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Many plant species respond to herbivore attack by an increased formation of volatile organic compounds.
In this preliminary study we analysed the volatile metabolome of grapevine roots [Teleki 5C (Vitis ber-
landieri Planch. x Vitis riparia Michx.)] with the aim to gain insight into the interaction between phyl-
loxera (Daktulosphaira vitifoliae Fitch; Hemiptera: Phylloxeridae) and grapevine roots. In the first part of
the study, headspace solid phase microextraction (HS-SPME) coupled to gas chromatography — mass
spectrometry (GC—MS) was used to detect and identify volatile metabolites in uninfested and
phylloxera-infested root tips of the grapevine rootstock Teleki 5C. Based on the comparison of decon-
voluted mass spectra with spectra databases as well as experimentally derived retention indices with
literature values, 38 metabolites were identified, which belong to the major classes of plant volatiles
including C6-compounds, terpenes (including modified terpenes), aromatic compounds, alcohols and
n-alkanes. Based on these identified metabolites, changes in root volatiles were investigated and resulted
in metabolite profiles caused by phylloxera infestation. Our preliminary data indicate that defence
related pathways such as the mevalonate and/or alternative isopentenyl pyrophosphate-, the lip-
oxygenase- (LOX) as well as the phenylpropanoid pathway are affected in root galls as a response to

phylloxera attack.

© 2011 Elsevier Masson SAS. Open access under CC BY-NC-ND license

1. Introduction

Grape phylloxera, Daktulosphaira vitifoliae Fitch (Hemiptera:
Phylloxeridae), is one of the most devastating grapevine pests
worldwide, causing organoid galls (nodosities) on the root tips.
After its introduction to Europe in the second part of the 19th
century phylloxera caused major economic losses to the wine
industry [1]. The spreading of this pest could be prevented by
grafting susceptible European grape varieties onto tolerant root-
stocks. However, in the last decades the appearance of more
aggressive phylloxera biotypes has been reported (e.g., [2,3]). Thus,
understanding the interaction between phylloxera and the grape-
vine root in more detail would be of utmost interest.

The number of studies, which investigated the physiological and
molecular response of grapevine to phylloxera root-infestation are
sparse and mainly focus on primary metabolites on detached root
tissue. So far, increased concentrations of mono- and disaccharides
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[4,5], starch [4—6] and amino acids [6] and amides [7] have been
found to be present in nodosities compared to uninfested root tips.
Additionally, recent studies evaluating the metabolic response of
grapevine leaves to a phylloxera root infestation, reported
areduction in the ratio of linoleic acid to linolenic acid [8] as well as
the chlorophyll content but an increase in xanthophyll-cycle
related pigments [9].

Volatile compounds constitute another important class of
metabolites known to be involved in the response of many plant
species to various types of abiotic (e.g., [10,11]) and biotic stress
(e.g., [12,13]), and it is further well known that plant herbivory is
associated with an increased formation of volatile metabolites in
leaves [14] or roots [15].

Surprisingly, no reports on the involvement of volatile metab-
olites in the interaction between phylloxera and grapevine have
been published so far. While several publications described the
detection and identification of volatiles in leaves (e.g., [16,17]) and
berries (e.g., [18,19]) of grapevine plants, to the best of our
knowledge, there is only a single report on volatile metabolites
produced by grapevine roots. Du et al. [20] investigated the volatile
metabolites produced by one phylloxera resistant [5BB (Vitis
berlandieri x Vitis riparia)] and one susceptible [Kyoho (Vitis
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Fig. 1. Typical GC—MS chromatogram obtained after HS-SPME extraction of phylloxera-
infested root sample (nodosities). Numbers correspond to substances in Table 1.

Table 1
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vinifera x Vitis labrusca)] cultivar and tried to correlate the nymphal
preference for the susceptible cultivar Kyoho with the volatile
metabolites.

In the present study, the volatile metabolome of grapevine roots
of the cultivar Teleki 5C (V. berlandieri x V. riparia) was investigated
by GC—MS. This is the first report on a differential comparison of
volatile metabolites of uninfested and phylloxera-infested root tips
of grapevine plants.

2. Results and discussion
2.1. Identification of root metabolites

A typical GC—MS total ion current chromatogram obtained after
analysis of a phylloxera-infested root tip sample from cultivar Tel-
eki 5C is shown in Fig. 1. This cultivar was chosen due to its phyl-
loxera tolerance [21,22] and its widely use as a model rootstock
cultivar in different experiments (e.g., [23,24]).

