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1. Introduction

An important form of iterative equations is the polynomial-like iterative equation

λ1f(x) + λ2f
2(x) + · · · + λnf

n(x) = F(x), x ∈ I := [a, b], (1.1)

where F is a given function, f is an unknown function, λi ∈ R1 (i = 1, 2, . . . , n), and fk (k =
1, 2, . . . , n) is the kth iterate of f, that is, f0(x) = x, fk(x) = f ◦ fk−1(x). The case of all
constant λ′is was considered in [1–10]. In 2000, W. N. Zhang and J. A. Baker first discussed
the continuous solutions of such an iterative equation with variable coefficients λi = λi(x)
which are all continuous in interval [a, b]. In 2001, J. G. Si and X. P. Wang furthermore gave
the continuously differentiable solution of such equation in the same conditions as in [11]. In
this paper, we continue the works of [11, 12], and consider the series-like iterative equation
with variable coefficients

∞∑

i=1

λi(x)fi(x) = F(x), x ∈ I := [a, b], (1.2)
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2 Fixed Point Theory and Applications

where λi(x) : I → [0, 1] are given continuous functions and
∑∞

i=1λi(x) = 1, λ1(x) ≥ c >
0 (∀x ∈ I), maxx∈Iλi(x) = ci. We improve the methods given by the authors in [11, 12], and
the conditions of [11, 12] are weakened by constructing a new structure operator.

2. Preliminaries

Let C0(I,R) = {f : I → R, f is continuous}, clearly (C0(I,R), ‖ · ‖c0) is a Banach space, where
‖f‖c0 = maxx∈I |f(x)|, for f in C0(I,R).

Let C1(I,R) = {f : I → R, f is continuous and continuously differentiable}, then
C1(I,R) is a Banach space with the norm ‖ · ‖c1 , where‖f‖c1 = ‖f‖c0 + ‖f ′‖c0 , for f in C1(I,R).

Being a closed subset, C1(I, I) defined by

C1(I, I) =
{
f ∈ C1(I, R), f(I) ⊆ I, ∀x ∈ I

}
(2.1)

is a complete space.
The following lemmas are useful, and the methods of proof are similar to those of

paper [4], but the conditions are weaker than those of [4].

Lemma 2.1. Suppose that ϕ ∈ C1(I, I) and

∣∣ϕ′(x)
∣∣ ≤ M, ∀x ∈ I, (2.2)

∣∣ϕ′(x1) − ϕ′(x2)
∣∣ ≤ M′|x1 − x2|, ∀x1, x2 ∈ I, (2.3)

whereM and M′ are positive constants.Then

∣∣∣
(
ϕn(x1)

)′ − (
ϕn(x2)

)′∣∣∣ ≤ M′
(

2n−2∑

i=n−1
Mi

)
|x1 − x2|, (2.4)

for any x1, x2 in I, where (ϕn)′ denotes dϕn/dx.

Lemma 2.2. Suppose that ϕ1, ϕ2 ∈ C1(I, I) satisfy (2.2).Then

‖ϕn
1 − ϕn

2‖c0 ≤
(

n∑

i=1

Mi−1
)
‖ϕ1 − ϕ2‖c0 . (2.5)

Lemma 2.3. Suppose that ϕ1, ϕ2 ∈ C1(I, I) satisfy (2.2) and (2.3).Then

∥∥∥∥
(
ϕk+1
1

)′ −
(
ϕk+1
2

)′∥∥∥∥
c0
≤ (k + 1)Mk

∥∥ϕ′
1 − ϕ′

2

∥∥
c0

+Q(k + 1)M′
(

k∑

i=1

(k − i + 1)Mk+i−1
)
‖ϕ1 − ϕ2‖c0 ,

(2.6)

for k = 0, 1, 2, . . . , where Q(s) = 0 as s = 1 and Q(s) = 1 as s = 2, 3, . . ..
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3. Main Results

For given constants M1 > 0 andM2 > 0, let

A(M1,M2) =
{
ϕ ∈ C1(I, I) :

∣∣ϕ′(x)
∣∣ ≤ M1, ∀x ∈ I ,

∣∣ϕ′(x1) − ϕ′(x2)
∣∣ ≤ M2|x1 − x2|, ∀x1, x2 ∈ I

}
.

(3.1)

Theorem 3.1 (existence). Given positive constants M1, M2 and F ∈ A(M1,M2), if there exists
constantsN1 ≥ 1 and N2 > 0, such that

(P1) c −
∑∞

i=2ciN
i−1
1 ≥ M1/N1,

(P2) c −
∑∞

i=2ci(
∑2i−2

j=i−1N
j

1) ≥ M2/N2,

then (1.2) has a solution f inA(N1,N2).

