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Amid the flurry of grant writing and experimentation, statistical analysis sometimes gets less attention than
it requires. Here, we describe fully the considerations that should go into the employment of the statistical
two-sample t test.
The biological significance of immunolog-

ical data is paramount in their interpreta-

tion. Nevertheless, immunological data

are variable, and because statistical sci-

ence aims to make sense of variability,

statistical methods are not superfluous

to immunology. The most informative in-

terpretation of experimental data emerges

from a combination of biological and sta-

tistical insight.

Proper statistical analysis of results can

only be achieved if the researcher has

some understanding of statistical theory

and of the potential that it offers when

summarizing data and drawing conclu-

sions from them. Here, we concentrate

on the frequently misused two-sample t

test, using an experimental data set to

illustrate the appropriate application of

this test in immunological research.

Units of Analysis: What Is Being
Analyzed in an Experiment?
Before undertaking any statistical analy-

sis, it is essential to be clear about what

is being analyzed. The ‘‘unit of analysis’’

(Altman and Bland, 1997), also called

the experimental unit, is the smallest

unit of replication that can be assigned

at random to a ‘‘treatment’’ (see this

and other key definitions in Box 1).

Take, for example, an in vivo experiment

designed to assess whether a particular

experimental infection upregulates inter-

leukin-10 (IL-10) production in CD4+ T

cells in mice (Box S1A Experiment 1

and Figure S1). Because each animal’s

spleen is processed separately, the unit

of analysis is the individual mouse in

which the measurement of interest is

the CD4+ T cell IL-10 Median Fluores-

cence Intensity (MFI).
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Often in immunological experiments, how-

ever, it is not feasible to assess mice indi-

vidually, and it isnecessary topoolmaterial

from several animals in order to carry out

the experiment. For example, in pooling

CD4+ T cells from five animals to coculture

with primed and unprimed dendritic cells in

the wells of a tissue-culture plate, the unit

of analysis in this in vitro experiment (Box

S1B) is the well and not the mouse. The

result of a statistical hypothesis test in

such an experiment refers to one pooled

cell population. Conclusions cannot be

drawn about the behavior of mouse T cells

in general until repeated experiments with

independently derived cell populations

have been conducted. Whether the unit

of analysis is the mouse or the well, the cor-

rect application of the two-sample t test to

the data must provide conclusions that

relate to the relevant unit of analysis.

The Two-Sample t Test
and the p Value
Currently, the two-sample t test (also

called the ‘‘independent samples’’ or ‘‘un-

paired’’ t test) is one of the most commonly

used statistical hypothesis tests in immu-

nological research. Because it is often

performed with computer software, only

a basic explanation of the mechanics of

the test is provided (Box S2), although fur-

ther details can be obtained from standard

statistical textbooks (e.g., Petrie and Wat-

son, 2006). However, to apply the t test

correctly, it is important for immunologists

to understand the concepts and terminol-

ogy underlying hypothesis testing.

The two-sample t test compares the

means of two groups. Generally, it is not

possible to study the whole population

of observations, so a representative sam-

ple is used to make inferences about the
er Inc.
population. More specifically, the sample

mean is used as an estimate of the true

mean in the population. In the two-sample

t test, the population means are com-

pared by use of the sample mean re-

sponses of the relevant units of analysis

when each unit receives one of two treat-

ments. The result is used to assess

whether any apparent difference in means

reflects a real difference or is due to ran-

dom variation.

With regard to the example of whether

infection induces IL-10 production in

CD4+ T cells (Box S1A Experiment 1 and

Figure S1), the two-sample t test is con-

ducted to test the null hypothesis (the

hypothesis of ‘‘no effect’’) that the true

group-mean MFI for IL-10 from CD4+ T

cells in mice with and without infection is

equal (i.e., on average, there is no upregu-

lation of IL-10 in CD4+ T cells in response

to infection). The results of the hypothesis

test include a p value, the probability of

obtaining the observed results or, if the

null hypothesis is true, of obtaining more

extreme results. If the p value is small,

then there is a poor chance of getting

the observed results (here, the observed

difference in means) if the null hypothesis

is true, so the null hypothesis is rejected

and the result is said to be statistically sig-

nificant. If the p value is large, then there is

no evidence to reject the null hypothesis

and the result is said to be not statistically

significant.

