoma contains ‘Cell’ as
its root, and is followed by ‘Nucleated cell’, ‘Somatic cell’, ‘Hemal
cell’ as the first, second and third level descendants, respectively.
The module additionally includes all the descendants of ‘Lympho-
cyte’, ‘Leukocyte’ and ‘B Lymphocyte’ and terminates with leaves
such as ‘T helper cell type 1’, ‘T helper cell type 1’. ‘B Lymphocyte’
which has no descendant concepts itself remains as a leaf. In total
there are 37 unique concepts.Five modules for five lymphoma
types have been identified in this way and have been discussed
with the clinical experts. According to their assessment the mod-
ules included all the concepts that were related to the context.
Nevertheless, the level of granularity was coarse, meaning that
the modules required a higher level of specificity.

We will turn back to this problem and discuss it in more detail
in the final section of this article. However, at this point we would
like to mention that the problem arises more because of the textual
characteristics of PubMed articles and is less related to the meth-
ods used.

4. Related work

Various groups from industry and academia have been promot-
ing ontology engineering methodologies [13]. Some of these are
based on experiences from projects [12,14–16,30], whereas others
Table 6
A partial list of FMA concepts with their descendants.

Series FMA
concept

Series descendants

Lymphocyte Null lymphocyte, Medium sized lymphocyte, Thymocyte B
lymphocyte, Small lymphocyte, Large lymphocyte, Plasma
cell T lymphocyte, Delayed type hypersensitivity-related T
lymphocyte, Suppressor T lymphocyte, . . . , T helper cell type
1, T helper cell type 2

Leukocyte Granular leukocyte, Basophil, Eosinophil, Neutrophil,
Nongranular leukocyte, Peripheral blood mononuclear cell,
Monocyte Lymphoblast, T lymphoblast, B lymphoblast,
Lymphocyte, Null lymphocyte, Medium sized lymphocyte,
Thymocyte B lymphocyte, Small lymphocyte, Large
lymphocyte, Plasma cell, Natural killer cell, Lymphokine-
activated natural killer cell, . . .

B Lymphocyte –
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are stand-alone cross-domain engineering approaches [16,17], that
use different formalisms, e.g. [28] and tools [27].

Regarding ontology modularization, current approaches may be
generalized as being semantics-driven and structure-driven. The
former centers on a strategy for identifying modules that fulfill a
specific subset of the application requirements and can meaning-
fully stand on their own (e.g.,[18–20]). The latter concentrates on
the ontology as a graph and uses graph partitioning algorithms
to extract the most tightly interconnected nodes (i.e. concepts)
irrespective of their semantics (e.g., [21]). For a recent and compre-
hensive overview of this field refer to [22]. Other related research
concerns approaches towards discovering relationships across dif-
ferent clinical domain ontologies, which are discussed and evalu-
ated by Johnson and colleagues [6]. These approaches, or others
towards achieving the same goal [7,23] can potentially be applied
to ontology modules. The modularization technique introduced in
this paper aims for semi-automatic identification of ontology mod-
ules on the basis of the analysis of a domain corpus as context. Fur-
ther work relating to medical image annotation and mark-up is
explained by Rubin and colleagues.
5. Conclusions and outlook

As we have mentioned earlier one problem with corpus (con-
text) based modularization is the coarse granularity level of the
resulting modules. We have been able to increase the specificity
of the modules and therefore improve the focus by adapting a more
selective statistical approach to identify relevant concepts. Even
though this helped improve the results over those obtained by
the v2 approach, this problem still remains.

We attribute this problem to the nature of the PubMed scien-
tific abstracts, which mainly report on research issues instead of
practical clinical knowledge such as observations, diagnoses and
pathology as found in actual patient reports. Therefore, the con-
cepts that occur in the PubMed abstracts are significantly different,
or more superficial, from the perspective of medical image
annotation.

Another step towards increasing the specificity, and therefore
the focus of the modules is to use other type of data such as radi-
ology reports or discharge summaries that include more practical,
real-life related information. Toward this end, we obtained a large
data set on clinical patient reports (radiology, discharge summa-
ries, cardiology reports, etc.) from the University of Pittsburgh
(BlueLab)7 and conducted first experiments. Our expectation is to
identify more specific ontology concepts (and their variants) occur-
ring in this kind of text. In parallel, we are working on adapting
the PageRank (i.e., Google) algorithm (which HITS underlies) to re-
strict the statistical concept selection further.

Finally, an important but long term research question concerns
finding an effective strategy to identify the optimal size for each
module. It is essential to be able to determine when to terminate
appending children to the module hierarchy. This is a challenging
task as one must usually find a compromise between optimal size,
logical completeness and consistency.
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