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Epigenetic Silencing of the
Proapoptotic Gene B/IM in
Anaplastic Large Cell Lymphoma
through an MeCP2/SIN3a
Deacetylating Complex'2

Abstract

BIM is a proapoptotic member of the Bcl-2 family. Here, we investigated the epigenetic status of the B/M locus in
NPM/ALK+ anaplastic large cell lymphoma (ALCL) cell lines and in lymph node biopsies from NPM/ALK+ ALCL
patients. We show that B/M is epigenetically silenced in cell lines and lymph node specimens and that treatment
with the deacetylase inhibitor trichostatin A restores the histone acetylation, strongly upregulates BIM expression,
and induces cell death. B/IM silencing occurs through recruitment of MeCP2 and the SIN3a/histone deacetylase
1/2 (HDAC1/2) corepressor complex. This event requires B/IM CpG methylation/demethylation with 5-azacytidine that
leads to detachment of the MeCP2 corepressor complex and reacetylation of the histone tails. Treatment with the
ALK inhibitor PF2341066 or with an inducible shRNA targeting NPM/ALK does not restore B/M locus reacetylation;
however, enforced expression of NPM/ALK in an NPM/ALK-negative cell line significantly increases the methylation
at the B/IM locus. This study demonstrates that B/M is epigenetically silenced in NPM/ALK-positive cells through
recruitment of the SIN3a/HDAC1/2 corepressor complex and that NPM/ALK is dispensable to maintain B/M epigenetic
silencing but is able to act as an inducer of B/M methylation.
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Introduction

BIM is a proapoptotic Bcl-2 homology—only member of the Bcl-2
family. Its apoptotic activities are exerted through interactions with other
proapoptotic and antiapoptotic Bcl-2 family proteins that result in acti-
vation of the proapoptotic proteins Bax and Bak [1]. In a mouse model,
loss of both BIM alleles led to a marked protection from several proapop-
totic stimuli in pre-T cells [2]. Notably, the protective effect in BIM*~
mice was intermediate between BIM ™~ and BIM*"*, thus showing a
“gene dosing” effect. In Ep-Mye-transgenic mice, the inactivation of even
asingle BIM allele accelerated Myc-induced development of tumors, par-
ticularly acute B cell leukemia, suggesting a key role for BIM as a tumor
suppressor in B lymphocytes and showing that BIM is haploinsufficient
[3]. A central role for BIM silencing in lymphoid malignancies was
demonstrated in mantle cell lymphoma, in which BIM homozygous
deletion was identified with high frequency using a genome-wide array-
based comparative genomic hybridization analysis [4].

DNA methylation abnormalities have been identified as one of the
most frequent epigenetic modifications in cancer. The DNA methyla-
tion profile of tumors is frequently characterized by global hypometh-
ylation and simultaneous hypermethylation of CpG islands [5,6]. It is
known that, when methylation is localized in the promoter [7], in the
5’ untranslated region (5"UTR), or in the first exons/introns [8—10] of
a gene, methylation and transcription of that gene are usually inversely
correlated. Methylation of tumor suppressor genes often leads to their
down-regulation, potentially playing a pathogenic role in the develop-
ment of cancer and in resistance to apoptosis-inducing drugs [11].
Methylation may inhibit transcription through two main mechanisms:
cither by directly blocking the binding of transcription factors to DNA
or through recruitment of methyl-CpG-binding proteins (MBDs),
which in turn recruit multiprotein corepressor complexes carrying
histone deacetylase (HDAC) activity.

We and others recently demonstrated that B/M can be the target of
epigenetic silencing in specific types of cancer as leukemia, lymphomas,
and solid tumors, but the molecular mechanisms driving this phenom-
enon are poorly understood [12-18].

It is known that cells expressing the NPM/ALK fusion oncogene can
drive BIM down-modulation through a phosphatidylinositide 3-kinase
(PI3K)-mediated phosphorylation of the transcription factor FOXO3a
[19], which is a known activator of BIM expression [20]. This phos-
phorylation causes FOXO3a translocation to the cytoplasm, thus causing
a decrease of BIM expression. NPM/ALK transfection in Ba/F3 cells
showed that FOXO3a phosphorylation can reduce BIM protein levels
but is not able to completely abrogate its expression [19]. Since in cell
lines derived from patients affected by NPM/ALK-positive anaplastic
large cell lymphomas (ALCLs) BIM expression was dramatically reduced
(R.G.P. and C.G.-P., unpublished observations), here we investigated
the existence of additional FOXO3a-independent mechanisms respon-
sible for strong BIM down-modulation in NPM/ALK-positive cells,
demonstrating that BIM is epigenetically silenced through a SIN3a/
HDAC1/2 corepressor complex in NPM/ALK-driven tumors and that
this phenomenon can be reverted by deacetylase inhibitors or demethyl-
ating drugs, thus leading to apoptosis of NPM/ALK-positive cancer cells.

Materials and Methods

Cell Lines

All the cell lines were cultured in RPMI 1640 (BioWhittaker,
Cambrex Biosciences, East Rutherford, NJ) supplemented with 10%
FBS (BioWhittaker, Cambrex Biosciences), 100 Units/ml penicillin,

100 pg/ml gentamicin, and 2 mM L-glutamine (BioWhittaker, Cambrex
Biosciences). The cells were cultured in a humidified incubator at 37°C
in an atmosphere of 5% CO,. Trypan blue dye (Sigma, St Louis, MO)
exclusion test was used to count viable cells.

Treatment with Methylase Inhibitors

Cells (10°) for each cell line were seeded and treated with and without
1 pM 5-azacytidine (AZA) or 5-aza-deoxycytidine (dAZA; Sigma); fresh
inhibitor was added every 48 hours. After 5 days of treatment, the cells
were harvested for the analysis of BIM expression. Genomic DNA, RNA,
and proteins were extracted using TRIzol Reagent (Life Technologies,
Paisley, United Kingdom) according to the manufacturer’s protocol.

