Acyclic 4-choosability of planar graphs without adjacent short cycles

Oleg V. Borodin, Anna O. Ivanova

Abstract

The acyclic 4-choosability was proved, in particular, for the following planar graphs: without 3- and 4-cycles (Montassier et al., 2006 [29]), without 4-, 5-, and 6-cycles (Montassier et al., 2006 [29]), either without 4-, 6-, and 7-cycles, or without 4-, 6-, and 8-cycles (Chen, Raspaud, and Wang, 2009), and with neither 4-cycles nor 6-cycles adjacent to a triangle (Borodin et al., 2010 [13]).

There exist planar acyclically non-4-colorable bipartite graphs (Kostochka and Mel'nikov, 1976 [25]). This partly explains the fact that in all previously known sufficient conditions for the acyclic 4-choosability of planar graphs the 4-cycles are completely forbidden. In this paper we allow 4-cycles nonadjacent to relatively short cycles; namely, it is proved that a planar graph is acyclically 4-choosable if it does not contain an i-cycle adjacent to a j-cycle, where $3 \leq j \leq 6$ if $i = 3$ and $4 \leq j \leq 7$ if $i = 4$. In particular, this absorbs all the above-mentioned results.

1. Introduction

By $V(G)$ denote the set of vertices of a graph G and by $E(G)$ its set of edges. A (proper) k-coloring of G is a mapping $f : V(G) \rightarrow \{1, 2, \ldots, k\}$ such that $f(x) \neq f(y)$ whenever x and y are adjacent in G.

A proper vertex coloring of a graph is acyclic if every cycle uses at least three colors [20]. Borodin [2,3] proved Grünbaum’s conjecture that every planar graph is acyclically 5-colorable, improving the earlier bounds 9, 8, 7, and 6 due to Grünbaum [20], Mitchem [26], Albertson and Berman [1], and Kostochka [24], respectively. The bound 5 is best possible; moreover, there are bipartite 2-degenerate planar graphs that are not acyclically 4-colorable [25]. Acyclic colorings turned out to be useful in obtaining results about other types of colorings; for a survey see monographs [23,21].

Now suppose each vertex v of a graph G is given a list $L(v)$ of colors. The list L is choosable if there is a proper vertex coloring of G such that a color of each vertex v belongs to $L(v)$. A graph G is said to be k-choosable if every list L is choosable provided that $|L(v)| \geq k$ for each $v \in V(G)$.

It is trivial that each planar graph is 6-choosable, because its every subgraph has a vertex of degree at most 5. Thomassen [31] proved a famous theorem that each planar graph is 5-choosable, and Voigt [32] showed that this bound is best possible.

Borodin et al. [8] proved that every planar graph is acyclically 7-choosable and conjectured a common extension of Borodin’s and Thomassen’s results [3,31]:

Conjecture 1. Every planar graph is acyclically 5-choosable.

© 2012 Elsevier B.V. All rights reserved.

0012-365X/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2012.07.038
However, this challenging conjecture seems to be difficult. As yet, it has been verified only for several restricted classes of planar graphs: those of girth at least 5 [28], without 4- and 5-cycles, or without 4- and 6-cycles [30], with neither 4-cycles nor chordal 6-cycles [34], with neither 4-cycles nor two 3-cycles at a distance less than 3 [19], and without 4-cycles and intersecting 3-cycles [16]. Wang and Chen [33] proved that planar graphs without 4-cycles are acyclically 6-choosable.

Recently, Borodin and Ivanova [10] proved that a planar graph is acyclically 5-choosable if it does not contain an i-cycle adjacent to a j-cycle, where $3 \leq j \leq 5$ if $i = 3$ and $4 \leq j \leq 6$ if $i = 4$, which absorbs the above-mentioned results in [28,30,34]. Also, Borodin and Ivanova [11] proved that every planar graph without 4-cycles is acyclically 5-choosable, which is a common strengthening of the results in [28,30,34,19,16,33].