Proof. For convenience, let d = max{|a|, |b|}.
Define K : A(N1,N2) → C1(I, I) such that K : f → Kf , where

Kf(t) =
∞∑

i=1

λi(x)fi(t), ∀x, t ∈ I. (3.2)

Since f ∈ A(N1,N2), it is easy to see that |fi(t)| ≤ d for all t ∈ I, and |λi(x)fi(t)| ≤ d|λi(x)| for
all x, t ∈ I. It follows from

∑∞
i=1λi(x) = 1 that

∑∞
i=1λi(x)f

i(t) is uniformly convergent. Then
Kf(t) is continuous for t ∈ I. Also we have

a =
∞∑

i=1

λi(x)a ≤
∞∑

i=1

λi(x)fi(t) ≤
∞∑

i=1

λi(x)b = b, (3.3)

thus Kf ∈ C0(I, I).
For any f ∈ A(N1,N2), we have

∣∣∣∣
d

dt

(
λi(x)

(
fi(t)

))∣∣∣∣ = λi(x)
∣∣∣∣f

′
(
fi−1(t)

)(
fi−1(t)

)′∣∣∣∣ ≤ ciN
i
1. (3.4)

By condition (P1), we see that
∑∞

i=1ciN
i
1 is convergent, therefore

∑∞
i=1ci(f

i(t))′ is uniformly
convergent for t ∈ I, this implies that Kf(t) is continuously differentiable for t ∈ I. Moreover

∣∣∣∣
d

dt
Kf(t)

∣∣∣∣ ≤
∞∑

i=1

λi(x)
∣∣∣∣
(
fi(t)

)′∣∣∣∣ ≤
∞∑

i=1

ciN
i
1 := μ1. (3.5)



4 Fixed Point Theory and Applications

By Lemma 2.1,

∣∣∣∣
d

dt

(
Kf(t1)

) − d

dt

(
Kf(t2)

)∣∣∣∣ ≤
∞∑

i=1

λi(x)
∣∣∣∣
(
fi(t1)

)′ −
(
fi(t2)

)′∣∣∣∣

≤
∞∑

i=1

ci

⎛

⎝N2

2i−2∑

j=i−1
N

j

1

⎞

⎠|t1 − t2| := μ2|t1 − t2|.
(3.6)

Thus Kf ∈ A(μ1, μ2).
Define T : A(N1,N2) → C1(I, I) as follows:

Tf(t) =
1

λ1(x)
F(t) − 1

λ1(x)
Kf(t) + f(t), ∀t, x ∈ I, (3.7)

where f ∈ A(N1,N2). Because Kf , F, and f are continuously differentiable for all t ∈ I, Tf
is continuously differentiable for all t ∈ I. By conditions (P1) and (P2), for any t1, t2 in I, we
have

∣∣∣∣
d

dt

(
Tf(t)

)∣∣∣∣ ≤
1

λ1(x)

∣∣F ′(t)
∣∣ +

1
λ1(x)

∞∑

i=2

λi(x)
∣∣∣∣
(
fi(t)

)′∣∣∣∣ ≤
1
c
M1 +

1
c

∞∑

i=2

ciN
i
1

≤ 1
c
M1 +

1
c
(cN1 −M1) = N1.

(3.8)

We furthermore have

∣∣∣∣
d

dt

(
Tf(t1)

) − d

dt

(
Tf(t2)

)∣∣∣∣ ≤
1

λ1(x)

∣∣F ′(t1) − F ′(t2)
∣∣ +

1
λ1(x)

∞∑

i=2

ci

∣∣∣∣
(
fi(t1)

)′ −
(
fi(t2)

)′∣∣∣∣

≤ 1
c
M2|t1 − t2| + 1

c

∞∑

i=2

ciN2

⎛

⎝
2i−2∑

j=i−1
N

j

1

⎞

⎠|t1 − t2|

≤ N2|x1 − x2|.
(3.9)

Thus T : A(N1,N2) → A(N1,N2) is a self-diffeomorphism.
Now we prove the continuity of T under the norm ‖ · ‖c1 . For arbitrary f1, f2 ∈

A(N1,N2),
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‖Tf1 − Tf2‖c0 = max
t∈I

∣∣∣∣−
1

λ1(x)
Kf1(t) + f1(t) +

1
λ1(x)

Kf2(t) − f2(t)
∣∣∣∣

≤ 1
c
max
t∈I

∣∣∣∣∣

∞∑

i=2

λi(x)fi
1(t) −

∞∑

i=2

λi(x)fi
2(t)