Patients

Informed consent was obtained from each subject involved in the
study. All the human investigations were performed in accordance
with the principles embodied in the declaration of Helsinki.

Treatment with ALK Inhibitor

Cells (10° SU-DHL-1) were treated with and without 1.2 pM
PF2341066 (Pfizer, New York, NY). After 5 hours, the acetylation
status of histone H3 tails at the BIM locus was analyzed by chromatin
immunoprecipitation (ChIP).

RNA Interference

Inducible silencing of NPM/ALK in SU-DHL-1 cells was generated
as previously described [21]. Cells were analyzed after a 3-day incubation
with 1 pg/ml doxycycline. For BIM silencing experiments, SU-DHL-1
cells were infected with lentivirus obtained from MISSION-shRNA
pLKO-based vectors (Sigma; TRCN0000001054 NM_138621.X-
522slcl) and packaged using 293FT cell line. As a control, a pLKO.
IMISSION non-target control vector (Sigma; SHC002) was used.

Generation of an Inducible BIM Expression System

BimS ¢cDNA was amplified from LAMA-84-S RNA using Titan
One Tube RT-PCR System (Roche Applied Science, Mannheim,
Germany). The primers used were BimCI-EL-For 5'ATGGCAA-
AGCAACCTTCTGATG3’ and BimCI-EL-Rev 5'CTCCGCAAA-
GAACCTGTCAATG3'. BimS polymerase chain reaction (PCR)
product was then cloned into PCR 4-TOPO (Life Technologies) to
obtain PCR 4-TOPO-BimS. To set up an inducible system for BimS,
the luciferase ORF was excised from pcDNA4/TO-luc and a multiple
cloning site, excised from pcDNA3 with a HindIIl/Xbal double diges-
tion, was subcloned into the vector backbone, giving rise to pcDNA4/
TO-MCS. BimS cDNA was excised from PCR 4-TOPO-BimS with
an EcoRI digestion and inserted into pcDNA4/TO-MCS, linear-
ized using the same restriction enzyme (pcDNA4/TO-MCS-BimS).
KARPAS-299 cell lines stably expressing a Tet repressor (KARPAS-
299 TR1) encoded by pcDNAG6/TR (Life Technologies) were trans-
fected with pcDNA4/TO-MCS-BimS using Lipofectamine 2000 (Life
Technologies) according to the manufacturer’s instructions. KARPAS-
299 double stable cell line (KARPAS-299 BimS) was selected with
10 pg/ml blasticidin and 100 pg/ml Zeocin (Life Technologies). BimS
expression was confirmed by Western blot analysis and real-time PCR
after induction with 1 pg/ml doxycycline (Clontech, Palo Alto, CA).

Generation of an NPM/ALK-Expressing LAMA-84 Cell Line
Cells (107) were electroporated with 30 pg of pcDNA3 plasmid con-
taining wild-type NPM/ALK (pcDNA3-NA) obtained as previously
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described [22]. After electroporation, cells were allowed to recover
for 48 hours and then selected with 800 pg/ml G418-additioned RPMI
for 4 weeks.

Bisulfite Conversion

Two micrograms of genomic DNA was bisulfite-converted using a
standard protocol. The bisulfite-modified DNA was amplified with a
nested PCR protocol. The reactions were performed using FastStart
Polymerase (Roche Applied Science). The primers used for the analy-
sis were BIM-CG-Ext-For (5'GTGTGTATTTTAGAGAAGTT3)
and BIM-CG-Ext-Rev (5'CCTTCAAAATTACCTTATAACS') for
the first PCR (0.4 pM each) and BIM-CG-For (5'GTTAGATTT-
TTTTTAGATTTGTTG3’) and BIM-CG-Rev (5'CAAACTA-
CAATTATCTACCTTC3’) for the nested PCR (0.2 pM each). PCR
amplifications were carried out on a Mastercycler Personal (Eppendorf,
Hamburg, Germany).

PCR products were separated by electrophoresis on agarose gel, puri-
fied with QIAquick Gel Extraction Kit (Qiagen, Hilden, Germany), and
cloned using the TOPO Cloning Kit for sequencing (Life Technologies).
Sequences were analyzed using Vector NTI 7.0 (Life Technologies).

Real-time Methylated DNA Immunoprecipitation Analysis
Twenty micrograms of genomic DNA extracted with TRIzol Re-
agent (Life Technologies) were sonicated using a Bandelin Sonoplus
HD 2070 sonicator. The average size of the sheared chromatin was
~500 bp. One microgram of sonicated DNA was immunoprecipitated
over-night at 4°C with rotation using 30 pg of the sheep polyclonal
5-methyl-cytosine antibody ab1884 (Abcam, Cambridge, United
Kingdom) in an immunoprecipitation (IP) buffer containing 0.01%
sodium dodecyl sulfate (SDS; wt/vol), 1% Triton X-100 (wt/wt),
1.1 mM EDTA, 15 mM Tris-HCl, 150 mM NaCl, and 7 mM NaOH.
The complex was immunoprecipitated using 60 pl of Salmon Sperm
DNA/Protein A Agarose (Upstate, Lake Placid, NY) for 1 hour at 4°C
with rotation. The immunocomplex was then washed once with 1 ml
of 0.1% SDS, 1% Triton X-100, 2 mM EDTA, 10 mM Tris-HCI,
150 mM NaCl (pH 8.1), once with 1 ml of 0.1% SDS, 1% Triton
X-100, 2 mM EDTA, 10 mM Tris-HCI, 500 mM NaCl (pH 8.1), once
with 1 ml of 0.25 M LiCl, 1% NP-40, 1% deoxycholate, 1 mM EDTA,
10 mM Tris-HCI (pH 8.1), and twice with 1 ml of 10 mM Tris-HCI,
1 mM EDTA (pH 8.0). The immunoprecipitated DNA was then eluted
incubating twice with 250 pl of freshly prepared elution buffer (1% SDS,
0.1 M NaHCOQO3) at room temperature for 15 minutes. The DNA was
subsequently purified using QIAquick PCR Purification Kit (Qiagen)
and quantified using SYBR Green quantitative PCR (QPCR). Five mi-
croliters of immunoprecipitated DNA and a corresponding amount of
INPUT DNA were used. All the analyses were performed in triplicate.
To assess the reproducibility of the data, methylated DNA immuno-
precipitation (MeDIP) and real-time analyses were performed at least
three times for every cell line. The resulting values were standardized
using glyceraldehyde-3-phosphate dehydrogenase (GADPH) as a reference
gene. The primers used for the analysis were BIM_mDip1Fw
(5’ACTCGGTGAAGGATGATGCC3’) and BIM_mDip1Rev
(5’CACACCCGTTAGAGCTTGGC3"); BIM_mDIP1.5Fw (5'AGG-
AACAGACGACAAGAAATAGS3’) and BIM_mDIP1.5Rev (5'GG-
ACACGGCTAAGTAGACTC3"); BIM_mDIP2bisFw
(5’GGGAGGCTAGGGTACACTTCGG3’) and BIM_mDIP2bisRev
(5’GCTCCTACGCCCAATCACTGC3'); BIM_mDIP3bisFw
(5’ AAGTCCTGCTTTGTCTCCAGS3’) and BIM_mDIP3bisRev
(5’ AAGGCGAGGCGATTGTTGAC3'); BIM_mDIP4Fw