Some sufficient conditions are also obtained for a planar graph to be acyclically 4- and 3-colorable or choosable. Denote the minimal k with the property that G is acyclically k-colorable (acyclically k-choosable) by $a(G)$ (by $a'(G)$).

Borodin et al. [14] showed that if G is a planar graph of girth g, then $a(G) \leq 4$ if $g \geq 5$ and $a(G) \leq 3$ if $g \geq 7$. Recently, $a'(G) \leq 3$ was proved if $g \geq 7$ [7] or if G has no cycles of length from 4 to 12 (Borodin [4] and, independently, Hocquard and Montassier [22]), which was strengthened to the absence of 4–11-cycles by Borodin and Ivanova [9].

The bound $a'(G) \leq 4$ was proved in the following cases: if $g \geq 5$ [27], or if G has no 4-, 5-, and 6-cycles [29], or no 4-, 6-, and 7-cycles, or else no 4-, 6-, and 8-cycles [18]. Borodin [5] proved $a(G) \leq 4$ for G having neither 4- nor 6-cycles. Recently, Borodin et al. [13] gave a common extension of the results in [27,29,18,5] by proving $a'(G) \leq 4$ under the absence of 4-cycles and triangular 6-cycles (i.e., those adjacent to a 3-cycle).

Furthermore, Montassier et al. [29] proved $a'(G) \leq 4$ for every planar graph without 4-, 5-, and 7-cycles, or without 4-, 5-, and intersecting 3-cycles, while Chen and Raspaud [15] proved this assuming that G has neither 4- and 5-cycles nor 8-cycles with a triangular chord. Borodin [6] proved $a(G) \leq 4$ for G having neither 4- nor 5-cycles. The above-mentioned results in [28,29,15,6] were strengthened by proving that every planar graph G without 4- and 5-cycles is acyclically 4-choosable (Borodin and Ivanova [12] and, independently, Chen and Raspaud [17]).

Recall that there are bipartite planar graphs that are not acyclically 4-colorable [25]. Therefore, while describing acyclically 4-choosable planar graphs, one must impose these or those restrictions on 4-cycles. Note that in all previously known sufficient conditions for the acyclic 4-choosability of planar graphs, the 4-cycles are completely forbidden. In this paper we allow 4-cycles, but disallow them to have a common edge with relatively short cycles.

The purpose of this paper is to prove the following

Theorem 2. A planar graph is acyclically 4-choosable if it does not contain an i-cycle adjacent to a j-cycle, where $3 \leq j \leq 6$ if $i = 3$ and $4 \leq j \leq 7$ if $i = 4$.

Clearly, Theorem 2 is a common strengthening of the results in [27,29,18,5,13].

Montassier et al. [29] conjectured that every planar graph without 4-cycles is acyclically 4-choosable. We would like to pose the following stronger conjecture.

Conjecture 3. Every planar graph without 4- or 4- or 4-cycles is acyclically 4-choosable.

2. Proof of Theorem 2

Suppose a plane graph G with a list L is a counterexample to Theorem 2 on the fewest vertices. Clearly, G is connected and has no pendant vertices. By $F(G)$, $d(v)$, and $r(f)$ denote the set of faces of G, the degree of a vertex v, and the size of face f, respectively.

From Euler's formula $|V(G)| - |E(G)| + |F(G)| = 2$, using the well-known relations

$$\sum_{v \in V(G)} d(v) = 2|E(G)| = \sum_{f \in F(G)} r(f),$$

we have

$$\sum_{v \in V(G)} (2d(v) - 6) + \sum_{f \in F(G)} (r(f) - 6) - 12. \quad (1)$$

We set the initial charge of every vertex $v \in V(G)$ and face $f \in F(G)$ to be $ch(v) = 2d(v) - 6$ and $ch(f) = r(f) - 6$, respectively. Note that only 2-vertices and 3-, 4-, and 5-faces have negative initial charge, -2, -3, -2, and -1, respectively. Then we use a discharging procedure leading to a final charge ch^* such that

$$\sum_{x \in V(G) \cup F(G)} ch^*(x) = \sum_{x \in V(G) \cup F(G)} ch(x) < 0.$$

Based on the structural properties of G, we shall get a contradiction by proving that $ch^*(x) \geq 0$ for every $x \in V(G) \cup F(G)$.
2.1. Structural properties of the minimum counterexample