The cut-off for the p value that deter-

mines significance is called the signifi-

cance level (unfortunately, this term is fre-

quently misappropriated by researchers,

who incorrectly use it to describe the

p value obtained from the test) or the al-

pha level. Its value, chosen at the design

stage of the study, is usually 0.05. This
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Box 1. Useful Statistical Definitions

� 95% confidence interval (CI) for the mean: loosely defined as the range of values within which the true population mean lies,

with 95% certainty. Provided the sample size is greater than about 10, it is approximately equal to the sample mean ± 23 the

standard error of the mean (SEM).

� Analysis of variance (ANOVA): a general term for analyses that compare the means of three or more groups of observations.

� Average: a summary measure of central tendency, such as the arithmetic mean (usually simply called the ‘‘mean;’’ equal to

the sum of all the observations divided by the number of observations) or the median (which is the middle observation in the

ordered set).

� Nonparametric (distribution-free) test: test that does not make any assumptions about the distribution of the data.

� Normal distribution: a symmetrical, theoretical, statistical distribution with many useful properties. The mean and median of

a normal distribution are equal.

� Random allocation (also called randomization): the units in the sample are randomly (i.e., by use of a method based on

chance) allocated to the different treatment groups.

� Random selection: each unit of analysis (e.g., mice or wells) is selected from the population by use of a method based on

chance and therefore has an equal probability of being selected.

� Robust test: the chance of making a mistake (i.e., of incorrectly either rejecting or not rejecting the null hypothesis) is hardly

affected when the test’s assumptions are violated.

� Standard error of the mean (SEM): a measure of precision of an estimate equal to the standard deviation divided by the square

root of the number of observations in the sample.

� Unit of analysis: the smallest unit of replication that can be randomly assigned a treatment.

� Variance: a measure of the variability or spread of a data set; it is equal to the square of the standard deviation (SD), which can

be thought of as a sort of average of the deviation of every observation from the mean.
means that if p < 0.05, the null hypothesis

is rejected and the conclusion is that the

treatment means are different. In the

CD4+ T cell in vivo example (Box S1A Ex-

periment 1), p = 0.008, so the null hypoth-

esis is rejected; i.e., on average, infection

does alter the production of IL-10 in CD4+

T cells compared with the naive animals

(the group means for IL-10-producing

CD4+ T cells are 82.4 MFI and 66.0 MFI,

respectively).

It is important to recognize that lacking

evidence to reject the null hypothesis is

not the same as accepting the null hy-

pothesis—i.e., ‘‘absence of evidence is

not evidence of absence’’ (Altman and

Bland, 1995). There may be a real differ-

ence between the treatment means but

the sample size is too small to be able to

detect it as statistically significant.

The Assumptions Underlying
the Two-Sample t Test
If the assumptions underlying a statistical

test are not satisfied, the p value may be

incorrect and/or the test may fail to detect

as statistically significant a true treatment

effect. Although not all erroneous p values

lead to incorrect conclusions, statistical

methods applied inappropriately un-

doubtedly increase the chance of making

a mistake. The assumptions underlying

the two-sample t test (Petrie and Watson,

2006) are described next.
The sample data should be randomly

selected from the population. If the units

of analysis are selected randomly from

the population, the sample should be rep-

resentative of the population about which

inferences are to be made. Unfortunately,

it is rarely possible in immunological stud-

ies to use random selection because

there is a tendency to use the units that

are available (e.g., to choose mice from

the cages in which they were bred or sup-

plied rather than from the larger popula-

tion). However, random allocation of the

units to the different treatment groups

may be used as a substitute for random

selection because the differences be-

tween treatment groups are akin to the

differences between random samples.