(5'GCCTGCAATCGCTGCATCTG3’) and BIM_mDIP4Rev
(5'GTCAACAGCTTGCGGAACTGG3'); GAPDH_SYBR3_For
(5'TGCTTCTCTGCTGTAGGCTC3’) and GAPDH_SYBR3_Rev
(5'AGCGTGTCCATAGGGTGCCA3'). All the primers were used
at 160 nM final concentration and were tested for the absence of primer
dimers and aspecific products using a negative first-derivative melting
curve analysis as well as direct visualization on agarose gel stained with
ethidium bromide.

Methylation-specific PCR

Five microliters of bisulfite-treated DNA was amplified with a nested
PCR protocol. The reactions were performed in 50-pl volume contain-
ing GeneAmp PCR buffer (Life Technologies), 200 pM each dNTP,
2.5U Amplitaq (Life Technologies). The primers used for the first
reaction were BIM-MSPext-For (5'GGATTGGGTTTGGGGATG-
GTTT3’) and BIM-MSPext-Rev (5’ATCCCACAAACCCTCCCC-
TCAA3’). The product of the first reaction was diluted 1:10 and 1 pl
of the dilution was used as template for the nested PCR, using the
same enzyme. The primers used for the detection of the unmethyl-
ated and methylated DNA were, respectively, BIM-MSP-Uint-For
(5'TTTTTGATGAAGTGGTAGTT3') and BIM-MSP-Uint-Rev
(5’ AACAAAACCCAAAACTCAAA3’) and BIM-MSP-Mint-For
(5'TTTTCGACGAAGCGGTAGTC3’) and BIM-MSP-Mint-Rev
(5’AACAAAACCCGAAACTCGAA3').

Chromatin Immunoprecipitation

ChIP was performed using a standard protocol. The immuno-
precipitated DNA was amplified with FastStart Polymerase (Roche
Applied Science) with a standard protocol. The primers used for the
reactions were BIM-ChIP-Int-For 5'GCCTGCAATCGCTGCAT-
CTG3’ and BIM-ChIP-Int-Rev 5'GTCAACAGCTTGCGGAACT-
GG3' for BIM; GAPDH_ChIP_For 5'CCCAACTTTCCCGCCTC-
TC3" and GAPDH_ChIP_Rev 5'CAGCCGCCTGGTTCAACTG3’
for GAPDH. Densitometric analyses were performed using Kodak 1D
3.5 Image System (Eastman Kodak Company, Rochester, NY).

Real-time QPCR

cDNA was synthesized from 200 ng of total RNA, using TagMan
Reverse Transcription Reagents (Life Technologies). The RNA from
transfectant cells was pretreated with Dnasel (Life Technologies) to
avoid contamination from genomic DNA. QPCR was performed using
TagMan Universal PCR Master Mix (Life Technologies) for TagMan
or with Brilliant SYBR Green QPCR Master Mix (Stratagene, La Jolla,
CA) for SYBR Green real-time PCR on a 7900HT Sequence Detection
System (Life Technologies) under standard conditions. All the QPCR
experiments were performed in triplicate. The housekeeping gene
P-glucuronidase (GUS) was used as an internal reference. The se-
quences of BIM and GUS probes were, respectively, BIMEx4_Rev
Probe (5’FAM-CCGCAACTCTTGGGCGATCCATATCTCTC-
TAMRA3’) and GUS-probe (5'FAM-CCAGCACTCTCGTCGGTG-
ACTGTTCA-TAMRA3’). The forward and reverse primers for BIM
and GUS were, respectively, BIMEx4_For (5"TTCCATGAGGCAGG-
CTGAAC3’) and BIMEx8_Rev (5’ GGTGGTCTTCGGCTGCTT-
GG3’) and GUS-for (5’GAAAATATGTGGTTGGAGAGCTC-
ATT3’) and GUS-rev (5’ CCGAGTGAAGATCCCCTTTTTA3').

