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FREE GROUPS
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Abstract. Let F be a free group of rank N ≥ 2, let µ be a geodesic current on
F and let T be an R-tree with a very small isometric action of F . We prove that
the geometric intersection number 〈T, µ〉 is equal to zero if and only if the support
of µ is contained in the dual algebraic lamination L2(T ) of T . Applying this result,
we obtain a generalization of a theorem of Francaviglia regarding length spectrum
compactness for currents with full support. We use the main result to obtain “unique
ergodicity” type properties for the attracting and repelling fixed points of atoroidal
iwip elements of Out(F ) when acting both on the compactified outer Space and on
the projectivized space of currents. We also show that the sum of the translation
length functions of any two “sufficiently transverse” very small F -trees is bilipschitz
equivalent to the translation length function of an interior point of the outer space.
As another application, we define the notion of a filling element in F and prove that
filling elements are “nearly generic” in F . We also apply our results to the notion of
bounded translation equivalence in free groups.

1 Introduction

The notion of a geometric intersection number between the free homotopy classes
of two essential closed curves on a compact surface plays a fundamental role in the
study of the Teichmüller space and of the mapping class group. This notion nat-
urally extends to the notion of an intersection number between a closed curve and
a measured lamination (Thurston) as well as the notion of an intersection form be-
tween two geodesic currents on a closed hyperbolic surface (Bonahon). The space of
measured laminations naturally embeds into the space of currents. Thus Bonahon’s
intersection form can be used to define the intersection number between a measured
lamination (or equivalently, its dual R-tree) and a geodesic current on a surface.

In the free group case, Culler–Vogtmann’s outer space [CuV], cv(F ), provides
a natural analogue of the Teichmüller space of a surface. The points of cv(F )
can be thought of as minimal free discrete actions of F on R-trees. One also
often considers the projectivized Outer space Pcv(F ) that can be thought of as
a subset CV (F ) ⊆ cv(F ) corresponding to actions where the quotient graph has
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volume 1. Taking projective classes of equivariant Gromov–Hausdorff limits of
elements of cv(F ) leads to a natural Thurston-type compactification CV (F ) =
CV (F ) ∪ ∂CV (F ). The space CV (F ) turns out to consist precisely of all the pro-
jective classes of all minimal very small isometric actions of F on R-trees [BeF3],
[CoL]. Recall that an isometric action of F on an R-tree is very small if nontrivial
stabilizers of non-degenerate arcs are maximal cyclic and if tripod stabilizers are
trivial.

Most automorphisms of F (where N ≥ 3) are not geometric, in the sense that
they are not induced by a self-homeomorphism of compact surface with boundary.
This leads to the breakdown, in the case of a free group, of numerous symmetries
and dualities from the hyperbolic surface situation, and most equivalent notions
from the world of surfaces lead to distinct concepts in the free group setting.

The notion of a geodesic current on F (see Definition 2.4 below), and more
generally, on a word-hyperbolic group, is a measure-theoretic generalization of the
notion of a conjugacy class of a group element or of a free homotopy class of a closed
curve on a surface. Much of the motivation for studying currents comes from the
work of Bonahon about geodesic currents on hyperbolic surfaces [Bo1,2].

The space Curr(F ) of all geodesic currents has a useful linear structure and
admits a canonical Out(F )-action. The space Curr(F ) turns out to be a natural
companion of the outer space and contains additional valuable information about
the geometry and dynamics of free group automorphisms. Examples of such appli-
cations can be found in [Bo3], [CouHL3], [F], [Ka3,4,5], [KaLu1], [KaN], [KKS], [M]
and other sources. Kapovich proved [Ka4] that for F there does not exist a natural
symmetric analogue of Bonahon’s intersection number between two geodesic cur-
rents. However, there exists a natural Out(F )-equivariant continuous intersection
form

〈 , 〉 : cv(F ) × Curr(F ) → R ,

where cv(F ) is the space of all very small minimal isometric actions of F on R-
trees and where Curr(F ) is the space of geodesic currents on F . This intersection
form has several important features in common with Bonahon’s construction. In
particular, if T ∈ cv(F ) and ηg ∈ Curr(F ) is the counting current for g ∈ F − {1}
(see Definition 2.7 below), then

〈T, ηg〉 = ‖g‖T ,

where ‖g‖T is the translation length of g with respect to the tree T , that is ‖g‖T =
minx∈T d(x, gx). The intersection form was introduced in [Ka3,4], [Lu] for free sim-
plicial actions of F , that is for the non-projectivized outer space cv(F ). In a recent
paper [KaLu2] we proved that the intersection form extends continuously to the
closure cv(F ) of cv(F ) consisting of all minimal very small isometric actions of F on
R-trees. Note that the projectivization Pcv(F ) of cv(F ) is exactly the compactifica-
tion CV (F ) of CV (F ). For T ∈ cv(F ) and for µ ∈ Curr(F ) we will also call 〈T, µ〉
and the geometric intersection number of T and µ.

In general, if T ∈ cv(F ) and if µ ∈ Curr(F ) is approximated by rational currents
as µ = limi→∞ λiηgi , where gi ∈ F , λi ≥ 0, the geometric intersection number 〈T, µ〉
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can be computed as
〈T, µ〉 = lim

i→∞
λi‖gi‖T (‡)

Ursula Hamenstädt [H] recently used our result from [KaLu2] about the continuous
extension of the intersection form to cv(F ) as a key ingredient to prove that any
non-elementary subgroup of Out(F ), where N ≥ 3, has infinite-dimensional second
bounded cohomology group (infinite-dimensional space of quasi-morphisms). This
in turn has an application to proving that any homomorphism from any lattice in a
higher-rank semi-simple Lie group to Out(F ), where N ≥ 3, has finite image.

Very recently Bestvina and Feighn [BeF2] used [KaLu2] to show that for any
finite collection φ1, . . . , φm ∈ Out(FN ) of iwip outer automorphisms of FN (“irre-
ducible automorphisms with irreducible powers”, see Definition 12.1) there exists a
δ-hyperbolic complex X = X(φ1, . . . , φm) with an isometric Out(FN )-action where
each φi acts with a positive asymptotic translation length.

Another crucial notion in the surface theory is that of a geodesic lamination on a
hyperbolic surface. In the free group case, there is a companion notion of an abstract
algebraic lamination which is understood as a closed F -invariant and flip-invariant
subset of

∂2F =
{
(ξ1, ξ2) : ξ1, ξ2 ∈ ∂F, ξ1 	= ξ2

}
.

A variation of this concept was successfully exploited by Bestvina, Feighn and
Handel [BeFH1] to analyze the dynamics of free group automorphisms and the
algebraic structure of subgroups of Out(F ). That paper in turn played a key role
in the eventual proof of the Tits alternative for Out(F ) by Bestvina, Feighn and
Handel in [BeFH2,3].

Recently Coulbois, Hilion and Lustig [CouHL1,2,3] gave a detailed abstract treat-
ment of the notion of an algebraic lamination for free group. In particular, given a
very small action of F on an R-tree T , there is [CouHL2] a naturally defined “dual
lamination” L2(T ) on F (see section 3 below). In the special case where T belongs
to cv(F ), i.e. the F -action on T is free and simplicial, then L2(T ) = ∅. The rela-
tionship between R-tree actions, laminations and geodesic currents in the free group
case turns out to be considerably more delicate and complicated then for the case
of hyperbolic surfaces. Investigating this relationship is an important basic task in
the study of Out(F ).

In the present paper we study the situation where the intersection number be-
tween a tree and a current is equal to zero. Our main result is
Theorem 1.1. Let F be a finitely generated nonabelian free group with a very
small minimal isometric action on an R-tree T . Let µ ∈ Curr(F ).

Then 〈T, µ〉 = 0 if and only if supp(µ) ⊆ L2(T ).
Here supp(µ) ⊆ ∂2F is the support of µ (see section 3 below for the definition).
There is a known similar statement to Theorem 1.1 in the surface context.

Namely, suppose λ and µ are measured geodesic laminations on a punctured hy-
perbolic surface S. The transverse measures on λ and µ determine geodesic cur-
rents λ̂ and µ̂ on the surface S. In this case Bonahon’s intersection number be-
tween geodesic currents λ̂ coincides with Thurston’s geometric intersection number:
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i(λ̂, µ̂) = i(λ, µ). Moreover, since π1(S) is free, geodesic currents on S in Bonahon’s
sense are also geodesic currents on π1(S) in the sense of the present paper. Then
i(λ, µ) = 0 if and only if the supports supp(λ) and supp(λ) of λ and µ intersect in a
common sublamination. If Tλ denotes the “dual” R-tree transverse to λ with metric
defined by the transverse measure on λ (see Ch. 11.12 in [Kap] for details), then the
definition in [KaLu2] gives

〈Tλ, µ̂〉 = i(λ, µ) = i(λ̂, µ̂) .

The lamination L2(Tλ) always contains supp(λ), and if the latter fills the surface
(i.e. all complementary components are contractible), L2(Tλ) is precisely equal to
the union of supp(λ) with the (finite) set of diagonal leaves in the complementary
surfaces of supp(λ). In particular we see that in this case one has 〈Tλ, µ〉 = 0 if and
only if supp(µ) is contained in supp(λ) ⊆ supp(Tλ).

One of the main motivations and prospective uses for Theorem 1.1 is to ana-
lyze the intersection graph, introduced by the authors in [KaLu2] in order to study
various free group analogues of the curve complex. The intersection graph I(F ) is
a bipartite graph with the vertex set Pcv(F ) � P Curr(F ) where [T ] ∈ Pcv(F ) and
[µ] ∈ P Curr(F ) are adjacent in I(F ) if and only if 〈T, µ〉 = 0. While it is generally
not possible to define a good notion of an intersection number between two con-
jugacy classes in a free group, one can use the intersection form to generalize the
notion of having distance ≤ 2 in the standard curve complex. Thus one can define
a graph, whose vertices are conjugacy classes of primitive elements in F where two
vertices [a], [b] are adjacent if there exists T ∈ cv(F ) such that 〈T, ηa〉 = 〈T, ηb〉 = 0,
that is ‖a‖T = ‖b‖T = 0 (this graph is almost the same as the “dual cut graph”
defined in [KaLu2]). Taking a dual point of view, one can think of an essential sim-
ple closed curve on a surface as a splitting of the surface group over Z, where two
curves are adjacent in the curve complex if and only if the corresponding Z-splittings
have a common refinement. This leads to the notion [KaLu2] of a cut graph for F
whose vertices are nontrivial splittings of F as the fundamental group of a graph
of groups with a single edge and the trivial edge group, and where adjacency again
corresponds to having a common refinement. A variation of this construction would
declare two splittings to be adjacent if there exists a nontrivial element in F which
is elliptic with respect to both of them. All these (as others) natural analogues of
the curve complex can be studied by means of the intersection graph. In [KaLu2]
we prove that for N ≥ 3 the intersection graph and all the free group analogues of
the curve complex derived from it have infinite diameter, by analyzing the action
of iwip automorphisms (see Definition 12.1). Iwip automorphisms are also some-
times referred to as fully irreducible in the literature. Note that Theorem 1.1 gives
a characterization of adjacency in the intersection graph.

In this paper we apply Theorem 1.1 to obtain a generalization of a result of
Francaviglia [F] about length spectrum compactness for uniform currents on F (see
Definition 2.12 below for the definition of the uniform current with respect to a free
basis of F ). For T ∈ cv(F ) and µ ∈ Curr(F ), the automorphic length spectrum of η
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with respect to T is the set

ST (µ) :=
{
〈T, φµ〉 : φ ∈ Out(F )

}
=

{
〈φT, µ〉 : φ ∈ Out(F )

}
⊆ R .

If T = X(F,A) is the Cayley graph of F corresponding to a free basis A of F and
µ = νA is the uniform current corresponding to A then

ST (µ) =
{
λA(φ) : φ ∈ Out(F )

}
where λA(φ) is the generic stretching factor of φ with respect to A (see [KKS], [Ka4]
for definitions). Here we obtain
Theorem 1.2. Let µ ∈ Curr(F ) be a current with full support and let T ∈ cv(F ).
Then,

(1) For any C > 0 the set {
φ ∈ Out(F ) : 〈T, φµ〉 ≤ C

}
is finite.

(2) The set ST (µ) is a discrete subset of R≥0.
(3) Suppose φn ∈ Out(F ) is an infinite sequence of distinct elements such that

for some λn ≥ 0 and some µ′ ∈ Curr(F ) we have limn→∞ λnφnµ = µ′. Then
limn→∞ λn = 0.

Francaviglia [F], using very different methods, established Theorem 1.2 for a
certain class of currents with full support, including uniform currents corresponding
to free bases of F and, more generally, Patterson–Sullivan currents corresponding
to points of cv(F ) (see [KaN] for definitions). Theorem 1.2 has applications to the
“ideal” version of the Whitehead algorithm for geodesic currents, as explained in
[Ka5]. Note that for T ∈ cv(F ) and µ ∈ Curr(F ) that does not have full sup-
port, the automorphic length spectrum ST (µ) need not be discrete. For example,
if φ ∈ Out(F ) is an iwip (irreducible, with irreducible powers) which is atoroidal
(that is, with no periodic conjugacy classes) then there exist λ > 1 and a nonzero
“eigencurrent” η ∈ Curr(F ) such that φη = λη (see [M]). Then φ−nη = 1

λn η, so
that for any T ∈ cv(F ) we have

〈T, φ−nη〉 = 1
λn 〈T, η〉 n→∞−→ 0 ,

and hence ST (η) is not discrete. A recent paper of R. Sharp [Sh] studies other
dynamic-theoretic aspects related to generic stretching factors of free group auto-
morphisms. A new paper of D. Calegari and K. Fujiwara [CF] investigates general-
izations of generic stretching factors for different word metrics on word-hyperbolic
groups.

We apply Theorem 1.1 to establish “unique ergodicity” type properties for the
attracting and repelling fixed points of atoroidal elements of Out(F ) in the com-
pactified outer space and in the projectivized space of currents.

If φ ∈ Out(F ) is an atoroidal iwip, then the (left) action of φ on CV (F ) has
exactly two distinct fixed points, an attracting fixed point [T+] and a repelling fixed
point [T−] and similarly, the left action of φ on P Curr(F ) has exactly two distinct
fixed points, an attracting fixed point [µ+] and a repelling fixed point [µ−]. In both
cases every point distinct from the two fixed points lies on a “North–South” orbit
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with positive powers of φ making it converge to the attracting fixed point and with
negative powers of φ making it converge to the repelling fixed point. These facts
were established by Levitt and Lustig [LevL] for the compactified outer space CV (F )
and by Reiner Martin [M] for P Curr(F ).

In section 12 we apply Theorem 1.1 to establish unique-ergodicity type state-
ments for T+ and µ+. These results are summarized in the following:
Theorem 1.3. Let φ ∈ Out(F ), where N ≥ 3, be an atoroidal iwip. Let
[T+] ∈ CV (F ) and [µ+] ∈ P Curr(F ) be the attracting fixed points for the (left)
actions of φ on CV (F ) and P Curr(F ) accordingly. Then,

(1) If [µ] ∈ P Curr(F ) is such that supp(µ) ⊆ supp(µ+) then [µ] = [µ+].
(2) If [T ] ∈ CV (F ) is such that L2(T+) ⊆ L2(T ) then [T ] = [T+].
(3) Let [µ] ∈ P Curr(F ). Then 〈T+, µ〉 = 0 if and only if [µ] = [µ+].
(4) Let [T ] ∈ CV (F ). Then 〈T, µ+〉 = 0 if and only if [T ] = [T+].
We apply Theorem 1.1 together with Theorem 1.3 to show that for two “suffi-

ciently transverse” trees from cv(F ) the sum of their translation length functions
is bilipschitz equivalent to one coming from an interior point of cv(F ). For two
functions f1, f2 : F → R≥0 we write f1 ∼ f2 if there exists C ≥ 1 such that for every
w ∈ F we have

1
C f1(w) ≤ f2(w) ≤ Cf1(w) .

We prove
Theorem 1.4. Let T1, T2 ∈ cv(F ) be such that there does not exist µ ∈ Curr(F ),
µ 	= 0 such that 〈T1, µ〉 = 〈T2, µ〉 = 0. Then for every T ∈ cv(F ) we have
‖ . ‖T1 + ‖ . ‖T2 ∼ ‖ . ‖T .