The use of random allocation avoids the

bias that might arise if the different treat-

ment groups are not balanced with regard

to those factors likely to influence re-

sponse. For example, docile mice may

have less testosterone than aggressive

mice, and testosterone has previously

been reported to be immunosuppressive

in some systems. Thus, if there is a pre-

ponderance of docile mice in one of the

two treatment groups (say, if they were

the first mice picked from the stock cage

and were all allocated to the same exper-

imental cage for treatment 1), the conclu-

sions drawn from the two-sample t test

comparing the mean CD4+ T cell IL-10
Immu
MFI under two treatment regimes will be

biased; the difference in the mean re-

sponses in the two treatment groups

might be due to differences in amounts

of testosterone rather than to differences

between experimental treatments. To

avoid this problem, the mice should be

randomly allocated from the stock cage

into the experimental cages to ensure

that the docile mice are evenly distributed

in the two treatment groups. In terms of

in vitro work involving tissue culture plates,

complete randomization on a tissue cul-

ture plate is problematic and can lead to

physical plating errors. As a step toward

achieving randomization, researchers

could alter the order of the treatments on

the plate between experiments.

The two groups of data must also be in-

dependent. Independence of the obser-

vations between groups should not be

confused with independence of the ob-

servations within groups, the latter also

being a requirement of the two-sample t

test. In particular, there are theoretical is-

sues regarding the independence of ani-

mals housed in the same cage (Festing

and Altman, 2002). Correction of this

type of nonindependence may be difficult

to achieve in immunological experiments.

Another issue relates to the indepen-

dence of cell populations in wells. It is

common for immunologists to perform

hypothesis tests using the same cell
nity 28, March 2008 ª2008 Elsevier Inc. 289
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population in replicate wells in vitro rather

than to replicate cell preparations. Repli-

cate wells in vitro are not independent,

because the cell population being tested

is the same preparation in all wells. Con-

sider, as an example, the generation of

IL-10-producing CD4+ T cells by pulsed

DCs in vitro (Box S1B). The desired infer-

ence from the experiment (CD4+ T cells

from individual mice) and the units of anal-

ysis (wells containing CD4+ T cells pooled

from different mice) are incongruous. Be-

cause the cells in each well are from the

same pooled CD4+ T cell population, the

only way to draw conclusions about

CD4+ T cell populations in general is to

a perform statistical analysis with data

from separately derived cell populations

(i.e., by repeating the experiments).

If there is dependence, either between or

within groups, it is not appropriate to per-

form the two-sample t test. Different statis-

tical tests, such as the paired t test or vari-

ous forms ofanalysisof variance, shouldbe

considered instead (http://www.isogenic.

info/index.html; Cox and Reid, 2000; Fest-

ing and Altman, 2002; Grafen and Hails,

2002; Howell, 1999; Mead, 1988).

It is also important that the data in each

group are normally distributed in the pop-

ulation. If the results of a two-sample t test

are to be valid, the data in each group

should come from a population of values

that approximately follows the normal dis-

tribution. A formal statistical hypothesis

test for normality, such as the Anderson-

Darling, Shapiro-Wilk, or Kolmogorov-

Smirnov tests, is unnecessary. Instead,

a visual impression of the symmetry of

a histogram (Figure S1B) or box-and-

whisker plot (Figure S1C) or a check that

the mean and median are approximately

equal is usually sufficient. By these crite-

ria, the box plots of MFI from CD4+ T cells

ex vivo (Figure S1C) suggest that the data

in each group are approximately normally

distributed. In contrast, the distribution of

the fluorescence intensity of individual

IL-10-producing CD4+ T cells from a sin-

gle infected animal (the histogram in

Figure S1B) is clearly not Normal; rather,

it is right-skewed, with a long tail to the

right. The mean fluorescence intensity of

90.8 is not a satisfactory summary mea-

sure of IL-10 fluorescence intensity in

the CD4+ T cells in this animal because

the mean is inflated by the values in the

tail; the median (fluoresence intensity of

59.2) is more appropriate.
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The final assumption that must be con-