∣∣∣∣∣

≤ 1
c

∞∑

i=2

ci
∥∥∥fi

1 − fi
2

∥∥∥
c0

≤ 1
c

∞∑

i=2

ci

(
i∑

k=1

Nk−1
1

)
∥∥f1 − f2

∥∥
c0 ,

∥∥∥∥
d

dt
(Tf1) − d

dt
(Tf2)

∥∥∥∥
c0
= max

t∈I

∣∣∣∣−
1

λ1(x)
(
Kf1(t)

)′ +
(
f1(t)

)′ +
1

λ1(x)
(
Kf2(t)

)′ − (
f2(t)

)′
∣∣∣∣

≤ 1
c
max
t∈I

∣∣∣∣∣

∞∑

i=2

λi(x)
(
fi
1(t)

)′ −
∞∑

i=2

λi(x)
(
fi
2(t)

)′
∣∣∣∣∣

≤ 1
c

∞∑

i=2

ci

∥∥∥∥
(
fi
1

)′ −
(
fi
2

)′∥∥∥∥
c0

≤ 1
c

∞∑

i=2

ci

[
iNi−1

1

∥∥f ′
1 − f ′

2

∥∥
c0 +Q(i)N2

(
i−1∑

k=1

(i − k)Ni+k−2
1

)
∥∥f1 − f2

∥∥
c0

]
.

(3.10)

Let

E1 =
1
c

∞∑

i=2

ci

(
i∑

k=1

Nk−1
1 +Q(i)N2

i−1∑

k=1

(i − k)Ni+k−2
1

)
,

E2 =
1
c

∞∑

i=2

ciiN
i−1
1 , E = max{E1, E2}.

(3.11)

Then we have

∥∥Tf1 − Tf2
∥∥
c1 =

∥∥Tf1 − Tf2
∥∥
c0 +

∥∥∥
(
Tf1

)′ − (
Tf2

)′∥∥∥
c0
≤ E1

∥∥f1 − f2
∥∥
c0 + E2

∥∥f ′
1 − f ′

2

∥∥
c0

≤ E
∥∥f1 − f2

∥∥
c0 + E

∥∥f ′
1 − f ′

2

∥∥
c0 = E

∥∥f1 − f2
∥∥
c1 ,

(3.12)

which gives continuity of T .
It is easy to show thatA(N1,N2) is a compact convex subset of C1(I, I). By Schauder’s

fixed point theorem, we assert that there is a mapping f ∈ A(N1,N2) such that

f(t) = Tf(t) =
1

λ1(x)
F(t) − 1

λ1(x)
Kf(t) + f(t), ∀t ∈ I. (3.13)

Let t = x,we have f(x) as a solution of (1.2) inA(N1,N2). This completes the proof.
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Theorem 3.2 (Uniqueness). Suppose that (P1) and (P2) are satisfied, also one supposes that

(P3) E < 1,

then for arbitrary function F inA(M1,M2), (1.2) has a unique solution f ∈ A(N1,N2).

Proof. The existence of (1.2) in A(N1,N2) is given by Theorem 3.1, from the proof of
Theorem 3.1, we see that A(N1,N2) is a closed subset of C1(I, I), by (3.12) and (P3), we see
that T : A(N1,N2) → A(N1,N2) is a contraction. Therefore T has a unique fixed point f(x)
in A(N1,N2), that is, (1.2) has a unique solution inA(N1,N2), this proves the theorem.

4. Example

Consider the equation

∞∑

i=1

λi(x)fi(x) =
1
4
x2, x ∈ I := [−1, 1], (4.1)

where λ1(x) = 33/36 + (1/36) cos2(πx/2), λ2(x) = 1/36 + (1/36) sin2(πx/2), λ3(x) = 1/36,
λ4(x) = λ5(x) = · · · = 0. It is easy to see that 0 ≤ λi(x) ≤ 1,

∑∞
i=1λi(x) = 1, c = 33/36, c2 =

2/36, c3 = 1/36, c4 = c5 = · · · = 0.
For any x, y in [−1, 1],

∣∣F ′(x)
∣∣ = |0.5x| ≤ 0.5,

∣∣F ′(x) − F ′(y
)∣∣ ≤ |0.5x| + ∣∣0.5y

∣∣ ≤ 1, (4.2)

thus F ∈ A (0.5, 1). By condition (P1), we can chooseN1 = 1.1, and by condition (P1), we can
choose N2 = 1.5. Then by Theorem 3.1, there is a continuously differentiable solution of (4.1)
in A(1.1, 1.5).

Remark 4.1. Here F(x) is not monotone for x ∈ [−1, 1], hence it cannot be concluded by [11,
12].
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