Proof. Let T ∈ cv(F ) be arbitrary. Then for any nonzero µ ∈ Curr(F ) we have
〈T, µ〉 > 0. This follows from the explicit definition of the intersection form in
Proposition–Definition 2.11 for the case where T ∈ cv(F ).

Define a function J : Curr(F ) − {0} → R as

J (µ) :=
〈T1, µ〉 + 〈T2, µ〉

〈T, µ〉 , µ ∈ Curr(F ) , µ 	= 0 .

Note that for every µ ∈ Curr(F ), µ 	= 0, we have 0 < J (µ) < ∞ by assumption
on T1, T2. Also, the function J is continuous by construction since the intersection
form is continuous. Moreover, it is easy to see that for every µ 	= 0 and every c > 0
we have J (µ) = J (cµ). Thus J factors through to a continuous strictly positive
function J ′ : P Curr(F ) → R. Since P Curr(F ) is compact, the function J ′ achieves
a positive maximum and a positive minimum. Hence there exist 0 < C1 < C2 < ∞
such that C1 ≤ J (µ) ≤ C2 for every µ ∈ Curr(F ), µ 	= 0. Applying this fact
to rational currents ηg, g ∈ F − {1} we conclude that ‖ . ‖T1 + ‖ . ‖T2 ∼ ‖ . ‖T , as
required. �

In the terminology of [KaLu2], the assumption of Theorem 1.4 says that the
distance between [T1] and [T2] in the intersection graph I(F ) is bigger than two.
Using Theorem 1.1 together with Theorem 1.3 we obtain the following corollary of
Theorem 1.4.
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Corollary 1.5. Let N ≥ 2. Then the following hold:

(1) Let T1, T2 ∈ cv(F ) be such that L2(T1)∩L2(T2) = ∅. Then for any T ∈ cv(F )
we have ‖ . ‖T1 + ‖ . ‖T2 ∼ ‖ . ‖T .

(2) Let N ≥ 3 and let φ ∈ Out(F ) be an atoroidal iwip. Let [T+], [T−] ∈ CV (F )
be the attracting and repelling fixed points of φ. Then for every T ∈ cv(F )
we have ‖ . ‖T+ + ‖ . ‖T− ∼ ‖ . ‖T .

(3) Let N ≥ 3 and let φ,ψ ∈ Out(F ) be atoroidal iwips such that their fixed
points [T±(φ)], [T±(ψ)] ∈ CV (F ) are four distinct points. Then for every
T ∈ cv(F ) we have ‖ . ‖T+(φ) + ‖ . ‖T+(ψ) ∼ ‖ . ‖T .

(4) Let T1, T2 ∈ cv(F ) be discrete simplicial trees with trivial arc stabilizers
(thus, algebraically, they correspond to graph of groups decompositions of
F with trivial edge groups). Suppose that every nontrivial elliptic element
for T1 is hyperbolic for T2 and that every nontrivial elliptic element for T2
is hyperbolic for T1 (that is the intersection of every conjugate of a vertex
group of T1 with every conjugate of a vertex group of T2 is trivial). Then for
any T ∈ cv(F ) we have ‖ . ‖T1 + ‖ . ‖T2 ∼ ‖ . ‖T .

Proof. Part (1) follows directly from Theorem 1.1 together with Theorem 1.4.
Parts (2) and (3) easily follow from Theorem 1.4 together with Theorem 1.1 and
Theorem 1.3. We will give an argument for part (3) for concreteness and leave
part (2) to the reader. The assumptions of part (3) together with Theorem 1.3
imply that the fixed points [µ±(φ)], [µ±(ψ)] of φ,ψ in P Curr(F ) are four distinct
points. Hence, again, by Theorem 1.3, there does not exist µ 	= 0 such that
〈T+(φ), µ〉 = 〈T+(ψ), µ〉 = 0. Hence by part (1) the conclusion of part (3) follows.

To see that part (4) holds it is not hard to show, using the explicit description of
L2(T1) and L2(T2) obtained in Lemma 8.2 that under the assumptions of part (4)
we have L2(T1) ∩ L2(T2) = ∅. Hence part (1) of the corollary applies. �

Theorem 1.1 has some interesting applications to the notions of a filling element
(or a conjugacy class) and of bounded translation equivalence. The concept of a
filling curve on a surface plays an important role in the surface theory. However,
until now there was no clear analogue of this notion in the free group context, mainly
because of the absence of a symmetric notion of an intersection number between
two conjugacy classes (or between two currents) for a free group. We propose a
natural asymmetric notion of a filling conjugacy class here. It is easy to see that
the free homotopy class of an essential closed curve on a closed hyperbolic surface
fills the surface if and only if this class has a positive intersection number with every
measured lamination on the surface, or equivalently, if and only if the corresponding
element of the surface group has positive translation length for the dual R-tree of
every measured lamination. By analogy, we will say that an element g ∈ F , g 	= 1
fills F if for every very small isometric action of F on an R-tree T we have ‖g‖T > 0.
More generally, we say that a current µ ∈ Curr(F ) fills F if for every very small
isometric action of F on an R-tree T we have 〈T, µ〉 > 0. Thus an element g ∈ F
fills F if and only if the corresponding “counting current” ηg ∈ Curr(F ) fills F . As
was explained to the authors by Vincent Guirardel, the results of his paper [Gu] can
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be used to show that an element g ∈ F fills F if and only if for every very small
simplicial action of F on an R-tree T we have ‖g‖T > 0. However, we do not use
this fact in this paper and work directly with the definition of a filling element given
above.

Unlike in the surface case, it is not at all obvious that in a free group F filling
elements exist and even less clear why being filling is a typical behavior. In fact,
there is no known simple (or even complicated) explicit combinatorial criterion which
guarantees that a given element of a free group is filling. Vincent Guirardel and
Gilbert Levitt showed us a special construction for producing filling elements in free
groups using iterated commutators and high powers. However, one would still like
to understand why being filling is an essentially generic property for elements of free
groups. Theorem 1.1 provides such an explanation. This theorem easily implies that
every current on F with full support fills F . While counting currents of elements of
F never have full support, it turns out that any multiple of a counting current that
is “sufficiently close” to a current with full support does fill F :
Corollary 1.6. Let F be a finitely generated nonabelian free group. Let
µ ∈ Curr(F ) be a current with full support. Then

(1) The current µ fills F .
(2) Suppose gi ∈ F , λi ≥ 0 are such that

µ = lim
i→∞

λiηgi .

Then there is some i0 ≥ 1 such that for every i ≥ i0 the element gi fills F .

Note that rational currents (i.e. scalar multiples of counting currents) are dense
in Curr(F ), so that any current µ with full support can be approximated by rational
currents. Corollary 1.6 in turn implies that if A is a free basis of F and ξ is a random
right-infinite freely reduced word over A±1, then all sufficiently long initial segments
of ξ give filling elements in F :
Corollary 1.7. Let F = F (A) be a finitely generated nonabelian free group with
a free basis A. Let µA be the uniform measure on ∂F corresponding to A. Then
there exists a set R ⊆ ∂F with the following properties:

(1) We have µA(R) = 1.
(2) For each ξ ∈ R there is n0 ≥ 1 such that for every n ≥ n0 the element

ξA(n) ∈ F fills F .

Here ξA(n) ∈ F denotes the element of F corresponding to the initial segment
of ξ of length n. The uniform measure µA on ∂F is a Borel probability measure
(see Definition 13.5 for a precise definition), such that a µA-random point of ∂F
corresponds to the intuitive notion of a “random” right-infinite freely reduced word
over A.

In [KaLSS], Kapovich, Levitt, Schupp and Shpilrain introduced the notion of
translation equivalence in free groups, motivated by the notions of hyperbolic equiv-
alence and simple intersection equivalence for curves in surfaces (see [L]). Recall
that two elements g, h ∈ F are translation equivalent in F if for every very small
action of F on an R-tree T we have ‖g‖T = ‖h‖T . The paper [KaLSS] exhibited
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several sources of translation equivalence and additional ones were found by Donghi
Lee [Le]. The following is a natural generalization of the notion of translation equiv-
alence. We say that g, h ∈ F are boundedly translation equivalent in F , denoted
g ≡b h, if there exists C > 0 such that for for every very small action of F on an
R-tree T we have

1
C ‖h‖T ≤ ‖g‖T ≤ C‖h‖T .

The following statement, together with Corollary 1.6 and Corollary 1.7, explains
why, unlike translation equivalence, bounded translation equivalence is an essentially
generic phenomenon in free groups.
Corollary 1.8. Let g, h ∈ F be elements such that each of them fills F . Then
g ≡b h in F .

Note that while Corollary 1.6 and Corollary 1.7 do explain why filling elements
in F are plentiful, they do not provide an explicit sufficient condition for an element
to be filling. Finding such a sufficient condition that would be easily algorithmically
verifiable and that would hold for “generic” elements of F remains an interesting
problem. The construction of Guirardel and Levitt mentioned above is both explicit
and algorithmic, but it relies on using iterated commutators and large powers and
thus is highly non-generic.

The paper is organized as follows. In section 2 we review basic definitions and
notation related to outer space and geodesic currents. In section 3 we present back-
ground information regarding algebraic laminations on free groups, introduce the
notions of the support of a current and the “dual lamination” associated with an
action of a free group on an R-tree and establish some basic facts about laminations
and subgroups. In section 4 we discuss the “bounded back-tracking” property for
very small actions of F on R-trees and its consequences. The bounded back-tracking
property for very small actions, established in [GJLL], is a key tool in the present
paper. In section 5 we prove the “if” direction of the main result, Theorem 1.1.
Namely, in Theorem 5.2 we prove that if supp(µ) ⊆ L2(T ) then 〈T, µ〉 = 0. The
“only if” direction of Theorem 1.1 turns out to be more difficult and requires consid-
ering several different types of trees T separately. In section 6 we establish the “only
if” direction of Theorem 1.1 for the case of a tree T ∈ cv(F ) with dense orbits. The
case of a discrete T ∈ cv(F ) is dealt with in section 7 and section 8. Before deal-
ing with the general case, we develop some new machinery for restricting geodesic
currents to subgroups of F in section 9. In section 10 we establish the “only if” direc-
tion of Theorem 1.1 in the “mixed” or general case of an arbitrary T ∈ cv(F ). This
is done in Theorem 10.7 which completes the proof of Theorem 1.1. In section 11
we apply the main result to prove Theorem 1.2 about length spectrum compact-
ness (Theorem 11.2 in section 11). In section 12 we establish the unique-ergodicity
type results stated in Theorem 1.3 above. In section 13 we obtain applications of
Theorem 1.1 to filling elements, filling currents and bounded translation equivalence,
stated in Corollary 1.6, Corollary 1.7 and Corollary 1.8 above.
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2 Geodesic Currents

Convention 2.1. For the remainder of the article let F be a finitely generated
nonabelian free group.

Let ∂F be the hyperbolic boundary of F (see [GyH] for background information
about word-hyperbolic groups). We denote

∂2F =
{
(ξ1, ξ2) : ξ1, ξ2 ∈ ∂F and ξ1 	= ξ2

}
.

Also denote by σF : ∂2F → ∂2F the “flip” map defined as σF : (ξ1, ξ2) �→ (ξ2, ξ1)
for (ξ1, ξ2) ∈ ∂2F .
Definition 2.2 (Simplicial charts). A simplicial chart on F is an isomorphism
α : F → π1(Γ, x) where Γ is a finite connected graph without degree-one vertices
and where is a vertex of Γ.

From now on, when discussing graphs, for a graph Γ we will denote the set of
vertices of Γ by V Γ.

If α is a simplicial chart on F , it defines an F -equivariant quasi-isometry be-
tween F (with any word metric) and Γ̃, with the simplicial metric, that is where
every edge has length 1. Correspondingly, we get canonical F -equivariant homeo-
morphisms α̃ : ∂F → ∂Γ̃ and α̂ : ∂2F → ∂2Γ̃, that do not depend on the choice
of a word metric for F . If α is fixed, we will usually use these homeomorphisms to
identify ∂F with ∂Γ̃ and ∂2F with ∂2Γ̃ without additional comment.
Definition 2.3 (Cylinders). Let α : F → π1(Γ, x) be a simplicial chart on F . For
a nontrivial reduced edge-path γ in Γ̃ denote by CylΓ̃(γ) the set of all (ξ1, ξ2) ∈ ∂2F
such that the bi-infinite geodesic from α̃(ξ1) to α̃(ξ2) contains γ as a subpath.

We call CylΓ̃(γ) ⊆ ∂2F the two-sided cylinder corresponding to γ.
It is easy to see that CylΓ̃(γ) ⊆ ∂2F is both compact and open. Moreover, the

collection of all such cylinders, where γ varies over all nontrivial reduced edge-paths
in Γ̃, forms a basis of open sets in ∂2F .

Definition 2.4 (Geodesic currents). A geodesic current on F is a positive Radon
measure (that is a Borel measure which is finite on compact sets) on ∂2F that is
F -invariant and σF -invariant. The set of all geodesic currents on F is denoted by
Curr(F ). The set Curr(F ) is endowed with the weak topology which makes it into
a locally compact space.

Specifically, let α : F → π1(Γ, x) be a simplicial chart on F . Let µn, µ ∈ Curr(F ).
It is not hard to show [Ka4] that limn→∞ µn = µ in Curr(F ) if and only if for every
nontrivial reduced edge-path γ in Γ̃ we have

lim
n→∞µn

(
CylΓ̃(γ)

)
= µ

(
CylΓ̃(γ)

)
.
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Let µ ∈ Curr(F ) and let v be a nontrivial reduced edge-path in Γ. Denote

〈v, µ〉α := µ
(
CylΓ̃(γ)

)
,

where γ is any edge-path in Γ̃ that is labelled by v (i.e. which is a lift of v to Γ̃).
Since µ is F -invariant, this definition does not depend on the choice of a lift γ of v.

Notation 2.5. Let A = {a1, . . . , ak} be a free basis of F and let α be the simplicial
chart on F corresponding to A. That is, α : F → π1(Γ, x), where Γ is a wedge of k
loop-edges at a single vertex x, where the edges are labelled by a1, . . . ak. The map
α sends a freely reduced word v ∈ F (A) to the edge-path in Γ labelled by v. Then
Γ̃ = X(F,A) is the Cayley graph of F with respect to A.

In this case, for v ∈ F (A) and µ ∈ Curr(F ), we will denote 〈α(v), µ〉α by 〈v, µ〉A.

Notation 2.6. For any g ∈ F , g 	= 1 denote g∞ = limn→∞ gn and g−∞ =
limn→∞ gn so that (g−∞, g∞) ∈ ∂2F .

Also, for any g ∈ F we will denote by [g]F or just by [g] the conjugacy class of
g in F .