Manual inspection of the chromatograms resulted in assignment
of at least 100 different substances. The automated deconvolution of

Volatile substances identified in grapevine root tissue [phylloxera-infested (nodosities) and uninfested]. Numbering of first column corresponds to elution order on DB-5

column, see Fig. 1.

Number  CAS-Number? Identified substance LTPRI Formerly described in Vitis sp.©
in Fig. 1 (trivial name in parentheses) DB-5MS Optima-WAX
Sample  Reference  Sample Reference roots leaves flowers berries

value value
1 66-25-1 Hexanal® 805 805 1091 1087 X X X X
2 98-01-1 Furan-2-carbaldehyde® 842 837 1482 1479 X
3 6728-26-3 (E)-Hex-2-enal€ (leaf aldehyde) 858 858 1232 1229 X X
4 928-95-0 (E)-Hex-2-en-1-ol° 858 862 1424 1422 X X
5 111-27-3 Hexan-1-ol¢ 874 873 1370 1370 X X
6 100-51-7 Benzaldehyde® 967 967 1548 1546 X X
7 123-35-3 beta-Myrcene® 994 993 1152 1151 X
8 3777-69-3 2-Pentylfuran® 995 994 1227 1223
9 124-13-0 Octanal® 1007 1005 1296 1294
10 104-76-7 2-Ethylhexan-1-ol° 1032 1031 1505 1504 X
11 5981-54-8 Limonene® 1034 1032 1192 1191 X X X
12 100-51-6 Phenylmethanol® 1042 1042 1908 1905 X X X
13 122-78-1 2-Phenylacetaldehyde 1048 10474 1668 1648¢ X
14 111-87-5 Octan-1-ol° 1073 1073 1576 1575 X X
15 124-19-6 Nonanal® 1105 1106 1404 1403 X X X X
16 60-12-8 2-Phenylethanol® 1119 1120 1946 1944 X X X
17 18 829-56-6 (E)-Non-2-enal 1162 1161¢ 1556 1536¢ X X X
18 124-07-2 Octanoic Acid® 1178 1177 2124 2115
19 119-36-8 Methyl 2-hydroxybenzoate® (Methyl salycilate) 1201 1202 1806 1805 X X X
20 112-31-2 Decanal® 1207 1208 1511 1510 X X
21 67-47-0 5-(Hydroxymethyl)furan-2-carbaldehyde® 1236 1238 2550 2551 X
22 106-24-1 (2E)-3,7-dimethylocta-2.6-dien-1-0l° (Geraniol) ~ 1257 1258 1870 1869 X X X
23 112-05-0 Nonanoic acid® 1273 1274 2233 2234 X
24 141-27-5 (2E)-3,7-dimethylocta-2.6-dienal® (Geranial) 1274 1275 1759 1758 X
25 7786-61-0 4-Ethenyl-2-methoxyphenol® 1322 1322 2232 2221 X
26 97-53-0 2-Methoxy-4-prop-2-enylphenol® (Eugenol) 1364 1365 2202 2195 X
28 87-44-5 beta-Caryophyllene© 1432 1433 1617 1619 X X X X
29 3796-70-1 (5E)-6,10-Dimethylundeca-5.9-dien-2-one® 1456 1456 1877 1876 X X

(Geranyl acetone)

30 6753-98-6 Humulene (alpha-Caryophyllene) 1466 14534 1691 16544 X
31 39 029-41-9 gamma-Cadinene 1526 1513¢ 1780 1759¢ X
32 483-76-1 delta-Cadinene 1533 15244 1773 17474 X
33 143-07-7 Dodecanoic acid® 1568 1565 2557 2564 X
34 629-78-7 Heptadecane® 1696 1700 1699 1700 X X X X
35 2765-11-9 Pentadecanal 1716 17144 2050 20414
36 593-45-3 Octadecane® 1797 1800 1800 1800 X
37 57-10-3 Hexadecanoic acid® 1962 1962 2986 2986 X X
38 112-95-8 Eicosane® 1999 2000 2000 2000 X X
2 Chemical Abstracts Service, SciFinder Scholar 2007.
b Only detected in infested samples.
¢ Confirmed with standard.
4 LTPRI corresponds to the median from NIST Chemistry Webbook.
e

Substances described in former studies are marked with “x”, references see text (2.1).
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mass spectra [25] and comparison with MS databases together with
evaluation of linear temperature programmed retention index
(LTPRI) values [26] on two types of stationary phases led to the
positive identification of 38 metabolites (Table 1). Thirty two of
these metabolites were additionally confirmed with authentic
standards. It shall be noted here that in case of terpenes special
caution has to be taken. These substances comprise a very large and
diverse class of natural compounds with closely related chemical
structures, many of which show similar mass spectra and retention
indices. Hence, there is a strong need for the use of authentic
standards to avoid false positive identifications.