The primer pair for NPM/ALK SYBR Green QPCR analysis was
NPM1-SYBR-for (5TGCATATTAGTGGACAGCAC3’) and
ALK1-SYBR-rev (5’CAGCTTGTACTCAGGGCTCTG3').
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Antibodies and Western Blot Analysis

Rabbit anti-BIM was purchased from Abcam (ab32158), anti—
p-ERK (9101) was from Cell Signaling Technology (Danvers,
MA), and anti-actin was from Sigma-Aldrich (St Louis, MO). Pro-
tein lysates, prepared as reported above, were separated by 15%
SDS-polyacrylamide gel electrophoresis (Bio-Rad Laboratories, Palm
Springs, CA) and blotted onto Hybond ECL nitrocellulose membrane
(Amersham Biosciences, Uppsala, Sweden) following a standard
protocol. Proteins were visualized by chemiluminescence (Super
Signal; Pierce, Rockford, IL) with Image Station 440 CF (Eastman
Kodak Company).

Detection of Apoptosis

Quantification of apoptotic cells was performed by TUNEL assay
using DeadEnd Fluorometric terminal deoxynucleotidyl transferase
dUTP nick-end labeling (TUNEL) System (Promega, Madison, W1I)
using a standard protocol. Flow cytometry analysis was performed on a
Becton Dickinson FACSort by CellQuest software (Becton Dickinson
Immunocytometry Systems, Mountain View, CA).

Immunohistochemistry

Representative formalin-fixed paraffin-embedded tissue blocks
were sectioned (2-pm thickness). Sections were dewaxed in xylene
before rehydration through graded alcohol to water. Antigen retrieval
was performed in autoclave at 95°C for 6 minutes in 0.05 M citrate
buffer. The p80 anti-ALK polyclonal serum (Sanbio, Uden, The
Netherlands) was used at a dilution of 1:10. A streptavidin-biotin
system (Dako, Glostrup, Denmark) with development in amino-
ethyl-carbazole was applied.

Thymidine Uptake Assay

Exponentially growing SU-DHL-1 transfectants were plated in
five replicates in 96-well plates at a density of 5000 cells/well. Cells
were treated with 500 nM trichostatin A (T'SA) or vehicle alone
for 48 hours. [3H]thymidine (1 pCi; Amersham Biosciences) was
added to each well 8 hours before harvesting onto glass fiber filters
by a Tomtec automated cell harvester (Tomtec, Hamden, CT). Incor-
poration of [*H]thymidine was measured using a filter scintillation
counter (1430 MicroBeta; Amersham Biosciences).

Results

Identification of BIM 5’UTR Methylation in ALCL Cells

We analyzed the methylation status of 18 CpG sites in the 5'UTR of
BIM locus, in the human NPM/ALK+ ALCL cell lines SU-DHL-1,
KARPAS-299, and SUP-M2 and in the NPM/ALK-negative chronic
myeloid leukemia cell line LAMA-84 as a negative control, using a
bisulfite clonal sequencing technique. Globally, we identified a homo-
geneous, very high level of methylation (92.3%) in all the NPM/ALK+
cell lines (Figure 1A4). In the SU-DHL-1 cell line, all the 18 CpG
sites were found to be methylated. Only a limited evidence of CpG
methylation (25.0%) could be detected in the NPM/ALK-negative
LAMA-84 cell line (Figure 1A4). This correlated with an almost complete
silencing of BIM expression in all the NPM/ALK+ cell lines but not in
LAMA-84, as assessed by QPCR (P < .0001; Figure 1B). Similar results
were obtained with additional myeloid cell lines (Figure W1).

To assess whether B/M methylation was present also in NPM/ALK+
ALCL in vivo, biologic samples taken from lymph nodes of six patients
affected by an NPM/ALK+ ALCL were analyzed using methylation-
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Figure 1. (A) Methylation pattern of B/IM 5'UTR in SU-DHL-1, KARPAS-
299, and SUP-M2 and in the NPM/ALK— LAMA-84. The horizontal
5" bar represents part of the B/M CpG Island; the vertical ticks repre-
sent individual CpG sites; the horizontal 3" bar indicates the first cod-
ing exon. Filled circles represent methylated CpG sites; white circles
refer to unmethylated ones. Horizontal bullet series represent sequen-
tial CpG sites; vertical series show different clones. (B) BIM mRNA lev-
els in the LAMA-84, SU-DHL-1, KARPAS-299, and SUP-M2 cell lines.
QPCR quantification of BIM relative to the housekeeping gene GUS is
presented. The error bars represent the SD of three replicates.

specific PCR (MSP). Despite the likely presence of a mixed population
of neoplastic and normal cells in lymph nodes samples, as shown by
immunohistochemistry, evidence for BIM methylation was detected
in all the cases (Figure 2, A and B). Conversely, no evidence of BIM
methylation could be found in lymphocytes from five healthy donors
(Figure 24; controls 1 and 2 are shown). To further characterize BIM
methylation, two ALCL samples (samples 1 and 2) and lymphocytes
from two healthy donors (controls 1 and 2) were also analyzed by
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bisulfite clonal sequencing (Figure 2C), confirming the presence of
dense methylation in two of five clones in ALCL 1 and 2 (42.2%
and 45.6% methylated CpG sites, respectively).

To further analyze the methylation pattern of the whole BIM
CpG island, we carried out real-time MeDIP (RT-MeDIP) profiling
on SU-DHL-1 (NPM/ALK+) and LAMA-84 (NPM/ALK-) cell lines
as a negative control. In SU-DHL-1, the analysis revealed a high
enrichment for methylated DNA in the whole 5'UTR (Figure 2D;
regions 4 and 5), while 5" from the transcription start site (Figure 2D;
regions 1, 2, and 3) the enrichment level quickly decreased to levels
similar to the control. As expected, no significant enrichment was

detected in LAMA-84.