Definition 2.7 (Counting and rational currents). Let g ∈ F be a nontrivial
element that is not a proper power in F . Put

ηF
g =

∑
h∈[g]F

(
δ(h−∞,h∞) + δ(h∞,h−∞)

)
.

Let R(g) be the collection of all F -translates of (g−∞, g∞) and (g∞, g−∞) in
∂2F . Note that if u ∈ F and h = ugu−1 then u(g−∞, g∞) = (h−∞, h∞). Therefore

ηF
g =

∑
(x,y)∈R(g)

δ(x,y) ,

and hence ηF
g is F -invariant and flip-invariant, that is ηg ∈ Curr(F ).

Let g ∈ F be an arbitrary nontrivial element. Write g = fm where m ≥ 1 and
f ∈ F is not a proper power. Put ηF

g := mηF
f .

We call ηF
g ∈ Curr(F ) the counting current corresponding to g. Positive scalar

multiples of counting currents are called rational currents. If the ambient group F
is fixed, we will often denote ηF

g by ηg.

It is easy to see that if [g]F = [h]F then ηF
g = ηF

h and ηF
g = ηF

g−1.
The following statement is an important basic fact regarding rational currents.

Proposition 2.8 [Ka3,4]. The set of all rational currents is dense in the space
Curr(F ).

Definition 2.9 (Cyclic paths and cyclic words). A cyclic path or circuit in Γ is
an immersion graph-map c : S → Γ from a simplicially subdivided oriented circle S

to Γ. Let u be an edge-path in Γ. An occurrence of u in c is a vertex of S such that,
going from this vertex in the positive direction along S, there exists an edge-path
in S (not necessarily simple and not necessarily closed) which is labelled by u, that
is, which is mapped to u by c. We denote by 〈u, c〉 the number of occurrences of u
in c.
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If A is a free basis of F and Γ is a bouquet of edges labelled by the elements
of A, then a cyclic path in Γ can also be thought of as a cyclic word over A. A
cyclic word is a cyclically reduced word in F (A) written on a simplicially subdivided
circle (where every positively oriented edge is labelled by an element of A) in the
clockwise-direction without a specified base-point. The number of occurrences of
v ∈ F (A) in a cyclic word w over A is denoted 〈v,w〉A.

Let α : F → π1(Γ, x) be a simplicial chart for F . Then every nontrivial conjugacy
class [g]F is represented by a unique reduced cyclic edge-path wg in Γ.

If w is a cyclic edge-path in Γ and v is an edge-path in Γ, denote by 〈v,w〉α
the number of occurrences of v in w. We will also occasionally use the notation
〈v±1, w〉α := 〈v,w〉α + 〈v−1, w〉α.

It is not hard to see that the definition of a counting current can be reinterpreted
as follows [Ka4]:
Lemma 2.10. Let α : F → π1(Γ, x) be a simplicial chart for F . Let g ∈ F be a
nontrivial element and let wg be the reduced cyclic path in Γ representing [g]F .

Then for every reduced edge-path v in Γ we have

〈v, ηg〉α = 〈v−1, ηg〉α = 〈v,wg〉α + 〈v−1, wg〉α = 〈v±1, w〉α .

Proposition–Definition 2.11 (Intersection form [KaLu2]). Let F be a finitely
generated nonabelian free group and with a very small minimal isometric action on
an R-tree T . Let µ ∈ Curr(F ). Let µ = limi→∞ λiηgi where λi ≥ 0 and gi ∈ F .
Then,

(1) The limit
lim
i→∞

λi‖gi‖T

exists and does not depend on the choice of a sequence of rational currents
λiηgi approximating µ. We call this limit the length of µ with respect to T or
the geometric intersection number of T and µ or the length of µ with respect
to T and denote it by 〈T, µ〉 or by ‖µ‖T .

(2) Let α : F → π1(Γ, x) be a simplicial chart on F and let L be a metric
structure on Γ. That is, each oriented edge e ∈ EΓ is assigned a length
L(e) > 0 so that L(e) = L(e−1) for every e ∈ EΓ. Let T be the R-tree
obtained by giving each edge in Γ̃ the same length as that of its projection
in Γ. Thus F acts on T freely and discretely by isometries, via α. Then

〈T, µ〉 = 1
2

∑
e∈EΓ

L(e)〈e, µ〉α .

(3) The function
〈 , 〉 : cv(F ) × Curr(F ) → R

is continuous, Out(F )-invariant, R≥0-linear with respect to the second argu-
ment and R≥0-homogeneous with respect to the first argument.

Proposition–Definition 2.11 for free simplicial actions was obtained in [Ka4],
[Lu]. Recently, Kapovich and Lustig [KaLu2] generalized this result to the case
of arbitrary very small actions and proved Proposition–Definition 2.11 in the form
stated above.
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Let A be a free basis of F and let X(F,A) be the Cayley graph of F cor-
responding to A. Thus X(F,A) ∈ cv(F ). For a current µ ∈ Curr(F ) denote
‖µ‖A := ‖µ‖X(F,A) = 〈X(F,A), µ〉.
Definition 2.12 (Uniform current). Let A be a free basis of F and let k ≥ 2
be the rank of F . Consider the simplicial chart α on F corresponding to A. The
uniform current corresponding to A, denoted by νA is the current defined by

〈v, νA〉A =
1

2k(2k − 1)n−1 ,

where v ∈ F (A) is a nontrivial freely reduced word and where |v|A = n.
It is not hard to show that νA is indeed a geodesic current on F and we refer the

reader to [Ka4], [KKS] for a more detailed discussion.

3 Laminations

Recall that, as specified in Convention 2.1, F is a finitely generated nonabelian free
group. We refer the reader to [CouHL1,2,3] for detailed background material on
algebraic laminations in the context of free groups. We shall only state some basic
definitions and facts here.
Definition 3.1 (Algebraic laminations). An algebraic lamination on F is a closed
F -invariant and flip-invariant subset L ⊆ ∂2F .

Denote by Λ2(F ) the set of all algebraic laminations on F .

Definition 3.2 (Laminary language of an algebraic lamination). Let α : F →
π1(Γ, x) be a simplicial chart of F and let X = Γ̃. Recall that α defines a canonical
F -equivariant homeomorphism α̃ : ∂F → ∂X

Let B be the set of oriented edges of Γ. Let L ∈ Λ2(F ). The laminary language
of L, corresponding to α, denoted Lα, is defined as the set of all reduced edge-
paths v in Γ such that there exists a bi-infinite geodesic γ in X with endpoints
α̃(ξ1), α̃(ξ2) ∈ ∂X for some (ξ1, ξ2) ∈ L, such that γ contains a subsegment labelled
by v. We can think of Lα as a subset of B∗, where B∗ is the set of all words in the
alphabet B.

If α is a simplicial chart on F corresponding to a free basis A of F (where Γ is
the wedge of circles labelled by elements of A and where X is the Cayley graph of
F with respect to A), we will denote Lα by LA. In this case LA is a set of freely
reduced words in F = F (A).

Note that in [CouHL1,2,3] laminary languages are defined only with respect to a
free basis of a free group. However, it is easy to see that the definition and the basic
results listed here extend to an arbitrary simplicial chart, that is not necessarily a
wedge of loop-edges.
Proposition 3.3 [CouHL1]. Let α : F → π1(Γ, x) be a simplicial chart of F . Let
L,L′ ∈ Λ2(F ). Then L ⊆ L′ if and only if Lα ⊆ L′

α.
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Let H ≤ F be a finitely generated subgroup. Then the inclusion of H in F
extends to a canonical H-equivariant topological embedding iH : ∂H → ∂F . We
will usually suppress this embedding and write that ∂H ⊆ ∂F and ∂2H ⊆ ∂2F .
Proposition–Definition 3.4. Let H ≤ F be a finitely generated subgroup and
let L ∈ Λ2(H) be an algebraic lamination on H. Then

iΛ(L) :=
⋃
f∈F

fL

is a closed F -invariant subset of ∂2F , that is, an algebraic lamination on F . Thus
iΛ(L) ∈ Λ2(F ).

Definition 3.5 (Lamination defined by a tree action [CouHL1,2,3]). Let F be a
finitely generated free group acting isometrically on an R-tree T . The lamination
on F corresponding to the action of F on T , denoted L2(T ) ∈ Λ2(F ), is defined as
follows.

Choose a simplicial chart α : F → π1(Γ, x) and fix the corresponding identifica-
tion of ∂2F and ∂2Γ̃.

Then for (ξ1, ξ2) ∈ ∂2F we have (ξ1, ξ2) ∈ L2(T ) if and only if, for every ε > 0
and every reduced edge-path v in Γ labelling some subsegment of the bi-infinite
geodesic joining ξ1 and x2 in Γ̃, there is some reduced and cyclically reduced closed
path w in Γ containing v as a subpath such that ‖w‖T ≤ ε.

It is not hard to show (see [LevL], [CouHL2]) that this definition of L2(T ) does
not depend on the choice of a simplicial chart on F .

Definition 3.6 (Support of a current). Let µ ∈ Curr(F ). Then we define the
support of µ, denoted supp(µ), as ∂2F −U where U is the union of all open subsets
U ⊆ ∂2F such that µ(U) = 0. It is easy to see that supp(µ) ⊆ ∂2F is both closed
and F -invariant, so that supp(µ) ∈ Λ2(F ). We say that µ ∈ Curr(F ) has full support
if supp(µ) = ∂2F .

Let α : F → π1(Γ, x) be a simplicial chart on F , let L = supp(µ) ∈ Λ2(F ) and
let B = EΓ. We will denote the laminary language Lα ⊆ B∗ by suppα(µ). Thus
suppα(µ) consists of all reduced paths v in Γ such that 〈v, µ〉α > 0.

In the case where the simplicial chart α is defined by a free basis A of F , we will
denote Lα by suppA(µ).

For example, it is obvious that for any free basis A of F the uniform current νA

has full support. The following lemma is an easy corollary of the definitions.
Lemma 3.7. Let α : F → π1(Γ, x) be a simplicial chart on F and let µ ∈ Curr(F ).
Let L = supp(µ) ∈ Λ2(F ). Then for a reduced edge-path v in Γ we have v ∈ Lα if
and only if 〈v, µ〉α > 0.

Notation 3.8. Let F be a finitely generated free group with a free basis A. We
will denote by X(F,A) the Cayley graph (which happens to be a tree) of F with
respect to A.

For a nontrivial finitely generated subgroup H ≤ F denote by XH the smallest
H-invariant subtree of X(F,A).
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We also denote by ΓH the Stallings subgroup graph of H with respect to A (see
[KaM] for a detailed discussion about Stallings subgroup graphs). Recall that ΓH

can be obtained as follows. Let x ∈ XH be the closest to 1 ∈ F vertex of XH . Then
X ′

H = XH
⋃

∪f∈F f [1, x] is an H-invariant subtree of X(F,A). Then ΓH = X ′
H/H.

Recall that every oriented edge in ΓH has a label a ∈ A±1 which comes from the
corresponding label of the edge in X ′

H . The image, under the quotient map X ′
H →

X ′
H/H = ΓH of the vertex 1 ∈ F in ΓH is the base-vertex of ΓH .

For a finite connected graph Γ with a nontrivial fundamental group, the core
of Γ, denoted Core(Γ), is the unique smallest subgraph ∆ of Γ such that ∆ is
homotopically equivalent to Γ. Note that ∆ has no degree-one vertices and that Γ
is equal to the union of ∆ and a finite (possibly empty) collection of trees attached
to some vertices of ∆.

Convention 3.9. For the remainder of this section, let H ≤ F = F (A) be a finitely
generated subgroup. Let ΓH be the Stallings subgroup graph of H with respect to
A and let ∆H = Core(ΓH).

Let x ∈ ∆H be the closest vertex of ∆H to the basepoint y of ΓH . Let u ∈ F (A)
be the label of the segment joining y to x in ΓH . Then we have a canonical iso-
morphism αH,A : H → π1(ΓH , y), where α−1

H,A sends a loop γ at x in ∆H to uwu−1,
where w ∈ F (A) is the label of γ. Thus the pair (ΓH , y) defines a canonical isomor-
phism αH,A : H → π1(ΓH , y) which is a simplicial chart for H. Moreover, a copy of
∆̃H is contained in X(F,A) and coincides with the smallest H-invariant subtree of
X(F,A).

The following lemma is easily established by compactness argument since the
graph ∆H is finite.
Lemma 3.10. Let L ∈ Λ2(H) and let L′ = iΛ(L) ∈ Λ2(F ). Then for v ∈ F (A) we
have v ∈ L′

A if and only if there is a bi-infinite reduced path γ in ∆H whose F (A)-
label contains v as a subword, such that some bi-infinite geodesic in ∆̃H , whose pair
of endpoints is an element of L, projects to γ.

Lemma 3.10 in turn easily implies
Lemma 3.11. The following hold:

(1) Let (ξ1, ξ2) ∈ ∂2F . Then (ξ1, ξ2) ∈ iΛ(∂2H) if and only if the label of the bi-
infinite geodesic from ξ1 to ξ2 in X(F,A) is the F (A)-label of some bi-infinite
reduced edge-path in Core(ΓH).

(2) The subset
⋃

f∈F f∂2H ⊆ ∂2F is closed, and hence

iΛ(∂2H) =
⋃
f∈F

f∂2H .

4 Bounded Back-Tracking

Definition 4.1 (Bounded back-tracking constant). Let F = F (A) be a finitely
generated free group acting isometrically on an R-tree T . Let X(F,A) be the Cayley
graph of F with respect to A. Let p ∈ T . There is a unique F -equivariant map
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ip : X(F,A) → T that is linear on edges on X(F,A) and with ip(1) = p. The
bounded back-tracking constant corresponding to A, T and p, denoted BBTT,p(A), is
the infimum of all C > 0 such that for any Q,R ∈ X(F,A) the image ip([Q,R]) of
[Q,R] ⊆ X(F,A) is contained in the C-neighborhood of [ip(Q), ip(R)]. The bounded
back-tracking constant corresponding to A and T , denoted BBTT (A), is the infimum
over all p ∈ T of BBTT,p(A).

An useful result of [GJLL] states
Proposition 4.2. Let F be a finitely generated nonabelian free group with a very
small isometric minimal action on an R-tree T . Let A be a free basis of F and let
p ∈ T . Then BBTT,p(A) < ∞.

The following is an easy corollary of the definitions.
Lemma 4.3. Let F be a finitely generated nonabelian free group with a very small
isometric minimal action on an R-tree T . Let A be a free basis of F and let p ∈ T .

Suppose BBTT,p(A) < C. Let u = u1 . . . um be a freely reduced product of freely
reduced words in F (A), where m ≥ 1. Then the following hold:

(1) Let w ∈ F (A) be cyclically reduced. Then∣∣‖w‖T − dT (p,wp)
∣∣ ≤ 2C .

(2) Let u = u1 . . . um be a freely reduced product of freely reduced words in
F = F (A), where m ≥ 1. Then we have∣∣∣∣dT (p, up) −

m∑
i=1

dT (p, uip)
∣∣∣∣ ≤ 2mC .

(3) Suppose, in addition, that u, u1, . . . , um are cyclically reduced in F (B). Then∣∣∣∣‖u‖T −
m∑

i=1

‖ui‖T

∣∣∣∣ ≤ 4mC .

Levitt and Lustig [LevL] prove the following:
Proposition 4.4. Let F be a finitely generated nonabelian free group with a very
small isometric action on an R-tree T with dense orbits.