The identified volatiles comprise numerous chemical substance
classes. More precisely, ten aldehydes, nine terpenes five C6-
compounds, five alcohols, four acids, three alkanes, one ether and
one ester were detected in the investigated samples (Table 1). The
chromatograms also contained peaks which have been assigned to
dibutyl phthalate and 2,4-di-tert-butylphenol (data not shown).
Since these compounds are frequently used as plasticizers and
stabilizers of synthetic polymers, they have not been further
considered in this study as they represent most likely artefacts.

The majority of the identified substances have already been
found with GC—MS in other parts of Vitis plants such as leaves
(e.g., [12,16,17,27—-29]), berries (e.g., [16—18,30—32]) or flowers
(e.g., [16,33]). These findings have been summarized in Table 1. To
the best of our knowledge, 32 of the metabolites are described for
Vitis root tissue for the first time, whereas four of those, namely
pentylfuran, octanal, octanoic acid and pentadecanal have not been
described for Vitis spp. at all.

In a recent study Du et al. [20] investigated root volatiles in
phylloxera resistant (5BB) and susceptible (Kyoho) rootstock culti-
vars and detected in total 79 substances. For the resistant 5BB they
reported 56 volatile metabolites, whereas 47 volatiles were
assigned in total to the cultivar Kyoho. Partly different volatiles
were found for the cultivars 5BB and Kyoho with fatty acid methyl
esters being the dominating volatile substance classes for both
cultivars. In our study, no fatty acid methyl esters were detected.
Unfortunately, Du et al. [20] did not describe their extraction
method in detail, therefore a direct comparison with our findings is
not feasible. Nevertheless, we also found hexanal, limonene,
nonanal, decanal, beta-caryophyllene and heptadecane.

2.2. Comparison of volatile profiles obtained for uninfested
root tips and nodosities

As presented in Fig. 2 significant differences (p < 0.05) in peak
areas were found for 14 metabolites. Remarkably, all but one
substance (dodecanoic acid) occurred at elevated levels in nodosity
samples, whereas beta-caryophyllene was exclusively found in
mature nodosity samples. Interestingly, relative standard devia-
tions of peak areas were significantly lower in uninfested root
samples compared to mature nodosities (Fig. 2). Furthermore, we
detected significant differences for concentration levels of geraniol,
eugenol, vanillin and delta-cadinene in roots infested by one 2nd
nymphal stage phylloxera (young nodosities) compared to unin-
fested root tips and elevated levels of phenylmethanol, methyl
salicylate, 4-ethenyl-2-methoxyphenol as well as eugenol in
mature nodosities compared to young ones (data not shown).
Those findings indicate that the metabolic response appears to be
highly dynamic and requires closer investigation in the future.

Considering relevant metabolic routes acting on the formation of
volatile organic compounds after herbivore attack, we found that at
least three different pathways might be affected in phylloxera-
infested root tips. The detected and/or elevated terpenoids (beta-
caryophyllene, geraniol, beta-myrcene) allow the assumption that
the mevalonate (MEV) and/or alternative isopentenyl pyrophosphate
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Fig. 2. Overview of differentially expressed volatiles detected in uninfested root tips
and mature nodosities (infested by one adult phylloxera producing maximal 5 eggs).
Intensities of some metabolite peaks were multiplied by a factor of 10 or 107!
respectively (see graph). Asterisks indicate significant differences between the two
sample types: *p < 0.05; **p < 0.01, **p < 0.001; n.d.: not detected.