Treatment with Demethylating Agents Leads to BIM
Up-Regulation and Induction of Apoptosis

To characterize the contribution of BIM promoter methylation to
gene silencing, the SU-DHL-1 and LAMA-84 cell lines were treated
with the demethylating agent AZA. Following treatment, methylation
decreased from 100% to 0% in SU-DHL-1, while BIM epigenetic

status was minimally affected in LAMA-84 (Figure 34). Change in
the methylation pattern of BIM was associated with BIM up-regulation
at mRNA (7.7-fold; Figure 3B) and protein levels (Figure 3C) in
SU-DHL-1 cell line, whereas, as expected, treatment with AZA was
unable to induce BIM up-regulation in LAMA-84 cells (Figure 3, B
and C). This correlated with a significant induction of apoptosis in
SU-DHL-1 (Figure 3D) but not in LAMA-84 (Figure 3D). Similar re-
sults were obtained on the NPM/ALK+ KARPAS-299 cell line, where
the treatment with AZA led to a partial demethylation (Figure W2) and
to a 2.9-fold increase in BIM expression (not shown).

BIM Is Silenced through Histone Deacetylation and
Chromatin Condensation

To assess whether deacetylation of histone tails and chromatin con-
densation are involved in BIM epigenetic silencing, we analyzed the
acetylation status of histone H3 tails at the BIM locus in the NPM/
ALK+ SU-DHL-1, KARPAS-299, and SUP-M2 and in the NPM/
ALK- LAMA-84 cell lines. ChIP analysis showed that histone H3 tails
at the BIM locus are strongly deacetylated in all the NPM/ALK+ cell
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Figure 3. (A) B/IM methylation pattern in SU-DHL-1 and LAMA-84 untreated (—) or treated (+) with AZA. Horizontal circle series represent
sequential CpG sites; vertical series represent different clones. (B) QPCR analysis of BIM expression in SU-DHL-1 and LAMA-84 cell lines
after treatment with 1 uM AZA. Results are shown as fold increase relative to the untreated samples. Error bars represent the SD of three
replicates. The LAMA-84 cell line, in which BIM locus is largely unmethylated, is used as a control. (C) Western blot analysis of BIM expres-
sion in SU-DHL-1 and LAMA-84 cell lines untreated (—) or treated (+) with 1 uM AZA for 5 days. All the three major BIM isoforms are shown.
(D) TUNEL assay of SU-DHL-1 and LAMA-84 cells untreated or treated with 1 uM AZA. The graph shows the percentage of apoptotic cells

as an average of three independent experiments.

lines (Figure 4, A and B). Conversely, abundant histone H3 tail
acetylation was apparent in LAMA-84 cells (Figure 4, A and B).

To characterize the contribution of histone tail deacetylation to
BIM silencing, SU-DHL-1 cells were treated with 500 nM TSA, a
potent inhibitor of class I and II HDACs. ChIP analysis following
treatment with TSA confirmed the reacetylation of H3 tails (Figures 4C
and 7C). We subsequently analyzed the effect of histone reacetylation
on BIM expression by QPCR. Treatment with TSA enhanced BIM
expression 21.6-fold (Figure 4D). The up-regulation of BIM in the
SU-DHL-1 cell line was accompanied by the induction of massive
apoptosis, as assessed by TUNEL assay (Figure 4E). In the NPM/
ALK-negative LAMA-84 cell line, no up-regulation of BIM following
treatment with TSA could be demonstrated (Figure 4D) and this cor-
related with a very limited proapoptotic effect (Figure 4E).

BIM Protein Levels Affect Viability of NPM/ALK+
Lymphoid Cell Lines

To assess the effect of BIM modulation in NPM/ALK+ cells, we
generated an inducible BIM expression system in the highly methylated
cell line KARPAS-299 (KARPAS-299 BIM), where BIM is virtually
undetectable, as assessed by QPCR (Figure 1B).

Two hours after the addition of 1 pM doxycycline, induction of BIM
expression was detected by real-time PCR (Figure 54) that was followed
by an increase in the expression of BIM protein, as assessed by Western
blot in the KARPAS-299 BIM cell line (Figure 5B). This correlated
with a significant induction of apoptosis in KARPAS-299 BIM com-
pared to control the induction of apoprosis (Figure 5C), suggesting that
KARPAS-299 are sensitive to the proapoptotic effect of BIM.

To assess if BIM up-regulation could play a significant role in TSA-
mediated apoptosis, we generated a stable BIM silencing model in
SU-DHL-1 cells and we compared the effect of TSA in both silenced
cells and in a scrambled control. BIM silenced cells showed a higher
proliferation rate (P = .03) when treated with TSA in comparison with
the control, although no significant difference in the induction of apop-
tosis, at least up to 72 hours, could be detected (Figure W3, A-C).

BIM Deacetylation Occurs through Recruitment of an
MeCP2-SIN3 Methyl-Binding Protein/Corepressor Complex
The finding that treatment with HDAC inhibitors (HDACis) up-
regulates BIM suggests that histone tail deacetylation plays an impor-
tant role in BIM silencing. It is known that class I HDACs, most
notably HDACI, 2, and 3, are frequently associated with gene silencing
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in human cancer [23-25]. Due to the lack of DNA binding domains
in HDAG:s, deacetylases require the presence of MBPs and corepres-
sor complexes to properly bind methylated DNA and deacetylate
histone tails.

HDACI and 2 are commonly found as a part of two multiprotein
corepressor complexes: SIN3 and NuRD [26,27]. Conversely, HDAC3
typically associates with the NCoR/SMRT complex [28], which is
known to play a crucial role in hormone receptor signaling [29]. To
study the involvement of specific HDACs in BIM silencing, we per-
formed ChIP analyses with antibodies directed against HDACI, 2,
and 3 on SU-DHL-1 and we analyzed the results by QPCR. As shown
in Figure 5D, HDACI and 2, but not HDACS3, associate with the
methylated CpG island at the BIM genomic locus.