Then for any ε > 0 and any p ∈ T there exists a free basis B of F such that the
following hold:

(1) We have BBTT,p(B) < ε.
(2) For every b ∈ B we have dT (p, bp) < ε.

If A is a free basis of a free group F (A), for u ∈ F (A) we denote by |u|A the
freely reduced length of u with respect to A and we denote by ‖u‖A the cyclically
reduced length of u with respect to A. Thus ‖u‖A is the translation length of u on
the Cayley tree X(F (A), A) of F (A).
Proposition–Definition 4.5 (Double bounded cancellation constant). Let A,B
be two free bases of a finitely generated free group F . Then there exist integers
1 ≤ l ≤ n with the following properties:



1442 I. KAPOVICH AND M. LUSTIG GAFA 

(1) Let u, v be freely reduced words in F (A) such that the word uv is freely
reduced. Let u′, v′ be freely reduced words in F (B) representing u, v accord-
ingly. Then the maximal terminal segment of u′ that freely cancels in the
product u′ · v′ has length ≤ l.

(2) If u is a cyclically reduced word in F (A) and u′ is the freely reduced form of
u in F (B) then | ‖u′‖B − |u|B | ≤ 2l.

(3) Let w = uw0v be a freely reduced product of freely reduced words in F (A)
and suppose that |u|A, |v|A > n. Let x, y be freely reduced words in F (A)
such that the product xwy is reduced as written. Let x′, w′, y′ be the freely
reduced forms of x,w, y in F (B). Let w′′ be the maximal subword of w′ that
is not affected by the free cancellations in the product x′w′y′. Then w′′ is
nonempty.
Let z′1, z′2 be freely reduced words in F (B) such that z′1w′′z′′2 is freely reduced
as written. Let z1, z2, w̃ be the freely reduced words in F (A) representing
z′1, z′2, w′′ accordingly. Then the maximal subword W of w̃ that is not affected
by the free cancellations in z1w̃z2 is nonempty and, in addition, W contains
w0 as a subword. Moreover, if z′1w

′′z′2 is cyclically reduced in F (B), then the
maximal subword of w̃ that is not affected by the free and cyclic reduction
of z1w̃z2, is nonempty and contains w0 as a subword.

The existence of l ≥ 1 as above follows from the bounded cancellation lemma
[Coo]. It is not hard to deduce the existence of n ≥ 1 from the existence of l.

We refer to the smallest integer n = nA,B ≥ 1 satisfying condition (3) above as
the double-bounded cancellation constant for A,B.

Note that the definition of nA,B given above is not symmetric and it is possible
that nA,B 	= nB,A. Note also that conditions (1),(2) in the above definition hold
with l = nA,B.

Definition 4.6. Let A,B be two free bases of a finitely generated free group F .
Let C = maxa∈A |a|B . We call C = CA,B the Lipshitz constant for A, B.

5 The “If” Case of the Main Result

In this section we will establish the “if” implication in Theorem 1.1. Namely, we
will prove that for an arbitrary very small action of F on an R-tree T the condition
supp(µ) ⊆ L2(T ) implies that 〈T, µ〉 = 0.
Remark 5.1. Suppose µ ∈ Curr(F ), µ 	= 0 and let

µ = lim
i→∞

λiηgi

where λi ≥ 0 and gi ∈ F . Then for λ′
i ≥ 0 we have

µ = lim
i→∞

λ′
iηgi ⇐⇒ lim

i→∞
λ′

i

λi
= 1 .

In particular (see [Ka3,4]), if A is a free basis of F , and µ ∈ Curr(F ) is such that
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‖µ‖A = 1 then for any λi ≥ 0, gi ∈ F , with µ = limi→∞ λiηgi , we have

µ = lim
i→∞

1
‖gi‖A

ηgi .

Theorem 5.2. Let F be a finitely generated nonabelian free group. Let T be a
R-tree with a very small minimal isometric action of F . Let µ ∈ Curr(F ) be such
that supp(µ) ⊆ L2(T ). Then 〈T, µ〉 = 0.

Proof. Let A be a free basis of F . We may assume that ‖µ‖A = 1. By Remark 5.1,
it suffices to prove that whenever wi is a sequence of reduced cyclic words in F (A)
such that µ = limn→∞ ηwi/‖wi‖A then limi→∞ ‖wi‖T /‖wi‖A = 0. Let wi be such a
sequence of cyclic words. Note that ‖wt

i‖T /‖wt
i‖A = ‖wi‖T /‖wi‖A and ηwt

i
/‖wt

i‖A =
ηwi/‖wi‖A for any integer t ≥ 1. Thus, by taking powers if necessary, we may assume
that limi→∞ ‖wi‖A = ∞.

Let p ∈ T . Let C1 > 0 be such that BBTT,p(A) < C1. Recall that such C1 exists
by Proposition 4.2. Also, we put C2 = maxa∈A dT (p, ap).

Let ε > 0 be arbitrary. Let N ≥ 1 be such that (1 + 10C1)/N ≤ ε/2. Choose
ε1 > 0 such that C2Nε1 ≤ ε/2. Put w′

i = wN
i . Hence ‖w′

i‖A = N‖wi‖A is divisible
by N for every i ≥ 1. Then ηw′i/‖w

′
i‖A = ηwi/‖wi‖A and hence

µ = lim
i→∞

ηw′i
‖w′

i‖A
.

Write w′
i as a cyclic concatenation ui = y1 . . . ym where m = ‖w′

i‖A/N and where
each yj ∈ F (A) has |yj |A = N . We say that yj is good if yj ∈ suppA(µ) and that
yj is bad otherwise. Write m = mgood + mbad where mgood is the number of those
j = 1, . . . ,m for which yj is good. Since N is fixed and limi→∞ ηw′i/‖w

′
i‖A = µ,

for any fixed freely reduced word v ∈ F (A) of length N , the symmetrized frequen-
cies 〈v±1, w′

i〉A/‖w′
i‖A of v in w′

i converge to 〈v, µ〉A as i → ∞. In particular, if
v 	∈ suppA(µ), these frequencies converge to zero. Therefore there exists some i0 ≥ 1
such that for every i ≥ i0 we have mbad ≤ ε1‖w′

i‖A. Suppose now that i ≥ i0 is
arbitrary.

Let zi ∈ F (A) be the freely reduced word obtained as a (non-cyclic) concatena-
tion zi = y1 . . . ym.

Suppose first that yj is good. Since supp(µ) ⊆ L2(T ), there exists a cyclically
reduced word uj ∈ F (A) containing yj as an initial segment such that ‖uj‖T ≤ 1.
Then by Lemma 4.3 we have dT (p, ujp) ≤ 1 + 2C1. Write uj as a reduced product
uj = yju

′
j . Then Lemma 4.3 implies that

dT (p, yjp) + dT (p, u′
jp) ≤ dT (p, ujp) + 2C1 ≤ 1 + 4C1

and hence
dT (p, yjp) ≤ 1 + 4C1 .

Suppose that yj is bad. Then obviously dT (p, yjp) ≤ C2N .
Recall that mbad ≤ ε1‖w′

i‖A. Recall also that zi = y1 . . . ym ∈ F (A). Hence by
Lemma 4.3

‖w′
i‖T = ‖zi‖T ≤ dT (p, zip) ≤ m(1 + 4C1) + ε1‖w′

i‖AC2N .
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Then for every i ≥ i0

‖w′
i‖T

‖w′
i‖A

≤ 1 + 10C1

N
+ C2Nε1 ≤ ε ,

and hence
0 ≤ 〈T, µ〉 = lim

i→∞
‖w′

i‖T

‖w′
i‖A

≤ ε .

Since ε > 0 was arbitrary, this implies that 〈T, µ〉 = 0, as required. �

6 The Dense Orbits Case

Proposition 6.1. Let F be a finitely generated nonabelian free group. Let T be
an R-tree with a very small minimal isometric action of F such that this action has
dense orbits.

Let µ ∈ Curr(F ) be such that 〈T, µ〉 = 0. Then supp(µ) ⊆ L2(T ).

Proof. Choose a free basis A of F . By re-scaling we may assume that ‖µ‖A = 1. Then
there exists a sequence of reduced cyclic words wi in F (A) such that limi→∞

ηwi
‖wi‖ = µ.

Since 〈T, µ〉 = 0, we have limi→∞
‖wi‖T

‖wi‖A
= 0.

Again, recall that ‖wt
i‖T

‖wt
i‖A

= ‖wi‖T

‖wi‖A
and

η
wt

i

‖wt
i‖A

= ηwi
‖wi‖A

for any integer t ≥ 1. Thus,
by taking powers if necessary, we may assume that limi→∞ ‖wi‖A = ∞.

Let v ∈ F (A) be a freely reduced word with 〈v, µ〉A = α > 0. We need to prove
that for any ε > 0 there exists a cyclically reduced word w in F (A) containing v as
a subword and such that ‖w‖T ≤ ε.

Since ‖µ‖A = 1, there exists a sequence of cyclic words wi in F (A) such that

lim
i→∞

ηwi

‖wi‖A
= µ

and such that
lim
i→∞

‖wi‖T

‖wi‖A
= 0 .

Hence
lim
i→∞

〈v±1, wi〉
‖wi‖

= 〈v, µ〉A = α > 0 .

Choose i0 ≥ 1 such that for every i ≥ i0 we have
α

2
≤ 〈v±1, wi〉

‖wi‖
≤ 2α .

Let ε > 0 be arbitrary. By Proposition 4.4 there is some free basis B of F
and a point p ∈ T such that BBTT,p(B) < ε and dT (p, bp) < ε for every b ∈ B.
Let n = nA,B ≥ 1 be the double-bounded cancellation constant for A,B and let
C = CA,B ≥ 1 be the Lipshitz constant for A,B.

Let i ≥ i0. Choose a maximal collection v1, . . . , vm of occurrences of v±1 in wi

such that the n-neighborhoods of these occurrences in wi do not overlap. Note that if
an occurrence of v±1 begins outside the union of the n-neighborhoods of v1, . . . , vm

in wi, then, by maximality, the beginning of that occurrence is at most 2n + |v|
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away from the union of the n-neighborhoods of v1, . . . , vm. This implies that the
total number of occurrences of v±1 in wi satisfies

〈v±1, wi〉 ≤ 2m
(
2n + |v|

)
.

Hence
m

‖wi‖A
≥ 〈v±1, wi〉

‖wi‖A(4n + 2|v|) ≥ α

2
1

4n + 2|v| .

Thus,
α

K
≤ m

‖wi‖
≤ 2α ,

where K = 8n + 4|v|.
Recall that limi→∞

‖wi‖T

‖wi‖A
= 0. Let ε1 > 0 be such that ε1

K
α < ε. We may assume

that i ≥ i0 was chosen big enough so that ‖wi‖T

‖wi‖A
≤ ε1.

We now subdivide the cyclic word wi as a cyclic concatenation w = y1 . . . ym

where each segment yj ∈ F (A) of wi contains the n-neighborhood of vj in wi for j =
1, . . . ,m. For j = 1, . . . ,m let y′j be the freely reduced word in F (B) representing yj.

Let zj be the portion of y′j that survives after the free reductions in y′j−1y
′
jy

′
j+1.

Note that zj is nonempty by definition of n = nA,B. Then the cyclic concatenation
w′

i = y′1 . . . y′m is the cyclic word in F (B) representing the same conjugacy class as wi.
Note that the words y′j need not be cyclically reduced. We choose letters bj ∈ B±1

such that each xj := bjzj is cyclically reduced over B and such that x1 . . . xm is
a freely reduced and cyclically reduced word over B. Let w′′

i be the cyclic word
obtained by cyclic concatenation w′′

i = x1 . . . xm.
By Lemma 4.3 we have∣∣∣∣dT (p, y′1 . . . y′mp) −

m∑
j=1

dT (p, zjp)
∣∣∣∣ ≤ 4mε ,

∣∣d(p, xjp) − d(p, zjp)
∣∣ ≤ ε , and∣∣∣∣dT (p, x1 . . . xmp) −

m∑
j=1

dT (p, zjp)
∣∣∣∣ ≤ 4mε .

Hence ∣∣dT (p, y′1 . . . y′mp) − dT (p, x1 . . . xmp)
∣∣ ≤ 12mε .

Since both y′1 . . . y′m and x1 . . . xm are cyclically reduced, Lemma 4.3 also implies∣∣dT (p, y′1 . . . y′mp) − ‖w′
i‖T

∣∣ ≤ 2ε ,∣∣dT (p, x1 . . . xmp) − ‖w′′
i ‖T

∣∣ ≤ 2ε , and hence∣∣‖w′
i‖T − ‖w′′

i ‖T

∣∣ ≤ 12mε + 4ε .

Thus
‖w′′

i ‖T ≤ ‖w′
i‖T + 12mε + 4ε .

Since x1, . . . , xm are cyclically reduced, Lemma 4.3 again implies that
m∑

j=1

‖xj‖T ≤ ‖w′′
i ‖T + 4mε ≤ ‖w′

i‖T + 16mε + 4ε .
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Therefore there exists j such that

‖xj‖T ≤ ‖w′
i‖T

m
+ 16ε +

4ε
m

≤ ‖w′
i‖T

m
+ 20ε .

Recall that wi and w′
i represent the same conjugacy class in F and so ‖wi‖T = ‖w′

i‖T .
Thus

‖xj‖T ≤ ‖wi‖T

m
+ 20ε =

‖wi‖T

‖wi‖A

‖wi‖A

m
+ 20ε ≤ ε1

K

α
+ 20ε ≤ 21ε

where the last inequality holds by the choice of ε1.
We now rewrite xj = bjzj as a freely reduced word in F (A) and then cyclically

reduce the result to get a cyclically reduced word sj in F (A). By definition of
n = nA,B, the construction of xj implies that the occurrence vj of v±1 in yj survives
intact in sj. Thus sj is a cyclically reduced word in F (A) containing v±1 as a
subword and satisfying ‖sj‖T ≤ 21ε. Since ε > 0 was arbitrary, this implies that
v ∈ L2(T ), as required. �

7 Approximating the Word Metric for a Graph of Groups

Convention 7.1. If G = 〈S〉 is a group with a finite-generating set S, we say that
a cyclic word w in S±1 is a cyclic λ-quasigeodesic with respect to dS if for every
vertex on w cutting w open at that vertex produced a word that is λ-quasigeodesic.
We will denote the Cayley graph of X with respect to S by X(G,S).

Lemma 7.2. Let G be a word-hyperbolic group with a fixed finite generating set
S and let λ > 0. Then there exists λ′ = λ′(λ, S,G) > 0 with the following property.
Suppose that w is a cyclic word in S±1 that is a cyclic λ-quasigeodesic for G with
respect to dS . Let w be subdivided as a cyclic concatenation w = v1 . . . vm where
each vi is a λ-quasigeodesic word in S±1. For i = 1, . . . ,m let zi be a another
λ-quasigeodesic word representing the same element of G as vi. Let w′ be the
cyclic word obtained by a cyclic concatenation w′ = z1 . . . zm. Then w′ is a cyclic
λ′-quasigeodesic.