(alt. IPP) pathway are modified as a consequence of phylloxera
damage. Beta-caryophyllene for example, is well known to be asso-
ciated with the response of various plants to herbivore root attack
and has been reported to attract natural enemies [15]. Geraniol [34]
and beta-myrcene [35] are also known to be produced by the green
parts of plants after hemiptera attack such as aphids or stink bugs.
Further, it can be suggested that the phenylpropanoid pathway is
triggered due to a phylloxera infestation. The aromatic compounds,
phenylacetaldehyde, methyl salicylate and eugenol, which have been
found at elevated levels in phylloxera-infested samples compared to
uninfested root tips, have also been described to be produced by
plants after leave herbivory [36] or pathogen attack [37]. Mallinger
and colleges, for example further suggest that methyl salicylate
attracts natural enemies of soybean aphids [38]. Moreover, elevated
levels of the C6-compounds (E)-hex-2-enal and hexanal were
observed in mature nodosities compared to uninfested root tips
which indicates that the lipoxygenase (LOX) pathway might be
initiated after phylloxera infestation. C6-compounds result from the
oxidative cleavage of linoleic- and linolenic acid. Both substances are
well known to be released after herbivore attack [39] as well as
C6-compounds from V. vinifera [40].

3. Conclusion

Applying strict identification criteria we identified 38 volatile
metabolites in grapevine root samples, including C6-compounds,
terpenes, aromatic compounds, aldehydes, alcohols and n-alkanes.
Comparing in a second step mature nodosities with uninfested root
tips we identifying twelve substances at significantly increased
concentration levels in infested root samples, while dodecanoic
acid was found at decreased levels and beta-caryophyllene exclu-
sively in mature nodosity samples. Our preliminary data indicate
that several defence related metabolic pathways, namely the MEV
and/or alt. IPP, the phenylpropanoid as well as the LOX pathway
might be affected as a consequence of phylloxera attack. However,
more detailed studies are required to gain deeper insight into the
metabolic processes induced upon phylloxera attack e.g., on
nodosities still attached to the plant evaluating which volatiles
might be involved in plant—plant signalling as well as direct or
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indirect defence responses against phylloxera. Furthermore,
comparing the metabolic response of rootstocks with different
levels of susceptibility to phylloxera and V. vinifera will provide
a better understanding of the molecular mechanisms mediating
resistance against root-feeding phylloxera.

4. Material and methods
4.1. Insect and plant material

Leaf-galling D. vitifoliae Fitch (Hemiptera: Phylloxeridae) were
collected in Grosshoeflein, Austria in 2007 and maintained since
then as a single founder lineage in the greenhouse on the grapevine
rootstock Teleki 5C (V. berlandieri Planch. x V. riparia Michx.).

Samples from different vegetatively propagated cuttings of this
rootstock clone were collected during several independent runs
during June—October 2009 in the greenhouse. Further details on
the experimental setup are given in Lawo et al. [41]. We sampled
uninfested root tips and mature nodosities, which were infested by
one adult phylloxera producing maximal five eggs. In case of
nodosities, the phylloxera was removed and both, uninfested root
tips and mature nodosities were immediately cooled with liquid
nitrogen and stored at —80 °C until further sample preparation and
analysis.

4.2. Sample preparation and HS-SPME—GC—MS analysis

Cooled root tissues were homogenized via a pre-cooled pestle
and 25—50 mg of the homogenized sample were weighted into
a20 ml screw cap headspace (HS) vial, sealed with 1.3 mm silicone/
PTFE septa (Supelco, distributed by Gerstel, Miihlheim a.d. Ruhr,
Germany). Subsequently, samples were incubated for 30 min and
extracted for 60 min at 90 °C by headspace solid phase micro-
extraction (HS-SPME) (fibre coating: DVB/CAR/PDMS 50/30 pm,
2 cm stableflex fibre, Gerstel). Thereafter, samples were analyzed by
GC—MS according to Stoppacher et al. [42], with the following
modifications: apolar column: DB-5MS (Agilent, Waldbronn,
Germany); polar column: Optima-WAX (Machery-Nagel,
Germany), dimensions for both columns: length 30 m, inner
diameter 0.25 mm, film thickness 0.25 pm, oven program: 35 °C
(hold 2 min), 5 °C min~' to 260 °C (hold 5 min), no solvent delay, m/
z scan range: 35—500 amu.