The identification of HDACI and 2 as a part of the BIM silencing
machinery was suggestive for the involvement of SIN3 or NuRD
corepressor complexes. To further investigate these findings, we per-
formed ChIPs against MeCP2, an MBP that recruits SIN3 [30] and,
less commonly, NCoR [31], and against MBD3, which is a core sub-
unit of the multiprotein NuRD complex [27]. To confirm the absence
of complexes involving HDAC3, we also set up ChIPs against NCoR,
which is part of the NCoR/SMRT complex, and against Kaiso, a BTB/
poxvirus-zinc finger family member able to bind NCoR [32]. As
expected, the only significant enrichment was found for MeCP2 (Fig-
ure 5E), thus strengthening the hypothesis that silencing of B/M occurs
through recruitment of an MeCP2-SIN3 methyl-binding protein/
corepressor complex (Figure 74).
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It is known that MeCP2 is able to bind to methylated and also to
unmethylated DNA 77 vitro, albeit with different specificity and affinity
[33]. To verify if the recruitment of MeCP2 was dependent on BIM 5’
UTR methylation, we tested its binding to the BIM locus with and
without pretreatment with 1 pM AZA. The treatment with the de-
methylating agent was able to completely disrupt the association of
MeCP2 to the BIM locus, thus indicating that MeCP2 acts through
a methylation-dependent mechanism (Figures 5F and 7B). Interest-
ingly, the disruption of the MeCP2-SIN3 methyl-binding protein/
corepressor complex following treatment with AZA was associated with
a prompt reacetylation of the BIM locus (Figures 5G and 7B).

NPM/ALK Kinase Activity Is Not Required to Maintain
the Epigenetic Silencing of BIM Locus

The presence of BIM epigenetic silencing in ALK+ cell lines and
patient samples suggested that NPM/ALK kinase activity might be the
driving force behind this phenomenon.

To test whether NPM/ALK could be implicated in the maintenance
of BIM epigenetic silencing, we treated the SU-DHL-1 cell line with
the ALK inhibitor PF2341066 to assess whether the inhibition of
ALK catalytic activity may inactivate the silencing machinery. Although
the treatment with PF2341066 led to a prompt inhibition of ALK
kinase activity (Figure 64) and to induction of apoptosis (data not
shown), no evidence of reacetylation at BIM locus could be demon-
strated (Figure 6B).
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Figure 4. (A) a-Acetylated H3 ChIP analysis on SU-DHL-1, KARPAS-299, SUP-M2, and LAMA-84 cell lines. Immunoprecipitates (Ac-H3) were
subjected to PCR with primer pairs specific for BIM and for GAPDH, as a positive control. PCRs were performed also using total chromatin
input (INPUT) as template. (B) Densitometric analysis of acetylated H3 enrichment of B/M locus in the same cell lines (bands shown in
panel). (C) o-Acetylated H3 ChIP analysis before and after treatment with 500 nM TSA. (D) BIM mRNA levels assessed by QPCR before
and after treatment with 500 nM TSA. (E) TUNEL assay of SU-DHL-1 and LAMA-84 cells untreated or treated with 500 nM TSA for 3 days.
The graph shows the percentage of apoptotic cells as an average of three independent experiments.
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Figure 5. (A) BIM mRNA level after the induction with doxycycline. (B) Expression level of Bim 12 hours after the induction, as assessed by
Western blot. (C) Percentage of apoptosis after 12 hours of induction in KARPAS-299 TR1 and in KARPAS-299 Bim, as assessed by TUNEL
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subjected to PCR with primer pairs specific for B/IM and for GAPDH, as a positive control. PCRs were performed also using total chromatin

input (INPUT) as template.

To further investigate these findings, we generated a doxycycline-
inducible silencing system targeting NPM/ALK and we tested the
acetylation status of the BIM locus in the presence/absence of doxy-
cycline. As expected, the treatment with doxycycline led to a prompt
down-modulation of NPM/ALK expression (Figure 6C); however,
in line with the previous findings, no significant evidence of BIM re-
acetylation could be demonstrated (Figure 6D). Taken together, these
data indicate that neither NPM/ALK nor its catalytic activity is
required to maintain the epigenetic silencing at B/M locus.

NPM/ALK Induces De Novo BIM 5’UTR Methylation

It is known that the epigenetic silencing of specific genes depends on
two biologically distinct processes: 1) initiation, occurring at previously
unmethylated loci usually through methylation of a CpG island, and 2)
maintenance of DNA methylation throughout cell divisions, typically
through recruitment of DNMT1 at hemimethylated sites [34]. When
NPM/ALK is silenced or when its catalytic activity is suppressed, no

epigenetic effect is detectable at the BIM locus (Figure 6, B and D),
which suggests that either NPM/ALK is dispensable for the activation
of BIM epigenetic pathway or that it plays a role in initiating the epi-
genetic process by triggering the methylation of B/A 5"UTR but not
in its maintenance. To address this issue, the methylation status of BIM
5"UTR was analyzed (Figure 6E) in the LAMA-84 cell line in the pres-
ence and absence of enforced NPM/ALK expression (Figure W4A).
In the presence of the fusion protein, clonal bisulfite analysis of BIM
5'UTR revealed a significant increase (Mann-Whitney test, 2= .041) in
the overall methylation level (Figures 6, £ and F, and W4B). Interest-
ingly, the distribution of the methylated CpG sites, which was irregular
in the absence of NPM/ALK, acquired a largely reproducible pattern in
the presence of the latter (Figure 6, £ and F) and this correlated with
the down-modulation of BIM expression (Figure 6G ¢ test, P = .003).

Recent reports showed that the EMIL4/ALK fusion protein can in-
duce BIM down-regulation through extracellular signal-regulated kinase
(ERK) pathway in non—small cell lung cancer [35]. To test the role of
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the MAP kinase ERK kinase (MEK)/ERK pathway in the regulation
of BIM expression in NPM/ALK+ cells, we treated the NPM/ALK+
SU-DHL-1 cell line with the MEK inhibitor CI-1040 [36] and we
analyzed BIM expression by means of QPCR: no significant effect on
BIM expression could be detected after up to 72 hours of treatment
(Figure W5). Although further studies will be required to thoroughly
analyze this phenomenon, these data indicate that NPM/ALK is able
to modify the status and pattern of B/M 5'UTR methylation, possibly
acting as an inducer of this epigenetic process through a MEK/ERK-
independent pathway.