sidered is whether the variability is the

same in the two groups being compared

(i.e., whether there is homogeneity of var-

iance). Ideally, the variances of the obser-

vations in the two groups should be equal

(i.e., the data should exhibit homogeneity

of variance) when a two-sample t test is

performed. However, it might be possible,

depending on the software, to perform

a modified test that does not rely on the

assumption of equal variances.

Equality of variance is usually assessed

by a test of the null hypothesis that the two

population variances are equal by use of,

for example, Bartlett’s (Armitage et al.,

2002) or Levene’s test (Levene, 1960). A

nonsignificant result (usually if p > 0.05)

indicates that there is no evidence to

reject the null hypothesis. In the first

in vivo example (Box S1A Experiment 1

and Figure S1C), the variances of the

MFI in the groups of naive and infected

mice are estimated as 45.1 MFI and

255.6 MFI, respectively. Levene’s test

gives p = 0.07, which suggests that there

is insufficient evidence to reject the null

hypothesis that the variances of IL-10

MFI from CD4+ T cells in the two groups

are equal. Hence the two assumptions

underlying the two-sample t test, those

of normality and constant variance, are

satisfied in this example.

Violations of the Assumptions
Underlying the Two-Sample t Test
What happens when assumptions of nor-

mality and homogeneity of variance are

violated? The two-sample t test is fairly

robust to violations of the normality and

constant variance assumptions (Bland,

2000). In particular, heterogeneity of vari-

ance is not so important if the data are

normally distributed (Bland, 2000). Never-

theless, when the variances are very dif-

ferent (which could lead to a false-positive

finding), when the sample sizes in the two

groups are very disparate, and/or when

the sample sizes are so small (frequently

the case in immunological studies) that

is impossible to check the assumptions,

it might be better to consider alternatives

to the two-sample t test.

One approach is to transform each data

point mathematically (Bland and Altman,

1996; Grafen and Hails, 2002) and perform

the two-sample t test on the transformed

data, checking that the assumptions of

this new analysis are satisfied. For exam-
r Inc.
ple, if the logarithmic transformation (to

any base, but typically to base e or 10)

is taken of right-skewed observations

(when the distribution has a long tail to

the right; Figure S1B), the distribution of

the transformed data will usually be

approximately normal. The logarithmic

transformation and other transformations

can also correct for heterogeneity of vari-

ance (Petrie and Watson, 2006).

Another approach is to use a nonpara-

metric or distribution-free test. A nonpara-

metric or distribution-free analysis does

not make any assumptions about the

distribution of the data. It replaces the ob-

served data by their ranks in the ordered

set and is therefore not influenced by the

few extremely large (or small) values in

non-normally distributed data. A nonpara-

metric alternative to the two-sample t test

is the Mann-Whitney U test (equivalent to

the Wilcoxon rank sum test). However, if

all assumptions of the two-sample t test

are met, it is better to use the t test because

it has a greater ability to detect as signifi-

cant a real difference between groups.

One scenario where the independence

assumption could be violated is when the

data in the two groups are paired rather

than independent (e.g., pretreatment ver-

sus posttreatment samples). In this case

a paired t test is advocated instead of

the two-sample t test, provided the differ-

ences between the paired observations

are approximately normally distributed. If

normality is of concern, a paired t test

may be performed on suitably trans-

formed data or an appropriate nonpara-

metric test, such as the Wilcoxon Signed

Rank test or the Sign test, may be used.