4.3. Analysis of standards and determination of retention indices

Standard substances were purchased from Sigma—Aldrich
(Vienna, Austria) (summarised by brand, minimum purity in
parentheses): SAFC: (2E)-3,7-dimethylocta-2,6-dien-1-ol (97%),
(5E)-6,10-dimethylundeca-5,9-dien-2-one  (97%), 4-ethenyl-2-
methoxyphenol (98%), beta-caryophyllene (80%), 2-pentylfuran
(97%), hexadecanoic acid (98.9%), octanal (92%), Aldrich: (E)-hex-
2-en-1-ol (96%), (E)-hex-2-enal (98%), 5-(hydroxymethyl)furan-2-
carbaldehyde (99%), dodecanoic acid (98%), furan-2-carbaldehyde
(98%), (—)-limonene (96%), nonanal (95%), Sigma—Aldrich: 4-
hydroxy-3-methoxybenzaldehyde (99%), benzaldehyde (99%),
hexan-1-ol (98%), phenylmethanol (99%), Sigma: decanal (98%),
nonanoic acid (97%), Riedel de Haén: octanoic acid (99%), Supelco:
octan-1-ol (99.9%), Fluka: 3,7-dimethylocta-2.6-dienal (cis + trans,
95%), 2-ethylhexan-1-ol (99.5%), 2-methoxy-4-prop-2-enylphenol
(99.8%), 2-phenylethanol (99%), beta-myrcene (95%), hexanal
(97%), methyl 2-hydroxybenzoate (99.5%), alkane standards
C8—C20 (40 mg L~ ! each in hexane), C21—C40 (40 mg L' each in
toluene). Additionally, a C5—C10 alkane standard was mixed from
the pure substances (pentane 99% Sigma—Aldrich, hexane Supra-
Solv Merck, heptane 99.5% ].T. Baker, octane 99% Sigma Aldrich,

nonane 99% Sigma Aldrich, decan p.a. Promochem) in a ratio
resulting in narrow peak shapes.

From the original standards (liquids and solids) stock solutions
with a concentration of 100 mg L™ in acetonitrile (HPLC gradient
grade, VWR, Vienna, Austria) were prepared and stored at 4 °C.
Standards and dilutions were always handled with gastight Ham-
ilton syringes.

For determination of linear temperature programmed retention
indices (LTPRI, [26]) the standards were combined in a mixture
resulting in a concentration of 25 pL L~! in MilliQ-water (in-house
device, Millipore, Molsheim, France). Twenty pL of the mix were
transferred in a 20 mL HS vial and measured with the same
SPME—GC—MS method as the root samples. The alkane standards
were measured with the following SPME-methods to achieve
narrow peak shapes: C5—C10: 1 pL in 20 mL HS vial, sampling out of
tray (10 °C) for 0.01 min, C8—C20: 10 pL in 20 mL HS vial, extraction
for 10 min at 90 °C, C21—-C40: 30 min equilibration and 60 min
extraction both at 120 °C.

4.4. Data evaluation

4.4.1. Detection and identification of metabolites

For identification of metabolites, two pooled samples (one
uninfested and one infested root sample) were used. Peak detection,
spectra deconvolution, comparison of MS spectra against Wiley/
NIST 08 spectra library [43] and LTPRI calculation were carried out
with the AMDIS software (version 2.65, www.amdis.net, [25]) with
default settings for deconvolution. Putative metabolites found on
both columns with a match factor >90 and a LTPRI deviation of <15
(if determined from a standard) or 2% (if derived from literature)
were put to the results list according to Stoppacher et al. [42].
Median values of those LTPRIs listed in the NIST Chemistry Webbook
[44] which corresponded to the same column diameter and film
thickness as well as a comparable stationary phase material were
used as reference. Substances known to originate from the fibre
coating or the stationary phase of the GC-column (e.g., silicium
containing substances) were removed from the results list.

4.4.2. Differential comparison of uninfested root tips and nodosities

Metabolites identified according to the criteria listed in 4.4.1,
were considered for further comparison of volatile profiles associ-
ated with uninfested root tips (N = 8) and nodosities (N = 7). For
this purpose, a sub library containing mass spectra of all identified
substances was created. The well defined uninfested and nodosity
samples were measured on the DB-5MS column and data were
evaluated again with AMDIS with the following settings: minimum
match factor = 60, RI-window = 5, match factor penalties: level
infinite, maximum penalty and “no Rl in library”: 100.

The data were grouped according to sample type. For those
metabolites detected in >6 out of 7 (nodosities) or in >6 out of 8
(uninfested) samples the arithmetic means of each sample type
were compared by an unpaired two-sided Welch’s t-test with
a confidence level of 0.95 (R statistic software version 2.9.2).
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