Discussion

The BH3-only, Bcl-2 family member BIM is one of the most potent
proapoptotic factors involved in the homeostasis of the hemato-
poietic system [2,37,38]. Several mechanisms of BIM regulation have
been described both at the transcriptional and posttranscriptional
levels [20,39-44]. Additionally, recent studies showed that BIM ex-
pression can be silenced by epigenetic mechanisms in various types of
cancers: in a subset of chronic myeloid leukemia patients [12], in renal
cell carcinoma samples [14], in a high percentage of Burkitt lym-
phomas [15], in EBV-infected B cells [13], and in acute lymphoblastic
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Figure 6. (A) Western blot against phospho-ALK in the presence and absence of the ALK tyrosine kinase inhibitor PF2341066. Results
are normalized against (B-actin. (B) a-Acetylated H3 ChIP analysis of BIM locus before and after treatment with the ALK tyrosine kinase
inhibitor PF2341066. (C) QPCR analysis of NPM/ALK mRNA expression before and after treatment with doxycycline in SU-DHL-1 cells
carrying a doxycycline-inducible siRNA against NPM/ALK. (D) a-Acetylated H3 ChIP analysis of BIM locus before and after treatment with
doxycycline. (E) Methylation pattern of B/M 5'UTR in LAMA-84 cells expressing (+) or not expressing (—) the NPM/ALK fusion protein.
Filled circles represent methylated CpG sites; white circles represent unmethylated ones. Horizontal circle series represent sequential
CpG sites; vertical series represent different clones. Black rounded rectangles indicate regions with a regular pattern of highly methyl-
ated CpG sites. (F) Polynomial regression of methylated CpG density pattern in LAMA-84 cells expressing (solid line) or not expressing
(dashed line) NPM/ALK. The striped area highlights the region with a different methylation density between the two samples. (G) QPCR
analysis of BIM expression in LAMA-84 cells transfected with NPM/ALK (+NPM/ALK) or an empty vector (—NPM/ALK). Error bars represent
the SD of three replicates.
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Figure 7. (A) Outline of the proposed model for the epigenetic silencing of B/IM: NPM/ALK triggers B/IM CpG methylation through a yet
unknown pathway. Then, the methyl-CpG-binding protein MeCP2 binds to the 5-methylcytosines and recruits HDAC1, HDAC2, and the
corepressor Sin3a. The activity of this complex leads to histone tail deacetylation, chromatin condensation, and B/M transcriptional
repression. (B) Treatment with the demethylating agent AZA leads to B/IM CpG island demethylation, detachment of MeCP2, disruption
of the deacetylating complex, and reactivation of B/M transcription. (C) Treatment with the HDACi TSA causes direct inhibition of
HDAC1/2 enzymatic activity, chromatin decondensation, and reactivation of B/M transcription.

leukemias [16], where it is associated with steroid resistance. Here, we
showed for the first time the existence of a BIM epigenetic silencing
mechanism in NPM/ALK+ ALCL.

Methylation profiling by RT-MeDIP revealed that methylation
is clustered within BIM 5'UTR, at least in SU-DHL-1 (Figure 2D).
This finding suggests that the 5’'UTR of BIM promoter may have
an important role in controlling the expression of the gene. It is well
known that silencing of a gene through epigenetic mechanisms is a
complex phenomenon [45,46]. Commonly, methylation of the pro-
moter or the 5’UTR of a gene is just the first step of a long series
of events leading to gene silencing. Epigenetic silencing can be trig-
gered by CpG methylation through two main mechanisms: DNA
methylation can repress transcription by directly impairing the binding
of transcriptional activators to cognate DNA sequences [47,48] or
MBP can bind to methylated DNA sequences, thus recruiting multi-
protein corepressor complexes carrying HDAC activity. These com-
plexes silence gene expression by triggering histone tail deacetylation
and chromatin condensation [49]. Using ChIP experiments, we dem-
onstrated the involvement of histone H3 tail deacetylation, a well-
known marker of chromatin condensation [50], in BIM silencing
(Figure 4, A and B). To further characterize the molecular events lead-
ing to chromatin condensation, we performed ChIP experiments using
anti-HDAC1, HDAC2, HDAC3, MeCP2, MBD3, Kaiso, and
NCoR antibodies, demonstrating HDAC1, HDAC2, and MeCP2,
but not HDAC3, MBD3, Kaiso, and NCoR, to be involved in BIM
silencing (Figure 5, D and E). HDACI and 2 are usually found as
part of two corepressor complexes: SIN3 and NuRD. However, the