A vertex or edge is called triangular if it is incident with a 3-face. A vertex of degree at least k or at most k is a k^+- or a k^--vertex, respectively, and similar notation is used for the faces. Clearly, G has no triangular 2-vertices. Note that no 3-face can be adjacent to a 6$^+$-face since G has neither pendant vertices, nor triangular 2-vertices.

The number of 3-faces and 4-faces incident with a vertex v is denoted by $\tau_3(v)$ and $\tau_4(v)$, respectively; thus $\tau_3(v) + \tau_4(v) \leq \lfloor \frac{d(v)}{2} \rfloor$.

A triangular 3-vertex joined to a vertex v by a non-triangular edge is a bad neighbor of v (see Fig. 1), and the number of bad neighbors of v is $\beta(v)$. By $\nu_k(v)$ denote the number of k-vertices adjacent to v. A 2-vertex is quadrangular if it is incident with a 4-face. The number of quadrangular 2-vertices adjacent to v is denoted by $\nu_5^*(v)$.

A weak vertex is either a vertex of degree 3 or a 4-vertex v such that $\nu_2(v) = 1$ and $\nu_3(v) \geq 1$. A 4-vertex v is poor if $\nu_2(v) = \nu_3(v) = \nu_4(v) = 1$.

Lemma 1 ([5,13]). Each 3-vertex v has $\beta(v) = 0$.

Lemmas 2 and 3 (in slightly different form) were proved in [14] for acyclic 4-colorings, and in [27] their proofs were transferred to acyclic 4-choosability without substantial changes. These proofs in [14,27] also work without changes in the more general case of Theorem 2, where 3- and 4-cycles are allowed but are disallowed to be adjacent to relatively short cycles.

Lemma 2 ([14,27]). Each vertex v in G has the following properties:

\begin{itemize}
 \item[(i)] $\nu_2(v) = 0$ if $d(v) \leq 3$;
 \item[(ii)] $\nu_2(v) \leq 1$ if $d(v) = 4$, $\nu_2(v) \leq d(v) - 2$ if $d(v) \leq 9$, and $\nu_2(v) \leq d(v) - 1$ if $d(v) \leq 15$;
 \item[(iii)] if $d(v) = 5$ and $\nu_2(v) = 3$, then the three 2-vertices occur consecutively in cyclic order round v, and both of the two faces between consecutive 2-vertices are 6$^+$-faces;
 \item[(iv)] if $d(v) = 5$, $\nu_2(v) = 2$, and $\nu_3(v) = 3$, then v is incident with at least one 6$^+$-face;
 \item[(v)] if $d(v) = 5$ and $\nu_2(v) = 3$, or $d(v) = 6$ and $\nu_2(v) = 4$, then $\nu_3(v) = 0$.
\end{itemize}

Lemma 3 ([14,27]). Each non-triangular 3-vertex is adjacent to at most one weak vertex.

Lemma 4 ([29]). No 4-vertex v with $\nu_2(v) = 1$ is adjacent to a triangular 3-vertex.

The idea of the next lemma comes from [14,30].

Lemma 5 ([18]). No weak 4-vertex v_4 is incident with a 5-face $v_1v_2v_3v_4v_5$ such that $d(v_3) = 3$ and $d(v_5) = 2$.

Lemma 6 ([29]). There is no 5-vertex v such that $\nu_2(v) = 3$ and $\nu_3(v) = 1$.