All of the above considerations are

summarized in the flow-chart of Figure 1,

which may be used as a decision tool for

choosing the most appropriate test for

the comparison of two groups. A lack of

consideration for the assumptions of the

two-sample t test can lead to incorrect

conclusions. Consider a second in vivo

experiment in which the investigator

wants to assess whether IL-10 is upregu-

lated (Box S1A Experiment 2). The data

generated are skewed to the right in

both infected and uninfected groups of

mice, and there is heterogeneity of vari-

ance (Levene’s test gives p = 0.02). A

two-sample t test performed incorrectly

on these data gives p = 0.06, with insuffi-

cient evidence to show that, on average,

IL-10 is altered. However, an appropriate

http://www.isogenic.info/index.html
http://www.isogenic.info/index.html


Immunity

Commentary
Figure 1. Flow Chart for Choosing the Appropriate Test to Compare Two Groups
of Observations
Various forms of analysis of variance should be used if there are more than two groups.
analysis, such as the nonparametric

Mann-Whitney U test performed on the

raw data or the two-sample t test per-

formed on the logarithmically transformed

data (correcting for lack of normality and

heterogeneous variances), gives p =

0.04 in each case, indicating that, on aver-

age, CD4+ T cells do upregulate IL-10 in

response to this infection. This example

underlines the importance of correctly ap-

plying statistics to the analysis of immu-

nological data.

Sample-Size Estimation
and Statistical Power
in the Two-Sample t Test
Sometimes, a difference in treatment

means appears biologically important
but the results lack statistical significance,

perhaps because of an inadequate sam-

ple size and consequent low statistical

power. The power of a test, which in-

creases with larger samples, is the proba-

bility of detecting a real difference as sta-

tistically significant. A power calculation

to determine the optimal sample size at

the design stage of a study, before carry-

ing out an experiment, is essential. Such

a calculation is also required for most

grant applications. An optimal sample

size is one that is adequate to detect as

statistically significant a treatment effect

(e.g., a difference in means) of a given

magnitude but that is not so large that it

is wasteful of resources. A generally ac-

cepted view is that a test should have at
Immun
least 80% power. It is not sensible to em-

bark on a study that is believed at the out-

set to have a lesser chance (say, 50%) of

finding a real effect statistically significant.

Calculation of the optimal sample size

depends on the proposed hypothesis

test (e.g., the two-sample t test) and

a specification of the power, significance

level, minimum treatment effect that is

considered important, and variation in

the data (see Box S3 and calculations

for the IL-10 example in Box S4). Several

different techniques can be used to deter-

mine the optimal sample size, including

computer programs such as nQuery Advi-

sor: Statistical Solutions (www.statsol.ie/

nquery/nquery.htm), tables (Machin

et al., 1997), relatively complex formulae

(Kirkwood et al., 2003), and a diagram

(Altman, 1982). In addition, Lehr (Lehr,

1992) devised simple formulae (provided

in Box S3) specifically for a 5% signifi-

cance level and an 80% or 90% power.

The optimal sample size should be justi-

fied by providing a power statement

(Box S4) that specifies the values of all

the factors that are incorporated into the

sample-size calculations. Then reviewers

and readers of the article can assess

whether the sample size used in the study

is sensible.

Reporting the Results of a Two-
Sample t Test
Details of how to report the results of a two-

sample t test are given in Box 2 and can

also be found in (Lang and Secic, 2006)

and in the CONSORT statement guidelines

(http://www.consort-statement.org). For

theexample shown in Box S1A Experiment

1 and in Figure S1, in addition to the power

statement, the reporting of the results

should state that there is evidence to

show that the CD4+ T cells from infected

animals have a significantly altered IL-10
Box 2. Reporting Results from t Tests

In a complete presentation of the results of the two-sample t test the following should be included:

� The statistical test used should be named explicitly (i.e., ‘‘the two-sample t test,’’ not simply ‘‘a t test’’).

� An indication should be given that the underlying assumptions of the test have been validated (by use of a named transfor-

mation, if necessary).