Proof. The proof is a straightforward variation on the proof of a similar Lemma 3.4
in [Ka1] for a non-cyclic word and we leave the details to the reader. Note, however,
that the proof uses the fact that G is word-hyperbolic and hence the paths labelled by
zi and vi in the Cayley graph of G are ε-Hausdorff close, where ε = ε(λ,G, S) > 0. It
is not hard to see that the statement of this lemma in general fails for non-hyperbolic
groups, e.g. for Z

2. �

Notation 7.3 (Graph of groups notation). Let Y be a graph of groups [B], [S]. For
x ∈ V Y we will denote the vertex group of x by Gx and for e ∈ EY we will denote
the edge group of e by Ge. For e ∈ EY we denote the initial vertex of e by o(e) and
we denote the terminal vertex of e by t(e). For e ∈ EY we denote the corresponding
boundary monomorphisms by αe : Ge → Go(e) and ωe : Ge → Go(e). Recall that
according to the standard graph of groups conventions, for every e ∈ EY we have
Ge = Ge−1 , o(e) = t(e−1) and αe = ωe−1.
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Definition 7.4. Let Y is a finite connected reduced graph of groups with under-
lying graph Y , where all the vertex groups Gx, x ∈ V Y , are finitely generated. Let
Z ⊆ Y be a maximal tree in Y . Fix an orientation EY = E+Y � E−Y on Y , so
that for every e ∈ EY we have e ∈ E+Y iff e−1 ∈ E−Y .

Let G = π1(Y, Z). Then G has the presentation

G =
(
(�x∈V Y Gx) ∗ F (E+Y )

)/
〈
〈e−1αe(c)e = ωe(c), e ∈ E+Y, c ∈ Ge; e = 1, e ∈ E+Z〉

〉
.

Let Sx be a finite generating set of Gx for x ∈ V Y . Then

S = SY = E+Y
⋃

∪x∈V Y Sx

is a generating set of G that is said to be adapted to Y.
Recall that a Y-path from x ∈ V Y to x′ ∈ V Y is a sequence

α = g0, e1, g1, e2, . . . , en, gn

where e1, . . . , en is an edge-path in Y with the vertex sequence x = x0, x1, . . . , xn = x′

and where gi ∈ Gxi . A Y-path α as above is Y-reduced if it does not contain a sub-
sequence of the form

e, ωe(c), e−1,

where e ∈ EY and c ∈ Ge.
We say that a word W in S±1

Y is a path-word for Y if it has the form

W = w0e1w1 . . . enwn

where e1, . . . , en is an edge-path in Y with the vertex sequence x0, x1, . . . , xn and
where wi is a word in S±1

xi
. Note that any path-word W as above defines a Y-path

α = g0, e1, g1, e2, . . . , en, gn, where gi ∈ Gxi is the group element represented by wi.
We say that a path-word W as above is a Y-reduced path word if it defines a

Y-reduced Y-path.
In a similar way, one defines the notions of a cyclic Y-path, Y-reduced cyclic

Y-path, a cyclic path-word for Y and a Y-reduced cyclic path-word for Y.

Convention 7.5. Let A be another finite generating set for G = π1(Y, Z).
For each element of SY choose its representation as a word in A. Using these
representations for substitution, any (cyclic) word W in S±1

Y defines a (cyclic) word
W̃ in A±1.

Proposition 7.6. Let G be a word-hyperbolic group and let G = π1(Y, Z) be a
splitting of G where Y is a finite graph of groups, and where Z ⊆ Y is a maximal
subtree. Suppose that each vertex group Gx is quasiconvex in G. Let Sx be a finite
generating set of Gx for each x ∈ V Y and let

SY = E+Y
⋃

∪x∈V Y Sx

be a generating set of G adapted to Y. Let A be any other finite generating set
of G.

There exist λ > 0 and ε > 0 with the following properties:
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(1) For any g ∈ F , g 	= 1 there exists a Y-reduced path-word W representing g
such that W is λ-quasigeodesic with respect to dSY .
Moreover, if w ∈ (A ∪ A−1)∗ is a dA-geodesic representing g, then the paths
from 1 to g labelled by w and W̃ in X(F,A) are ε-Hausdorff close.

(2) For any conjugacy class [g], g ∈ F , g 	= 1, there exists a Y-reduced cyclic
path-word representing [g] such that W is a cyclic λ-quasigeodesic with re-
spect to dSY .
Moreover, let w be a cyclic word over A±1 which is a cyclic dA-geodesic
representing [g]. Then there is a function f from the vertex set of w to
the vertex set of W with the following properties. For every vertex x on w
cutting open w at x and W at f(x) produces a dA-geodesic word wx and a
Y-reduced path-word Wx accordingly. Additionally, there exist paths p and
p′ in X(G,A) labelled by wx and W̃x such that there initial vertices are at
most ε-apart, their terminal vertices are at most ε-apart and, for any other
vertex y on w the vertices on p and p′ corresponding to y and f(y) are at
most ε-apart in X(G,A).

Proof. Part (1) of the lemma is essentially the same as Proposition 5.1 in [Ka2]. We
will briefly indicate the proof of part (2) that is similar to the proof of Proposition 5.1
in [Ka2].

To see that part (2) holds, we first replace g by a dSY -shortest element g′ ∈ [g].
Let Ŵ be a dSY -geodesic representative of g′. Then, by the choice of g′, every cyclic
permutation of Ŵ is a dSY -geodesic. Recall that Z is a maximal tree in Y .

Let W0 be the cyclic word defined by Ŵ . Thus W0 is a cyclic dSY -geodesic. By
inserting in W0 several subwords in the alphabet EZ (which therefore represent the
trivial element of G) of length ≤ #EZ each, we can obtain a new cyclic word W1
that is a cyclic path-word for Y. By Lemma 7.2 W1 is a cyclic λ1-quasigeodesic for
some constant λ1 > 0. However, W1 need not be Y-reduced.

We say that a subsegment v of W1 is a pinch if v has the form v = eue−1 and v
represents an element of the edge group ωe(Ge). Note that we DO NOT require u to
be a word in the generating set of the vertex group Gt(e). We say that a collection
of pinches v1, . . . , vm in W1 is separated if the segments v1, . . . , vm do not overlap
in W1.

Let each of v1, . . . , vm and v′1, . . . , v′l be a separated collection of pinches in W1.
We say that v1, . . . , vm is dominated by v′1, . . . , v

′
l if for each vi there is some v′j such

that the segment vi is contained in the segment vj in W1.
Now take v1 = e1u1e

−1
1 , . . . , vm = emume−1

m be a maximal (with respect to
dominance) separated collection of pinches in W1. Replace each vi in W1 by its
geodesic representative in the generators of the vertex group Go(ei). Denote the
resulting cyclic word by W .

Since the vertex groups are quasiconvex in G, Lemma 7.2 implies that the cyclic
word w is a cyclic λ2-quasigeodesic for some constant λ2 > 0. The maximality of
the choice of v1, . . . , vm implies that W is a Y-reduced cyclic path-word.
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Establishing the remaining properties of W asserted in part (2) of the proposition
is a straightforward δ-hyperbolic exercise and we leave the details to the reader. �

8 The Discrete Action Case

Convention 8.1. For the remainder of this section, let F be a finitely generated
nonabelian free group. We fix a very small splitting F = π1(Y, Z), where Y is a
finite connected reduced graph of groups with a maximal tree Z, where all edge
groups are cyclic (and hence all vertex groups are finitely generated free groups).
We fix an orientation on Y and choose a finite generating set

SY = E+Y
⋃

∪x∈V Y Sx

for F that is adapted to Y.
Let V ′Y denote the set of all x ∈ V Y such that the vertex group Gx is non-cyclic.

Let TY be the Bass–Serre tree corresponding to the splitting F = π1(Y, Z).
We also fix a free basis A for F .

Lemma 8.2. Let L = L2(TY) and let v ∈ F (A) be freely reduced. Then v ∈ LA if
and only if for some vertex x ∈ V ′Y the word v can be read as the label of a path
in the core of the Stallings subgroup graph for Gx with respect to F (A). That is,
L = ∪x∈V ′Y iΛ(∂2Gx)

Proof. Note first that, since Y defines a very small splitting of F , every cyclic vertex
group of Y is contained in some non-cyclic vertex group. Hence every word in F (A)
readable in the core of the Stallings subgroup graph of a cyclic vertex group is also
readable in the core of the Stallings subgroup graph of a non-cyclic vertex group.

Since the action of F on TY is discrete, there is some c > 0 such that for every
f ∈ F either ‖f‖TY ≥ c or else f is conjugate to an element of some Gx, x ∈ V Y and
‖f‖TY = 0. Therefore, in view of the above remark, by definition of L = L2(TY ), for
v ∈ F (A) we have v ∈ LA if and only if v is a subword of some cyclically reduced
word in F (A) representing an element conjugate to an element of some Gx, x ∈ V ′Y .
This implies the statement of the lemma. �

The following lemma is an easy corollary of the definitions.
Lemma 8.3. Let H ≤ F (A) be a finitely generated subgroup. Let M be the
number of edges in the Stallings subgroup graph ΓH of H with respect to F (A).
Let z1, w, z2 be freely reduced words in F (A) such that |z1|, |z2| ≤ c and such that
z1 · w · z2 ∈ H (we do not assume this product to be freely reduced). Let w be
written as a reduced product w = w1w

′w2 where |w1|A, |w2|A ≥ c + M . Then w′

can be read as the label of a path in the core of the graph ΓH .

Proposition 8.4. Let F be as in Convention 8.1. Let T = TY be the Bass–Serre
tree corresponding to Y. Let µ ∈ Curr(F ) be such that 〈T, µ〉 = 0.

Then supp(µ) ⊆ L2(T ).

Proof. Choose a free basis A of F . By re-scaling we may assume that ‖µ‖A = 1.
Let wi be a sequence of reduced cyclic words wi in F (A) such that limi→∞

ηwi
‖wi‖ = µ.



1450 I. KAPOVICH AND M. LUSTIG GAFA 

Since 〈T, µ〉 = 0, we have limi→∞
‖wi‖T

‖wi‖A
= 0. As before, by taking powers if necessary,

we may assume that limi→∞ ‖wi‖A = ∞. We need to show that supp(µ) ⊆ L2(T ).
Let λ, ε > 0 be as provided by Proposition 7.6. Let M be the maximum of the

numbers of edges among the Stallings subgroups graphs with respect to F (A) for
the subgroups Gx, x ∈ V Y .

Let v ∈ F (A) be a freely reduced word such that v ∈ suppA(µ). Thus 〈v, µ〉A > 0.
Then there exists a freely reduced word v′ = u1vu2 such that α := 〈v′, µ〉A > 0 and
such that |u1|A, |u2|A ≥ M + ε. We may assume that for every i ≥ 1 we have

α/2 ≤ 〈(v′)±1, wi〉
‖wi‖A

≤ 2α .

Let Wi be a cyclically λ-quasigeodesic Y-reduced cyclic path-word representing
the same conjugacy class in F as wi.

Fix N � ε.
By the same argument as in the proof of Proposition 6.1 we may find m distinct

occurrences v1, . . . , vm of (v′)±1 in wi such that N -neighborhoods of v1, . . . , vm do
not overlap in wi and such that

α

K
≤ m

‖wi‖A
≤ 2α ,

where K = 8N + 4|v′|.
For each j = 1, . . . ,m let xj, x

′
j be the initial and terminal vertices of vj in wi.

Let Vj be the segment of Wi from f(xj) to f(x′
j). The fact that the occurrences

v1, . . . , vm of (v′)±1 in w have non-overlapping N -neighborhoods implies that the
segments V1, . . . , Vm in Wi have no overlaps.

Suppose first that for every wi each Vj contains an occurrence of some e ∈ EY .
Then ‖wi‖T = ‖Wi‖T ≥ m. Hence for every i ≥ 1

‖wi‖T

‖wi‖A
≥ m

‖wi‖A
≥ α

K
> 0 .

This contradicts the assumption that limi→∞
‖wi‖T

‖wi‖A
= 0. Thus there is some wi such

that some Vj contains no occurrences of EY . Since Wi is a cyclic path-word for Y,
this implies that there is some vertex x of Y such that Vj is a word in S±1

x .
Proposition 7.6 implies that in X(F,A) there are paths α1, α2 labelled by v′ and

a word in S±1
x accordingly, such that the initial vertices of α1, α2 are at most ε-apart

and the terminal vertices of α1, α2 are at most ε-apart. Recall that v′ = u2vu2 where
|u1|, |u2| ≥ M + ε. Therefore by Lemma 8.3 v can be read as a path in the Stallings
core graph of Gx = 〈Sx〉 ≤ F (A). Hence by Lemma 8.2 v ∈ L2(T )A, as required. �

9 Restricting Geodesic Currents to Subgroups

Definition 9.1 (Restriction of a current to a subgroup). Let H ≤ F be a finitely
generated nonabelian subgroup. Since H is quasiconvex in F , we have a canoni-
cal H-equivariant topological embedding ∂H ⊂ ∂F which induces a canonical H-
equivariant topological embedding ∂2H ⊂ ∂2F . Let µ ∈ Curr(F ). We define the
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restricted current µ|H as follows. For any Borel subset S ⊆ ∂2H put µ|H(S) := µ(S).
It is easy to see that µ|H is an H-invariant measure on ∂2H, that is µ|H ∈ Curr(H).

Denote rH : Curr(F ) → Curr(H), rH(µ) = µ|H for µ ∈ Curr(F ).

Remark 9.2. In the above definition, the restricted current µ|H depends only on
µ and the conjugacy class of H in F in the following sense. Let f ∈ F and put
H1 = fHf−1. Consider an isomorphism α : H → H1 defined as α(h) = fhf−1

for h ∈ H. Then α induces an α-equivariant homeomorphism α̂ : ∂2H → ∂2H1.
Hence α̂ induces a canonical isomorphism ᾰ : Curr(H) → Curr(H1) defined as
(ᾰν)(S1) = ν(α̂−1(S1)) for any ν ∈ Curr(H) and S1 ⊆ ∂2H1.

It is not hard to check that for any µ ∈ Curr(F ) we have ᾰ(µ|H) = µ|H1 .
The following is an immediate corollary of the definitions.

Proposition 9.3. Let H ≤ F be a finitely generated nonabelian subgroup. Then
rH : Curr(F ) → Curr(H) is a linear continuous map.

Notation 9.4. Let G be a group and g ∈ G be an element. We denote by [g]G the
conjugacy class of g in G.

The proof of the following lemma given below was suggested to the authors by
Gilbert Levitt.
Lemma 9.5. Let H ≤ F be a finitely generated subgroup.

(1) There exists an integer n ≥ 1 with the following property. For every h ∈ H
there exist h1, . . . , hm ∈ H with m ≤ n such that

[h]F ∩ H = [h1]H ∪ [h2]H ∪ · · · ∪ [hm]H .

We denote by nH,F the smallest n ≥ 1 with this property.
(2) There exists an integer n1 ≥ 1 with the following property. Let h ∈ H be any

nontrivial element that is not a proper power in H. Represent h as h = fd

where f ∈ F is not a power and d ≥ 1. Then d ≤ n1.
We denote by dH,F the smallest n1 ≥ 1 with this property.

(3) A finitely generated subgroup H ≤ F is malnormal if and only if nH,F =
dH,F = 1.

Proof. It is easy to see that if H ≤ F is malnormal then nH,F = dH,F = 1 satisfy
the requirements of the lemma. Similarly, if nH,F = dH,F = 1, it is not hard to show
that H ≤ F is malnormal. Thus part (3) of the lemma holds.