identification of MeCP2, an MBD commonly associated with the
SIN3 complex, strongly suggests the involvement of the latter. This
hypothesis is further supported by the absence of MBD3, which is
part of the core NuRD complex, even if its constitutive presence in
NuRD corepressor complex has been questioned [51]. The finding that
treatment with demethylating agents is able to completely revert the
binding of MeCP2 to the BIM locus (Figure 5F) suggests that BIM
silencing could occur through the following steps: CpG methylation—
binding of MeCP2 to methylated CpGs—recruitment of SIN3 core-
pressor complex—deacetylation of histone tails—chromatin conden-
sation (Figure 7). The evidence that a deacetylating complex plays a
functional role in BIM down-regulation is supported by the fact that
treatment with HDAC is able to restore BIM expression (Figures 4D
and 7C). Interestingly, the detachment of MeCP2 following treat-
ment with deacetylating agents is also associated with histone tail re-
acetylation (Figure 5G), suggesting the presence of a yet unidentified
acetylating complex acting in competition with MeCP2/SIN3.
Although BIM epigenetic signaling can be triggered also in clonal
disorders not expressing NPM/ALK, the evidence of BIM silencing in
NPM/ALK+ cell lines as well as patient samples strongly suggested a
direct role for the deregulated kinase in the maintenance of the BIM
epigenetic silencing machinery, at least in NPM/ALK+ lymphomas.
This hypothesis was further supported by the evidence that NPM/
ALK is able to activate an epigenetic STAT3-dependent pathway
[21]. Nevertheless, the treatment with the ALK inhibitor PF2341066
was unable to revert BIM epigenetic silencing (Figure 6, A and B).
Although it is possible that BIM demethylation could require a longer
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time than the one allowed by the use of ALK inhibitors, these findings
do not support the hypothesis that the maintenance of BIM epigenetic
silencing is linked to the NPM/ALK kinase activity. An alternative
hypothesis is that this process could be triggered by the presence of
the NPM/ALK protein, even in the absence of any kinase activity. How-
ever, when NPM/ALK expression was knocked out using an inducible
siRNA silencing system, no significant evidence of B/M locus reacetyla-
tion could be found (Figure 6, C and D), suggesting that NPM/ALK
expression is dispensable from maintaining BIM epigenetic silencing
and that other, yet unknown pathways are required to maintain this
process, probably involving DNMT1. Nevertheless, the enforced
expression of NPM/ALK on the LAMA-84 cells led to an increase in
the methylation of BIM 5'UTR (Figures 6, £ and F, and W5) and
to the stabilization of a specific methylation pattern (Figure 6F). This
phenomenon was accompanied by a significant down-modulation of
BIM expression (Figure 6G) that cannot be explained by the NPM/
ALK-mediated phosphorylation of FOXO3a, because in BCR/ABL-
positive cells, such as LAMA-84, FOXO3a is similarly inactivated by
serine/threonine phosphorylation and cytoplasmic translocation [52]
through a PI3K-dependent mechanism. Therefore, despite the evidence
that NPM/ALK is not critical for the maintenance of BIM epigenetic
silencing, these findings, albeit preliminary, suggest that NPM/ALK
itself may be the initiator of the BIM epigenetic silencing pathway
and that other NPM/ALK-independent mechanisms may be then
recruited to maintain its repressed status.

While the epigenetic silencing of BIM may play a crucial role in pro-
tecting ALCL cells from apoptosis, other mechanisms leading to the
down-regulation of BIM have previously been identified. It is known
that the transcription factor FOXO3a is able to directly activate the
expression of BIM through its binding site on BIM promoter [52,53].
This mechanism of regulation can be inhibited by the phosphorylation
of FOXO3a, which results in the exclusion of the transcription factor
from the nucleus and thus in its functional inactivation [52,53]. Nota-
bly, this mechanism was demonstrated in NPM/ALK-positive cell lines
[19], suggesting that the impairment of the BIM pathway is an impor-
tant step in lymphomagenesis. Therefore, at least in ALCL cells, two
different mechanisms, phosphorylation of FOXO3a through the activa-
tion of the PI3K-AKT pathway and BIM epigenetic silencing, may
converge to inactivate the potent proapoptotic signal of BIM, thus
protecting the lymphoma cells from apoptosis.

These findings reinforce the idea that BIM plays a major role in the
surveillance against tumorigenesis in NPM/ALK-positive lymphomas
and possibly in several lymphoid malignancies. However, the demonstra-
tion that in NPM/ALK+ cells TSA is able to induce apoptosis even when
BIM expression is silenced suggests that other, yet unknown oncosup-
pressors are bona fide epigenetically silenced in these cells, therefore sug-
gesting that further studies are required to fully characterize the epigenetic
signature of ALK+ lymphomas. The discovery and description of the me-
chanisms by which BIM, as well as other oncosuppressors, are inactivated
in specific types of cancers may be of great importance to define evidence-
based cancer treatment protocols. Specifically, this study shows that epi-
genetic drugs significantly upregulate BIM expression and induce cell
death in ALCL cell lines and suggests that the use of epigenetic modula-
tors may play an important role in the treatment of ALCL.
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Figure W1. Methylation pattern of B/M 5'UTR in the myeloid cell
lines K562, NB-4, and HL60. The horizontal 5’ bar represents part
of the BIM CpG island; the vertical ticks represent individual CpG
sites; the horizontal 3’ bar indicates the first coding exon. Filled
circles represent methylated CpG sites; white circles refer to un-
methylated ones. Horizontal bullet series represent sequential CpG
sites; vertical series show different clones.
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Figure W2. B/M methylation pattern in KARPAS-299 cell line untreated (—) or treated (+) with AZA. Horizontal circle series represent
sequential CpG sites; vertical series represent different clones.
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Figure W3. (A) Relative BIM expression levels measured by real-time PCR in SU-DHL-1 cells stably transfected with BIM silencing (siBIM)
compared to control nontargeting siRNA (siNT). Results are normalized against the housekeeping gene GUS. (B) Trypan blue assay for
SU-DHL-1 siBIM and SU-DHL-1 siNT treated with 500 nM TSA. The graph displays the fold change in the amount of dead cells normalized
on vehicle-treated cells. (C) Proliferation fold increase of SU-DHL-1 siBIM compared with SU-DHL-1 siNT after 48 hours of 500 nM TSA
treatment. Results for each cell line are normalized against proliferation rate of vehicle-treated cells.
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Figure W4. (A) NPM/ALK expression in LAMA-84 cells = NPM/ALK, as assessed by QPCR. Error bars represent the SD of three
replicates. (B) Overall BIM methylation level in LAMA-84 cells expressing (+) or not expressing (—) NPM/ALK.
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Figure W5. (A) Activity of the MEK inhibitor CI-1040 on SU-DHL-1
cells treated at the indicated concentrations for 4 hours, measured
by phosphorylated ERK levels. (B) BIM mRNA fold change evalu-
ated through real-time QPCR after 72 hours of CI-1040 treatment
in SU-DHL-1 cell line.