� The sample size should be justified by a power calculation and accompanied by a power statement.

� The exact p value should be given, rather than an interval estimate of it or an asterisk (e.g., * to indicate 0.01 < P < 0.05).

� The estimated mean in each group, with its associated confidence interval, should be provided.

� An estimate of the difference in means, indicating the magnitude of the treatment effect, should be given with its associated

confidence interval.
ity 28, March 2008 ª2008 Elsevier Inc. 291
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(mean = 82.4 MFI, 95%CI 61.2 to 70.8MFI)

compared with naive animals (mean =

66.0 MFI, 95% CI 71.0 to 93.9 MFI): esti-

mated difference in means is 16.4 MFI,

95% CI 4.9 to 27.9 MFI, p = 0.008.

Multiple Testing and the Analysis
of Variance
The two-sample t test is used to compare

the means of two groups. However, when

it is of interest to compare the means in

three treatment groups, A, B and C (e.g.,

A = infected, B = sham-injected, and C =

vaccinated), it is inappropriate to perform

all pairwise two-sample t tests (i.e., A ver-

sus B, A versus C, and B versus C). This is

because as more tests are performed, it is

more likely that a statistically significant

result will occur on the basis of chance

alone (Bender and Lange, 2001; Grafen

and Hails, 2002).

The correct procedure in these circum-

stances is to start by performing a one-

way analysis of variance (ANOVA), a

global test of the null hypothesis that all

(three) group means are equal. If the re-

sult of this ANOVA is not significant (typi-

cally if p > 0.05), no further testing is re-

quired. However, if the one-way ANOVA

produces a significant result with p <

0.05, this implies that at least two of the

group means are different, and it is neces-

sary to find out where any differences lie.

This is achieved by performing post hoc

tests (such as those attributed to Bonfer-

roni, Scheffé, Dunnett, and Tukey) that

compare the means of all relevant pairs

of groups, but each test adjusts the p

value to take into account the multiple

comparisons and thereby avoids a spuri-

ously significant result.

There are many different forms of

ANOVA, the simplest being the one-way

ANOVA, which can be thought of as an

extension to the two-sample t test when

more than two group means are to be

compared. More complicated forms (Ed-

wards, 1993; Lindman, 1992; Weber and

Skillings, 2000) should be employed

when other factors need to be taken into

consideration, such as the cages in which

experimental animals are housed, the

wells in which cell preparations are placed,

and the replications of an experiment.

Conclusion
Failure to take stock of the statistical as

well as the biological significance of data

can ultimately be a waste of time and
292 Immunity 28, March 2008 ª2008 Elsevie
money and, where animals or patients

are involved, can also raise ethical issues

(Festing and Altman, 2002). At present,

however, errors in violation of both statis-

tical science and editorial policy appear to

be common in the primary immunological

literature. For example, many articles

contain quantitative data from which con-

clusions are drawn about treatment ef-

fects in the absence of inferential statisti-

cal analysis, and others include significant

p values without any information about

the units of analysis, the sample sizes,

the tests used, or their validity (Olsen,

2003). Unfortunately, these errors can

lead to incorrect conclusions, especially

for p values very close to 0.05 (i.e., of mar-

ginal statistical significance). There ap-

pears to be much room for improvement

of statistical practice in immunology.

Giving proper consideration to the use

of the two-sample t test, as outlined in

this article, will improve the evaluation of

treatment effects in immunological data

and reduce the chances of drawing erro-

neous conclusions. Reviewers of manu-

scripts also need to be statistically in-

formed, in order to judge whether the

amount of variability in experimental data

is acceptable (Altman, 1998) and the use

of the two-sample t test is justified. In-

deed, authors, reviewers, and editors alike

must take steps to improve the rigor with

which scientists t test the immune system.

SUPPLEMENTAL DATA

One figure and four boxes can be found online with
this article at http://www.immunity.com/cgi/
content/full/28/3/288/DC1.
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