Suppose now that H ≤ F is an arbitrary finitely generated subgroup. By Mar-
shall Hall’s theorem there exist subgroups K,U ≤ F such that U = 〈H,K〉 = H ∗K
has finite index in F . Let p = [F : U ]. Choose f1, . . . , fp ∈ F such that F =
∪p

j=1Ufj.
Let h ∈ H, h 	= 1 be arbitrary. Let J = {j | 1 ≤ j ≤ p, f−1

j hfj ∈ U}. Every
element of F has the form ufj, where u ∈ U , 1 ≤ j ≤ p. Hence it is obvious that

[h]F ∩ U = ∪j∈J [f−1
j hfj]U

Let J ′ = {j ∈ J : f−1
j hfj ∈ H}. Since H ≤ U = H ∗K is malnormal in U , it follows

that for j ∈ J ′ we have
[f−1

j hfj]U ∩ H = [f−1
j hfj ]H



1452 I. KAPOVICH AND M. LUSTIG GAFA 

and for j ∈ J − J ′ we have
[f−1

j hfj]U ∩ H = ∅ .

Therefore
[h]F ∩ H = ∪j∈J ′ [f−1

j hfj ]H .

Since h ∈ H, h 	= 1, was arbitrary, we see that nH,F ≤ p = [F : U ] and part (1) of
the lemma is proved.

Now let U1 ≤ U be such that U1 ≤ F is normal and of finite index. Let
q = [F : U1]. It is obvious that for any f ∈ F we have f q ∈ U1 and thus f q ∈ U .

Now let h ∈ H, h 	= 1, be an element that is not a proper power in H. Let
h = fd where f ∈ F , d ≥ 1, and where f ∈ F is not a proper power. Note
that since H ≤ U = U ∗ K is malnormal in U , it follows that h is not a proper
power in U . Let t ≥ 1 be the smallest such that f t ∈ U . Note that, by the above
remark, t ≤ q = [F : U1]. Note also, that, since H is a free factor of U and since
(f t)d = ht ∈ H, it follows that f t ∈ H.

Suppose that d > t. If d is divisible by t, d = ts, then f t ∈ U and f ts ∈ H, where
s > 1. Since f t ∈ H and h = (f t)s, this contradicts our assumption that h ∈ H is
not a proper power in H. If d is not divisible by t, we can write d = ts + r where
0 < r < t. Since fd = h ∈ U , f t ∈ U , it follows that f r ∈ U . Since 0 < r < t, this
contradicts the choice of t. Thus d ≤ t ≤ q = [F : U1]. Hence dH,F ≤ [F : U1] and
part (2) of the lemma is proved. �

The next lemma follows easily from the definitions of counting currents in terms
of delta-functions.
Lemma 9.6. Let H ≤ F be a nonabelian finitely generated subgroup. Let h ∈ H
be a nontrivial element such that h is not a proper power in H. Let h1, . . . , hm ∈ H
be pairwise non-conjugate elements such that [h]F ∩H = [h1]H ∪ [h2]H ∪· · ·∪ [hm]H .
Let h = fd where d ≥ 1 and f ∈ F is not a proper power in F .

Then,

(1) We have ηF
h |H = d

∑m
i=1 ηH

hi
.

(2) If H ≤ F is malnormal then d = m = 1 and ηF
h |H = ηH

h .

Lemma 9.7. Let H ≤ F be a finitely generated subgroup. Let A be a free basis of
F and let ΓH be the Stallings subgroup graph for H ≤ F with respect to A.

Let µ ∈ Curr(F ). Then supp(µ) ⊆ iΛ(∂2H) if and only if for every v ∈ F (A)
with 〈v, µ〉 > 0 there is a reduced edge-path labelled by v in Core(ΓH). That is,
supp(µ) ⊆ iΛ(∂2H) if and only if for each v ∈ F (A) that cannot be read along a
reduced path in Core(ΓH) we have 〈v, µ〉 = 0.

Proof. Note that the convex hull T of ∂H in X(F,A) is a minimal H-invariant
subtree in X(F,A) and that T can also be seen as a copy of the universal cover of
Core(ΓH) in X(F,A).

It is not hard to see that for v ∈ F (A) exactly one of the following two alternatives
holds:

(a) Every segment labelled by v in X(F,A) is contained in some F -translate of T
in F (X,A) and every such segment defines a two-sided cylinder that intersects
nontrivially some F -translate of ∂2H in ∂2F .
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(b) No segment labelled by v in X(F,A) is contained in an F -translate of T and
every such segment defines a two-sided cylinder that is disjoint from every
F -translate of ∂2H in ∂2F .

This fact immediately implies the statement of the lemma. �

Notation 9.8. Let H ≤ F be a finitely generated subgroup. We denote by
CurrH(F ) the set of all µ ∈ Curr(F ) such that supp(µ) ⊆ iΛ(∂2H).

Lemma 9.7 immediately implies
Lemma 9.9. Let H ≤ F be a finitely generated subgroup. Then CurrH(F ) is a
closed affine subspace of Curr(F ).

Proposition 9.10. Let H ≤ F be a finitely generated subgroup and let µ ∈
CurrH(F ). Then there exist a sequence hi ∈ H and a sequence λi ≥ 0 such that

µ = lim
i→∞

λiη
F
hi

.

Proof. Fix a free basis A of F . By re-scaling we may assume that ‖µ‖A = 1. Let wi

be a sequence of reduced cyclic words in F (A) such that limi→∞
ηwi

‖wi‖A
= µ.

Let ΓH be the Stallings subgroup graph of H with respect to A. Let C > 0
be such that for any directed edges e, e′ in Core(ΓH) there exists an edge-path p of
length ≤ C in Core(ΓH) such that epe′ is a reduced edge-path in Core(ΓH).

It suffices to prove that for every M ≥ 1 and every ε > 0 there exists a cyclic
path in Core(ΓH) labelled by a cyclic word w such that for every v ∈ F (A) with
|v|A = M we have ∣∣∣∣ 〈v

±1, w〉
‖w‖A

− 〈v, µ〉
∣∣∣∣ ≤ ε . (∗∗)

Let an integer M ≥ 1 and a real number ε > 0 be arbitrary. Let α =
max|v|A=M 〈v, µ〉.

Choose an integer N > M ≥ 1 be such that

(α + ε)(1 − N

N + C
) ≤ ε ,

and such that M+C
N ≤ ε

3 .
By replacing wi by their high powers if necessary, we may assume that ‖wi‖A is

divisible by N for every i ≥ 1 and that limi→∞ ‖wi‖A = ∞.
Since µ = limi→∞ 1

‖wi‖A
ηwi , there exists i0 ≥ 1 such that for every i ≥ i0 and

every v ∈ F with |v|A = M we have∣∣∣∣ 〈v
±1, wi〉
‖wi‖A

− 〈v, µ〉
∣∣∣∣ ≤ ε .

Hence, by the choice of N , for any v ∈ F with |v|A = M and for any 0 ≤ x ≤
〈v±1, wi〉 we have ∣∣∣∣ x

‖wi‖A
− x

‖wi‖A

N

N + C

∣∣∣∣ ≤ ε .

Let ε1 > 0 be such that Nε1 ≤ ε/3.
Let i ≥ i0. Put m = ‖wi‖A/N and write wi as a cyclic concatenation wi =

y1 . . . ym of segments of length N . As before, for j = 1, . . . ,m we say that yj is good
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if yj ∈ supp(µ) and say that yj is bad otherwise. Let m = mbad + mgood where mbad

is the number of those j = 1, . . . ,m such that yj is bad.
Since limi→∞

ηwi
‖wi‖A

= µ, for any fixed freely reduced word v ∈ F (A) of length
N the symmetrized frequencies 〈v±1, wi〉A/‖wi‖A of v in wi converge to 〈v, µ〉A as
i → ∞. In particular, if v 	∈ suppA(µ), these frequencies converge to zero. It follows
that there exists i1 ≥ i0 such that for every i ≥ i1 we have mbad ≤ ε1‖wi‖A.

Let i ≥ i1. For each j = 1, . . . ,m such that yj is good, choose a path pj in
Core(ΓH) labelled by yj and put zj = yj in this case. For each j such that yj is bad
choose any reduced path pj of length N in Core(ΓH). Put zj to be the label of pj

in this case.
Finally, choose reduced paths p′1, . . . , p

′
m in Core(ΓH), of length ≤ C each, such

that p1p
′
1p2p

′
2 . . . pjp

′
j defines a reduced cyclic path α in Core(ΓH). Let rj be the

label of p′j. Then the label of the cyclic path α is the cyclic word w′
i obtained as a

cyclic concatenation
w′

i = z1r1 . . . zmrm .

Since |zj | = N and |rj | ≤ C, we have
‖wi‖A ≤ ‖w′

i‖A ≤ ‖wi‖A + mC ,

and hence
1 ≤ ‖w′

i‖A

‖wi‖A
≤ 1 +

C

N
. (†)

Note that by construction w′
i represents the F -conjugacy class of some hi ∈ H.

Let v ∈ F (A) be any freely reduced word of length M . We want to compare
the frequencies of v in wi and w′

i. We say that an occurrence of v±1 in wi is good
if it lies in some good yj and that this occurrence is bad otherwise. Let 〈v±1, wi〉 =
〈v±1, wi〉good + 〈v±1, wi〉bad where 〈v±1, wi〉good is the number of good occurrences of
v in wi. Note that

〈v±1, wi〉bad ≤ Nmbad + Mm ≤ Nε1‖wi‖A + Mm .

Hence 〈v±1, wi〉bad

‖wi‖A
≤ Nε1 +

M

N
≤ ε .

Thus ∣∣∣∣〈v
±1, wi〉good

‖wi‖A
− 〈v±1, wi〉

‖wi‖A

∣∣∣∣ ≤ ε .

Similarly, we say that an occurrence of v±1 in w′
i is good if it lies within some

zj = yj where yj is good, and that an occurrence of v±1 in w′
i is bad otherwise.

We have
〈v±1, w′

i〉bad ≤ Nmbad + Mm + Cm ≤ Nε1‖wi‖A + Mm + Cm .

Hence 〈v±1, w′
i〉bad

‖wi‖A
≤ Nε1 +

M

N
+

C

N
.

Therefore
〈v±1, w′

i〉bad

‖w′
i‖A

=
〈v±1, wi〉bad

‖wi‖A

‖wi‖A

‖w′
i‖A

≤ Nε1 +
M

N
+

C

N
≤ ε

since ‖wi‖A ≤ ‖w′
i‖A.
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Hence ∣∣∣∣〈v
±1, w′

i〉good

‖w′
i‖A

− 〈v±1, w′
i〉

‖w′
i‖A

∣∣∣∣ ≤ ε .

Note that by construction 〈v,w′
i〉good = 〈v,wi〉good.

Hence by (†)
〈v±1, wi〉good

‖wi‖A
≥ 〈v±1, w′

i〉good

‖w′
i‖A

=
〈v±1, wi〉good

‖wi‖A

‖wi‖A

‖w′
i‖A

≥ 〈v±1, wi〉good

‖wi‖A

N

N + C
.

Hence by the choice of N we have∣∣∣∣〈v
±1, wi〉good

‖wi‖A
− 〈v±1, w′

i〉good

‖w′
i‖A

∣∣∣∣ ≤ ε.

Therefore ∣∣∣∣〈v
±1, w′

i〉
‖w′

i‖A
− 〈v±1, wi〉

‖wi‖A

∣∣∣∣ ≤ 3ε

and hence ∣∣∣∣ 〈v
±1, w′

i〉
‖w′

i‖A
− 〈v, µ〉

∣∣∣∣ ≤ 4ε.

Since w′
i represents an element conjugate in F to an element of H, we have

verified that for any ε > 0 and any integer M ≥ 1 condition (∗∗) holds. This implies
the statement of the proposition. �

Proposition 9.11. Let H ≤ F be a nonabelian finitely generated subgroup. Let
T be an R-tree with a very small isometric action of F such that H acts nontrivially
on T . Let TH be the smallest H-invariant subtree.

Let µ ∈ Curr(F ) be such that supp(µ) ⊆ iΛ(∂2H). Then,

(1) We have
〈T, µ〉 ≤ 〈TH , µ|H〉 ≤ nH,F dH,F 〈T, µ〉 .

(2) Moreover, if H ≤ F is malnormal, then

〈T, µ〉 = 〈TH , µ|H〉 .

Proof. By Proposition 9.10, there exist a sequence hi ∈ H and a sequence λi ≥ 0
such that

µ = lim
i→∞

λiη
F
hi

.

We may assume that each hi is nontrivial and is not a proper power in H. For each
i let 1 ≤ mi ≤ nH,F and hi,1, . . . , hi,mi ∈ H be such that

[hi]F ∩ H = ∪mi
j=1[hi,j ]H .

Let 1 ≤ di ≤ dH,F be such that in F we have hi = fdi
i where fi is not a proper

power in F .
Then by Lemma 9.6 ηF

hi
|H = di

∑mi
j=1 ηH

hi,j
. Hence

µ|H = lim
i→∞

λidi

mi∑
j=1

ηH
hi,j

.

Note that ‖hi‖T = ‖hi,j‖TH
.
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We have
〈T, µ〉 = lim

i→∞
λi‖hi‖T .

Also,

〈TH , µ|H〉 = lim
i→∞

λidi

mi∑
j=1

‖hi,j‖TH
= lim

i→∞
λidimi‖hi‖T . (∗)

Since 1 ≤ dimi ≤ nH,F dH,F , (∗) implies that

〈T, µ〉 ≤ 〈TH , µ|H〉 ≤ nH,F dH,F 〈T, µ〉 .

Moreover, if H ≤ F is malnormal then nH,F = dH,F = 1 and hence

〈T, µ〉 = 〈TH , µ|H〉 ,

as required. �

10 The General Case

In this section we will prove that for an arbitrary very small action of F on an R-tree
T the condition 〈T, µ〉 = 0 implies that supp(µ) ⊆ L2(T ).

We need the following basic fact about the structure of a general very small
action (see Remark 2.1 in [CouHL2]).
Proposition–Definition 10.1 [CouHL2]. Let F be a nonabelian finitely gen-
erated group with a very small minimal isometric action on an R-tree T . Suppose
that this action is neither discrete nor has dense orbits.

Then there exists an F -invariant collection V of disjoint closed subtrees of T with
the following properties:

(1) The family V consists of a finite number of distinct F -orbits of closed subtrees
of T .

(2) For every tree T ′ ∈ V the set-wise stabilizer H = StabF (T ′) of T ′ in F is a
finitely generated subgroup of F . Moreover, either H acts on T ′ with dense
orbits or T ′ is a single point that is fixed by H.

(3) Let Ts be an R-tree obtained from T by collapsing all subtrees from T to
points and let q : T → Ts be the corresponding F -equivariant quotient map.
Then the action of F on T factors through to an isometric action of F on Ts

that is very small, minimal and discrete.
(4) The quotient Y = Ts/F is a finite reduced graph of groups where the vertex

groups correspond to setwise F -stabilizers of trees from V and where the
edge-lengths correspond to distances in T between F -orbits of the trees from
V representing the end-points of the edge in question.

Lemma 10.2. Let q : T → Ts be as in Proposition–Definition 10.1. Then the
following hold:

(1) For every f ∈ F and every p ∈ T we have dTs(q(p), fq(p)) ≤ dT (p, fp).
(2) For every f ∈ F we have ‖f‖Ts ≤ ‖f‖T .
(3) For every µ ∈ Curr(F ) we have 〈Ts, µ〉 ≤ 〈T, µ〉.
(4) We have L2(T ) ⊆ L2(Ts).
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Proof. Part (1) follows from the definition of q : T → Ts. Part (1) obviously implies
part (2). It is also easy to see that part (2) implies parts (3) and (4).

Indeed, let µ ∈ Curr(F ). Write µ as µ = limi→∞ λiηgi for some gi ∈ F , λi ≥ 0.
Then

〈Ts, µ〉 = lim
i→∞

λi‖gi‖Ts ≤ lim
i→∞

λi‖gi‖T = 〈T, µ〉 ,

so that part (3) holds. To see that part (4) holds, fix a free basis A of F . Suppose
v ∈ F (A) is such that v ∈ [L2(T )]A. Then for any ε > 0 there is a cyclically reduced
w with ‖w‖T ≤ ε and with v being a subword of w. Then ‖w‖Ts ≤ ‖w‖T . Since
ε > 0 was arbitrary, it follows that v ∈ [L2(Ts)]A, as required. �

Convention 10.3. For the remainder of this section and the subsequent section,
let F , T , Ts and Y be as in Proposition–Definition 10.1. For each vertex x ∈ V Y
let Gx ≤ F be a subgroup corresponding to the vertex group of x of Y . We will
denote by V ′Y the set of all those v ∈ V Y such that the vertex group of x in Y is
not cyclic.

Proposition 10.4. Let µ ∈ Curr(F ) be such that

supp(µ) ⊆ L2(Ts) =
⋃

x∈V ′Y

iΛ(∂2Gx) .

Then there exist currents µx ∈ Curr(F ), x ∈ V ′Y , such that µ =
∑

x∈V ′Y µx and
such that supp(µx) ⊆ iΛ(∂2Gx) for every x ∈ V ′Y .

Proof. There is a finite collection of nontrivial elements g1, . . . , gp ∈ F such that if for
some x1, x2 ∈ V ′Y , x1 	= x2, and some f1, f2 ∈ G we have f1Gx1f

−1
1 ∩f2Gx2f

−1
2 	= 1,

then f1Gx1f
−1
1 ∩ f2Gx2f

−1
2 is a cyclic group generated by a conjugate of the power

of some gi in F . Indeed, suppose that H = f1Gx1f
−1
1 ∩ f2Gx2f

−1
2 	= 1. Then H

fixes a segment in Ts joining a vertex v1 of Ts projecting to x1 with a vertex v2 of Ts

projecting to x2. Hence H fixes an edge of Ts adjacent to v1 . This implies that H
is conjugate to a subgroup of the edge-group for an edge adjacent to x1 in Y. Thus
we can take g1, . . . , gp ∈ F to be the generators of the nontrivial edge-groups of Y.

One can then show that if x1, x2 ∈ V ′Y , x1 	= x2 and a point (ξ, ζ) ∈ ∂2F belongs
to iΛ(∂2Gx1) ∩ iΛ(∂2Gx2) then for some 1 ≤ i ≤ p the point (ξ, ζ) is an F -translate
of (g−∞

i , g∞i ) or of (g∞i , g−∞
i ). To see this, choose a free basis A of F and suppose

that (ξ, ζ) ∈ iΛ(∂2Gx1) ∩ iΛ(∂2Gx2). Then the bi-infinite geodesic joining ξ to ζ
in the Cayley graph X(F,A) is labelled by a bi-infinite freely reduced word w that
can be read along some bi-infinite paths in cores of the Stallings subgroup graphs
ΓGx1

and ΓGx2
. Therefore (see [KaM]) w can be read along a bi-infinite path in a

connected component of the “Stallings product graph” ΓGx1
× ΓGx2

(also known as
the push-out of ΓGx1

and ΓGx2
). Hence (again see [KaM]) the bi-infinite word w is

readable along some path in the core of the Stallings subgroup graph for a subgroup
of the form f1Gx1f

−1
1 ∩ f2Gx2f

−1
2 for some f1, f2 ∈ F . Therefore w is an infinite

power of some gi, as required.
For 1 ≤ i ≤ p put λi = µ({(g−∞

i , g∞i )}) = µ({(g∞i , g−∞
i )}). Thus λi ≥ 0.
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Hence we can represent µ as

µ = ν +
p∑

i=1

λiηgi

where ν ∈ Curr(F ) is a geodesic current, and where for every 1 ≤ i ≤ p the
current ν has no atom at (g−∞

i , g∞i ), and hence it has no atom at every F -translate
of (g−∞

i , g∞i ) or of (g∞i , g−∞
i ). Here by saying that a measure has no atom at a

particular point we mean that the measure of a singleton consisting of that point is
equal to zero.

For the current ν the statement of the proposition is obvious. Indeed, for
S ⊆ ∂2F and for x ∈ V ′Y put

νx(S) = ν
(
S ∩ iΛ(∂2Gx)

)
.

It is not hard to check that for every x ∈ V ′Y we have νx ∈ Curr(F ) and
supp[νx] ⊆ iΛ(∂2Gx), and that ν =

∑
x∈V ′Y νx.

Note that for every 1 ≤ i ≤ p there is some (not necessarily unique) x(i) =
x ∈ V ′Y such that supp(ηgi) ⊆ iΛ(∂2Gx).

For every x ∈ V ′Y put µx to be the sum of νx and all those λiηgi for which
x(i) = x. Then µ =

∑
x∈V ′Y µx and supp(µx) ⊆ iΛ(∂2Gx) for every x ∈ V ′Y , as

required. �

Note that the decomposition µ =
∑

x∈V ′Y µx in Proposition 10.4 is, in general,
non-canonical.
Proposition 10.5. Let H ≤ F = F (A) be a finitely generated subgroup and let
µ ∈ CurrH(F ).

Then supp(µ) ⊆ iΛ(supp(µ|H)).

Proof. Let ΓH be the Stallings subgroup graph of H with respect to A and let
∆H = Core(ΓH). Note that the minimal H-invariant subtree XH ⊆ X(F,A) is a
copy of ∆̃H in X(F,A).

By conjugating H if necessary, without loss of generality we may assume that
in fact ∆H = ΓH , so that the base-vertex y ∈ V ΓH is a vertex of ∆H . Then
(ΓH , y) provides a canonical isomorphism (simplicial chart) α : H → π1(ΓH , y).
This isomorphism in turn provides a canonical H-equivariant identification of ∂H
with ∂Γ̃H = ∂XH and a corresponding H-equivariant identification of ∂2H with
∂2XH . From this point on we will assume that these identifications are made without
additional comment.

Recall that the lamination L := iΛ(supp(µ|H)) ∈ Λ2(F ) has the form

L = ∪f∈F f supp(µ|H) .

Let v ∈ F (A) be such that v ∈ suppA(µ), so that 〈v, µ〉A > 0. We need to show
that v ∈ LA.

Fix a segment [x, y] in XH labelled by v.
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Since supp(µ) ⊆ iΛ(∂2H), we know that

〈v, µ〉 = µ
(
CylX([x, y])

)
= µ

(
CylX([x, y]) ∩ (∪f∈F f∂2H)

)
=

⋃
f∈F

(
CylX([x, y]) ∩ f∂2H

)
> 0 .

Since µ is countably additive, there is some f ∈ F such that

µ
(
CylX([x, y]) ∩ f∂2H

)
= µ

(
f−1 CylX([x, y]) ∩ ∂2H

)
> 0 .

It is easy to see that if [x, y] is not contained in fXH then CylX([x, y]) and f∂2H
are disjoint. Hence we have that [x, y] ⊆ fXH and that [x, y] is labelled by v in
X = X(F,H). Thus there is a reduced path p in ∆H labelled by v such that
[x′, y′] := f−1[x, y] ⊆ XH = ∆̃H is a lift of p in ∆̃H . Note that f−1 CylX([x, y]) =
CylX([x′, y′]) so that µ(CylX([x′, y′]) ∩ ∂2H) > 0. It is easy to see that

CylX
(
[x′, y′]

)
∩ ∂2H = CylXH

(
[x′, y′]

)
⊆ ∂2H .

Therefore by definition of µ|H we have

µ|H
(
CylXH

([x′, y′])
)

= µ
(
CylXH

([x′, y′])
)

= µ
(
CylX([x′, y′]

)
∩ ∂2H) > 0 .

Thus 〈p, µ|H〉α > 0 and hence p ∈ suppα(µ|H). Since v ∈ F (A) is the label of p,
it follows that v ∈ LA where L = iΛ(suppµ|H), as required. �

Proposition 10.6. Let x ∈ V ′Y and let µ ∈ Curr(F ) be such that
supp(µ) ⊆ iΛ(∂2Gx) and 〈T, µ〉 = 0. Then supp(µ) ⊆ L2(T ).

Proof. Denote H = Gx. Fix a free basis A of F and a free basis B of H. If H fixes
a vertex of T then iΛ(∂2H) ⊆ L2(T ) and the statement is obvious. Suppose that H
acts nontrivially on T and let TH be the minimal H-invariant subtree of T . Then
H acts on TH with dense orbits.

Since supp(µ) ⊆ iΛ(∂2H) and 〈T, µ〉 = 0, Proposition 9.11 implies that 〈TH , µ|H〉
= 0. Since H acts on TH with dense orbits, we know by Proposition 6.1 that
supp(µ|H) ⊆ L2(TH) ⊆ ∂2H.

Since supp(µ) ⊆ iΛ(∂2H), Proposition 10.5 implies that supp(µ) ⊆ iΛ(supp(µ|H))
and hence

supp(µ) ⊆ iΛ
(
L2(TH)

)
.

It is easy to see that iΛ(L2(TH)) ⊆ L2(T ) and the statement of the proposition
follows. �

Theorem 10.7. Let F be a finitely generated nonabelian free group with a very
small isometric minimal action on an R-tree T . Let µ ∈ Curr(F ) be such that
〈T, µ〉 = 0. Then supp(µ) ⊆ L2(T ).

Proof. If F acts on T with dense orbits or if the action is simplicial, the statement
of the theorem follows from Proposition 6.1 and Proposition 8.4. Suppose neither of
these two situations occurs. Let q : T → Ts = Ỹ be as in Proposition–Definition 10.1.
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By Proposition 10.4 we can decompose µ as

µ =
∑

x∈V ′Y

µx ,

where each µx ∈ Curr(F ) satisfies supp(µx) ⊆ iΛ(∂2H).
We have

0 = 〈T, µ〉 =
∑

x∈V ′Y

〈T, µx〉

and hence 〈T, µx〉 = 0 for each x ∈ V ′Y .
Therefore by Proposition 10.6 we have supp(µx) ⊆ L2T for every x ∈ V X.
Since, obviously, supp(µ) = ∪x∈V ′Y supp(µx), it follows that supp(µ) ⊆ L2(T ),

as required. �

Lemma 10.8. Let F = F (A) be a finitely generated nonabelian free group. Let T
be an R-tree with a very small nontrivial minimal isometric action of F on T . Then
L2(T ) 	= ∂2F .

Proof. Put L = L2(T ). We need to show that there exists v ∈ F (A) such that
v 	∈ LA.

Let p ∈ T . By Proposition 4.2, there is C < ∞ such that BBTT,p(A) < C.
Since the action of F on T is nontrivial, there exists a freely reduced v ∈ F (A)

such that ‖v‖T ≥ 4C + 2. Hence dT (p, vp) ≥ ‖v‖T ≥ 4C + 2. Suppose that v ∈ LA.
Then there exists a cyclically reduced word w in F (A) such that v is an initial
segment of w and such that ‖w‖T ≤ 1. We can write w as a reduced product
w = vu. By Lemma 4.3 we have

dT (p,wp) ≥ dT (p, vp) + dT (p, up) − 2C ≥ ‖v‖T − 2C .

Since w is cyclically reduced, Lemma 4.3 also implies that

‖w‖T ≥ dT (p,wp) − 2C ≥ ‖v‖T − 4C ≥ 2 .

This contradicts our assumption that ‖w‖T ≤ 1. Thus v 	∈ LA. �

Corollary 10.9. Let µ ∈ Curr(F ) be a current with full support. Then for every
very small action of F on an R-tree T we have 〈T, µ〉 > 0.

Proof. Suppose there is some very small T such that 〈µ, T 〉 = 0. By Theorem 10.7
it follows that supp(µ) ⊆ L2(T ). By Lemma 10.8 this contradicts our assumption
that µ has full support. �

11 Length Compactness for Currents with Full Support

Definition 11.1 (Automorphic length spectrum of a current). Let T ∈ cv(F ) and
µ ∈ Curr(F ). The automorphic length spectrum of µ with respect to T is the set

ST (µ) :=
{
〈T, φµ〉 : φ ∈ Out(F )

}
⊆ R .

Note that by Out(F )-invariance of the intersection form, we always have 〈T, φµ〉 =
〈φ−1T, µ〉. Hence

ST (µ) :=
{
〈φT, µ〉 : φ ∈ Out(F )

}
.
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Theorem 11.2. Let µ ∈ Curr(F ) be a current with full support and let T ∈ cv(F ).
Then,

(1) For any C > 0 the set {
φ ∈ Out(F ) : 〈T, φµ〉 ≤ C

}
is finite.

(2) The set ST (µ) is a discrete subset of R≥0.
(3) Suppose φn ∈ Out(F ) is an infinite sequence of distinct elements such that

for some λn ≥ 0 and some µ′ ∈ Curr(F ) we have limn→∞ λnφnµ = µ′. Then
limn→∞ λn = 0.

Proof. It is obvious that (1) implies (2).
To see that (1) holds, suppose that for some C > 0 there exists an infinite

sequence of distinct elements φn ∈ Out(F ) such that for every n ≥ 1 we have
〈T, φnµ〉 ≤ C. By rescaling T , we may assume that the graph T/F has volume 1,
that is T ∈ CV (F ).

Since CV (F ) = CV (F ) ∪ ∂CV (F ) is compact, after passing to a subsequence
we may assume that limn→∞[φ−1

n T ] = [T∞] in CV (F ) for some T∞ ∈ cv(F ). Thus
there is a sequence cn ≥ 0 such that

lim
n→∞ cnφ−1

n T = T∞ (♣)

in cv(F ). Moreover, since all φn ∈ Out(F ), n ≥ 1 are distinct and the action of
Out(F ) on CV (F ) = Pcv(F ) is properly discontinuous, we have [T∞] ∈ ∂CV (F ).
This implies that limn→∞ cn = 0.

Indeed, suppose not. Then, after passing to a subsequence, we may assume that
cn ≥ c > 0 for every n ≥ 1. Since T∞ 	∈ cv(F ), there are nontrivial elements in
F acting on T∞ with arbitrary small translation length. That is, there exists a
sequence gi ∈ F , gi 	= 1 such that limi→∞ ‖gi‖T∞ = 0. Recall that by definition of
the left action of Out(F ) on cv(F ), we have ‖g‖φ−1

n T = ‖φn(g)‖T for every g ∈ F and
every n ≥ 1. Then (♣) implies that there is a sequence ni ≥ 1 with limi→∞ ni = ∞
such that

0 = lim
i→∞

cni‖gi‖φ−1
ni

T = lim
i→∞

cni‖φnigi‖T .

On the other hand, since the action of F on T is free and simplicial, there is some
δ > 0 such that for every f ∈ F , f 	= 1 we have ‖f‖T ≥ δ. Hence for every i ≥ 1

cni‖φnigi‖T ≥ cδ > 0 ,

yielding a contradiction. Thus indeed limn→∞ cn = 0.
By Out(F )-invariance of the intersection form we have

0 ≤ 〈cnφ−1
n T, µ〉 = cn〈φ−1

n T, µ〉 = cn〈T, φnµ〉 ≤ cnC →n→∞ 0 .

Therefore, by the continuity of the intersection form [KaLu2], we have

0 = lim
n→∞〈cnφ−1

n T, µ〉 = 〈T∞, µ〉 .

However, this contradicts the conclusion of Corollary 10.9 since by assumption µ
has full support. Thus part (1) is established.
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We now show that (1) implies (3). Let λn, φn, µ′ be as in (3). Part (1) implies
that limn→∞〈T, φnµ〉 = ∞. On the other hand,

lim
n→∞λn〈T, φnµ〉 = lim

n→∞〈T, λnφnµ〉 = 〈T, µ′〉 < ∞ .

This implies that limn→∞ λn = 0, as required. �

12 Unique Ergodicity

Recall that an element φ ∈ Out(F ) is called reducible if there exists a free product
decomposition F = C1 ∗ . . . Ck ∗F ′, where k ≥ 1 and Ci 	= {1}, such that φ permutes
the conjugacy classes of subgroups C1, . . . , Ck in F . An element φ ∈ Out(F ) is
called irreducible if it is not reducible.
Definition 12.1. An element φ ∈ Out(F ) is said to be irreducible with irreducible
powers or an iwip for short, if for every n ≥ 1 φn is irreducible (sometimes such
automorphisms are also called fully irreducible). Thus φ ∈ Aut(F ) is an iwip if and
only if no positive power of φ preserves the conjugacy class of a proper free factor
of F . An element φ ∈ Aut(F ) is atoroidal that is, if there does not exist a nontrivial
conjugacy class in F that is fixed by some positive power of φ.

Let φ ∈ Out(F ) be an atoroidal iwip. It is known, by the work of Reiner Martin
in the case of currents and by the result of Levitt and Lustig in the case of CV (F )
that the (left) action of φ has “North–South” dynamics on both P Curr(F ) and
CV (F ).
Proposition 12.2. Let φ ∈ Out(F ) be an atoroidal iwip. Then the following
hold:

(1) [LevL] The action of φ on CV (F ) has exactly two distinct fixed points
[T+], [T−] and, moreover, for any [T ] ∈ CV (F ), [T ] 	= [T−] we have
limn→∞ φn[T ] = [T+] and for any [T ] ∈ CV (F ), [T ] 	= [T+] we have
limn→∞ φ−n[T ] = [T−].

(2) [M] The action of φ on P Curr(F ) has exactly two distinct fixed points
[µ+], [µ−] and, moreover, for any [µ] ∈ P Curr(F ), [µ] 	= [µ−] we have
limn→∞ φn[µ] = [µ+] and for any [µ] ∈ P Curr(F ), [µ] 	= [µ+] we have
limn→∞ φ−n[µ] = [µ−].

(3) [KaLu2] We have 〈T+, µ+〉 = 〈T−, µ−〉 = 0 and 〈T+, µ−〉 > 0, 〈T−, µ−〉 > 0.
Here we prove that µ+ is uniquely ergodic in the following sense:

Theorem 12.3. Let φ ∈ Out(F ), µ±, T± be as in Proposition 12.2. If
[µ] ∈ P Curr(F ) is such that supp(µ) ⊆ supp(µ+) then [µ] = [µ+].

Proof. Note that since φ fixes [T+], we have φT+ = λT+ for some λ > 0. Suppose
that supp(µ) ⊆ supp(µ+) but [µ] 	= [µ+]. Since 〈T+, µ+〉 = 0, Theorem 1.1 implies
that supp(µ+) ⊆ L2(T+). Since supp(µ) ⊆ supp(µ+) ⊆ L2(T+), Theorem 1.1 also
implies that 〈T+, µ〉 = 0. Since [µ] 	= [µ+] we have limn→∞ φ−n[µ] = [µ−], so that
for some sequence cn > 0 we have limn→∞ cnφ−nµ = µ− in Curr(F ). Hence for any
n ≥ 1

〈T+, cnφ−nµ〉 = 〈φnT+, cnµ〉 = 〈λnT+, cnµ〉 = λncn〈T+, µ〉 = 0 .
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Therefore, by continuity of the intersection form,
0 = lim

n→∞〈T+, cnφ−nµ〉 = 〈T+, lim
n→∞ cnφ−nµ〉 = 〈T+, µ−〉 ,

which contradicts part (3) of Proposition 12.2. �
By a similar argument we obtain a dual statement for T+.

Theorem 12.4. Let φ ∈ Out(F ), µ±, T± be as in Proposition 12.2. Let
[T ] ∈ CV (F ) be such that L2(T+) ⊆ L2(T ). Then [T ] = [T+].

Proof. Note that since φ fixes [µ+], there is r > 0 such that φµ+ = rµ+. Suppose
that [T ] ∈ CV (F ) be such that L2(T+) ⊆ L2(T ) but that [T ] 	= [T+]. We have
supp(µ+) ⊆ L2(T+) ⊆ L2(T ) and therefore by Theorem 1.1 we have 〈T, µ+〉 = 0.
Since [T ] 	= [T+], we have limn→∞ φ−n[T ] = [T−], so that for some sequence cn > 0
we have limn→∞ cnφ−nT = T− in cv(F ). Hence for any n ≥ 1

〈cnφ−nT, µ+〉 = 〈cnT, φnµ+〉 = 〈cnT, rnµ+〉 = rncn〈T, µ+〉 = 0 .

Therefore, by continuity of the intersection form
0 = lim

n→∞〈cnφ−nT, µ+〉 = 〈 lim
n→∞ cnφ−nT, µ+〉 = 〈T−, µ+〉 ,

which contradicts part (3) of Proposition 12.2. �

Corollary 12.5. Let φ ∈ Out(F ), µ±, T± be as in Proposition 12.2.

(1) Let T ∈ cv(F ). Then 〈T, µ+〉 = 0 if and only if [T ] = [T+].
(2) Let µ ∈ Curr(F ), µ 	= 0. Then 〈T+, µ〉 = 0 if and only if [µ] = [µ+].

Proof. (1) We already know that 〈T+, µ+〉 = 0 and that supp(µ+) ⊆ L2(T+).
Suppose 〈T, µ+〉 = 0 for some T ∈ cv(F ). Suppose that [T ] 	= [T+]. Then
limn→∞ φ−n[T ] = [T−], so that limn→∞ cnφ−nT = T− for some cn > 0. We have

〈cnφ−nT, µ+〉 = 〈cnT, φnµ+〉 = 〈cnT, rnµ+〉 = cnrn〈T, µ+〉 = 0 .

Since limn→∞ cnφ−nT = T−, the continuity of the intersection form implies that
〈T−, µ+〉 = 0, yielding a contradiction with part (3) of Proposition 12.2.

The proof of part (2) is essentially symmetric and we omit the details. �
As noted in the above argument, we do know that supp(µ+) ⊆ L2(T+), but even

in this particular case it can happen that the inclusion is a strict one.
One can check, by directly comparing the definitions, that, under the assumptions

of Proposition 12.2, supp(µ+) is equal to the “stable lamination” of φ in the sense
of [BeFH1]. The reason for the potential inequality supp(µ+) 	= L2(T+) comes from
the possibility that (ξ, ζ), (ζ, ω) ∈ supp(µ+) but (ξ, ω) 	∈ supp(µ+), while this type
of behavior is by definition impossible in L2(T+).

We believe that that for any atoroidal iwip automorphism L2(T+) is obtained
from the stable lamination of φ via the operation of “diagonal closure” as indicated
above.

13 Filling Elements, Filling Currents and Bounded Translation
Equivalence

Definition 13.1. Let µ ∈ Curr(F ). We say that µ fills F if for every very small
action of F on an R-tree T we have 〈T, µ〉 > 0.
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Similarly, we say that an element g ∈ F fills F if for every very small action of
F on an R-tree T we have ‖g‖T > 0. Thus g fills F if and only if ηg fills F .

Corollary 10.9 says that every current µ ∈ Curr(F ) with full support fills F .
Proposition 13.2. Let µ ∈ Curr(F ) be a current with full support. Let
µn ∈ Curr(F ) be a sequence such that limn→∞ µn = µ. Then there is n0 ≥ 1
such that for every n ≥ n0 the current µn fills F .

Proof. Suppose the statement of the proposition fails. Then there exists a se-
quence ni with limi→∞ ni = ∞ and a sequence of very small R-trees Ti such that
〈Ti, µni〉 = 0. Since CV (F ) ∪ ∂CV (F ) is compact, there exists a sequence ri ≥ 0
and a very small action of F on an R-tree T such that limi→∞ riTi = T . Note that
we have

〈riTi, µni〉 = ri〈Ti, µni〉 = 0 .

By the continuity of the intersection form on the closure of the non-projectivized
outer space (see [KaLu2]), this implies that

〈T, µ〉 = 0 .

This contradicts the fact that, by Corollary 10.9, µ fills F . �

Proposition 13.2 immediately implies
Corollary 13.3. Let µ ∈ Curr(F ) be a current with full support. Let λn ≥ 0
and gn ∈ F be such that limn→∞ λnηgn = µ. Then there is n0 ≥ 1 such that for
every n ≥ n0 the element gn fills F .

Notation 13.4. Let F be a finitely generated free group and let A be a free
basis of F . Let ξ ∈ ∂F . We represent ξ by a right-infinite freely reduced word
x1x2 . . . xn . . . , where xi ∈ A±1, labelling the geodesic ray from 1 to ξ in the Cayley
graph X(F,A). For every n ≥ 1 we denote by ξA(n) the element of F represented
by the initial segment of this ray of length n, that is ξA(n) = x1 . . . xn ∈ F .

Definition 13.5 (Uniform measure corresponding to a free basis). Let A be a
free basis of F and let k ≥ 2 be the rank of F . For a nontrivial freely reduced word
v ∈ F (A) let CylA(v) be the set of all ξ ∈ ∂F such that v is an initial segment of ξ,
when ξ is realized as a geodesic ray with origin 1 ∈ F in the Cayley graph X(F,A).

The uniform measure on ∂F , corresponding to A, denoted µA, is a Borel proba-
bility measure on ∂F , such that for every nontrivial freely reduced word v ∈ F (A)
we have

µA

(
CylA(v)

)
=

1
2k(2k − 1)n−1 ,

where n = |v|A.
Informally, a µA-random point ξ ∈ ∂F corresponds to a “random” right-infinite

freely reduced word over A±1. We refer the reader to [Ka4], [KKS], [KaN] for a more
detailed discussion regarding the uniform measure µA and the uniform current νA.
Theorem 13.6. Let F = F (A) be a finitely generated nonabelian free group.
Let µA be the uniform measure on ∂F corresponding to A. Then there exists a set
R ⊆ ∂F with the following properties:
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(1) We have µA(R) = 1.
(2) For each ξ ∈ R there is N ≥ 1 such that for every n ≥ N the element

ξA(n) ∈ F fills F .

Proof. Let νA be the uniform current on F corresponding to A. Note that by
construction νA has full support. As shown in [Ka4], there exists a subset R ⊆ ∂F
with µA(R) = 1 such that for each ξ ∈ R we have

lim
n→∞

ηξA(n)

n
= νA .

Corollary 13.3 implies that for every ξ ∈ R there is N ≥ 1 such that for each
n ≥ N the element ξA(n) fills F , as required. �

Theorem 13.6 says that an “almost generic” element of F (A) fills F .
Definition 13.7. We say that nontrivial elements g, h ∈ F are boundedly transla-
tion equivalent in F , denoted g ≡b h, if there is C ≥ 1 such that for every free and
discrete action of F on an R-tree T we have

1
C ‖h‖T ≤ ‖g‖T ≤ C‖h‖T .

Note that in the above definition we can replace “every free and discrete action”
by “every very small action”.
Proposition 13.8. Let f, g ∈ F both fill F . Then f ≡b g in F .

Proof. Consider the following function D : CV (F ) ∪ ∂CV (F ) → R. For every very
small action of F on an R-tree T put

D([T ]) :=
‖f‖T

‖g‖T
.

Since f and g both fill F , the function D is well-defined on CV (F ) ∪ ∂CV (F ) and,
moreover, D([T ]) > 0 for every [T ] ∈ CV (F ) ∪ ∂CV (F ). It is also clear that D is
continuous. Since CV (F )∪∂CV (F ) is compact, it follows that D achieves a positive
minimum and a positive maximum on CV (F )∪ ∂CV (F ). This implies that f ≡b g,
as claimed. �

Theorem 13.6 and Proposition 13.8 show that the phenomenon of bounded trans-
lation equivalence is “almost generic” in F (A).

References

[B] H. Bass, Covering theory for graphs of groups, J. Pure Appl. Algebra 89:1-2
(1993), 3–47.

[BeF1] M. Bestvina, M. Feighn, The topology at infinity of Out(Fn), Invent. Math.
140:3 (2000), 651–692.

[BeF2] M. Bestvina, M. Feighn, A hyperbolic Out(Fn) complex, preprint (2008);
arXiv:0808.3730

[BeF3] M. Bestvina, M. Feighn, Outer limits, preprint (1993);
http://andromeda.rutgers.edu/˜feighn/papers/outer.pdf

[BeFH1] M. Bestvina, M. Feighn, M. Handel, Laminations, trees, and irreducible
automorphisms of free groups, Geom. Funct. Anal. 7:2 (1997), 215–244.



1466 I. KAPOVICH AND M. LUSTIG GAFA 

[BeFH2] M. Bestvina, M. Feighn, M. Handel, The Tits alternative for Out(Fn).
I. Dynamics of exponentially-growing automorphisms, Ann. of Math. (2) 151:2
(2000), 517–623.

[BeFH3] M. Bestvina, M. Feighn, M. Handel, The Tits alternative for Out(Fn). II.
A Kolchin type theorem, Ann. of Math. (2) 161:1 (2005), 1–59.

[BeH] M. Bestvina, M. Handel, Train tracks and automorphisms of free groups,
Ann. of Math. (2) 135:1 (1992), 1–51.

[Bo1] F. Bonahon, Bouts des variétés hyperboliques de dimension 3, Ann. of Math.
(2) 124:1 (1986), 71–158.

[Bo2] F. Bonahon, The geometry of Teichmüller space via geodesic currents, Invent.
Math. 92:1 (1988), 139–162.

[Bo3] F. Bonahon, Geodesic currents on negatively curved groups, Arboreal Group
Theory (Berkeley, CA, 1988), Math. Sci. Res. Inst. Publ., 19, Springer, New York
(1991), 143–168.

[CF] D. Calegari, K. Fujiwara, Combable functions, quasimorphisms, and the
central limit theorem, preprint; http://arxiv.org/abs/0805.1755

[CoL] M. Cohen, M. Lustig, Very small group actions on R-trees and Dehn twist
automorphisms, Topology 34:3 (1995), 575–617.

[Coo] D. Cooper, Automorphisms of free groups have finitely generated fixed point
sets, J. Algebra 111:2 (1987), 453–456.

[CouHL1] T. Coulbois, A. Hilion, M. Lustig, R-trees and laminations for free groups
I: Algebraic laminations, J. Lond. Math. Soc. (2) 78:3 (2008), 723–736.

[CouHL2] T. Coulbois, A. Hilion, M. Lustig, R-trees and laminations for free groups II:
The dual lamination of an R-tree, J. Lond. Math. Soc. (2) 78:3 (2008), 737–754.

[CouHL3] T. Coulbois, A. Hilion, M. Lustig, R-trees and laminations for free groups
III: Currents and dual R-tree metrics, J. Lond. Math. Soc. (2) 78:3 (2008), 755–
766.

[CuV] M. Culler, K. Vogtmann, Moduli of graphs and automorphisms of free
groups, Invent. Math. 84:1 (1986), 91–119.

[GJLL] D. Gaboriau, A. Jaeger, G. Levitt, M. Lustig, An index for counting fixed
points of automorphisms of free groups, Duke Math. J. 93:3 (1998), 425–452.

[GyH] E. Ghys, P. de la Harpe (eds.), Sur les groupes hyperboliques d’aprés Mikhail
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