Lemma 7 ([29]). If xyz is a 3-face such that $d(x) = d(y) = 3$, then $d(z) \geq 5$.

2.2. Discharging

We discharge the vertices and faces of G as follows (see Fig. 2):

R0: Each 7$^+$-face f gives charge ξ to every incident edge xy, where $\xi = \frac{1}{7}$ if $r(f) = 7$ and $\xi = \frac{1}{3}$ otherwise. This ξ further goes to the adjacent 3-face if xy is triangular; otherwise:

\begin{itemize}
 \item[(i)] to y if $d(x) = 2$ or if x is a non-triangular 3-vertex while $d(y) \geq 4$;
 \item[(ii)] to 3-face ux if $d(x) = 3$;
 \item[(iii)] to x and y in portions of $\frac{\xi}{2}$ if $d(x) \geq 4$ and $d(y) \geq 4$.
\end{itemize}

R1: Suppose edge xy is incident with faces f_1 and f_2, where $d(x) = 2$. Then y gives x the following charge:

\begin{itemize}
 \item[(i)] $\frac{6}{5}$ if $r(f_1) = r(f_2) = 5$,
 \item[(ii)] $\frac{11}{10}$ if $r(f_1) = 5$ while $r(f_2) \geq 6$,
\end{itemize}
(iii) 1 if \(r(f_1) \geq 6 \) and \(r(f_2) \geq 6 \) and
(iv) \(\frac{5}{4} \) if \(r(f_1) = 4 \) while \(r(f_2) \geq 8 \).

R2: Suppose edge \(xy \) is incident with faces \(f_1 \) and \(f_2 \), where \(x \) is a non-triangular 3-vertex while \(y \) is non-weak. Then \(y \) gives:

(i) \(\frac{3}{5} \) if \(r(f_1) = r(f_2) = 5 \),
(ii) \(\frac{1}{2} \) if \(r(f_1) = 5 \) while \(r(f_2) \geq 6 \), and
(iii) \(\frac{1}{4} \) if \(x \) is incident with a 4-face.

R3: Every 5-face gets \(\frac{1}{5} \) from every incident vertex.

R4: If \(x \) is a bad neighbor of \(v \) then \(v \) gives \(\frac{1}{2} \) to 3-face \(xyz \).

R5: Every 3-face \(f = uvw \) gets from a 4-v-vertex \(v \):

(i) 1 if \(v \) is incident with a 3-vertex,
(ii) \(\frac{2}{3} \) if \(v \) is poor, and
(iii) \(\frac{1}{6} \) otherwise.

R6: Every 4-face \(f = uxyz \) gets \(\frac{1}{2} \) from every incident vertex, with the following exception: if \(d(w) = 2 \) and \(d(y) \geq 4 \), then \(f \) gets \(\frac{1}{2}, \frac{3}{8}, \frac{1}{4} \), and \(\frac{3}{8} \) from \(w, x, y \), and \(z \), respectively.

2.3. Checking \(ch^{*}(x) \geq 0 \) for every \(x \in V(G) \cup F(G) \)

Case 1. \(f \in F(G) \). If \(r(f) \geq 8 \) then \(ch^{*}(f) = r(f) - 6 - \frac{r(f)}{2} \geq 0 \) by R0. If \(r(f) = 7 \) then \(ch^{*}(f) = r(f) - 6 - \frac{r(f)}{2} = 0 \) by R0.

Suppose \(f = xyz \), where \(d(x) \leq d(y) \leq d(z) \); so, \(ch(f) = r(f) - 6 = -3 \). Recall that \(f \) gets at least \(\frac{3}{5} \) across incident edges from adjacent faces by R0. If \(d(x) = d(y) = 3 \) then \(d(z) \geq 5 \) due to Lemma 7, which implies that \(ch^*(f) \geq -3 + 3 \times \frac{3}{5} + 2 \times \frac{1}{3} + 2 \times \frac{3}{8} + \frac{1}{6} = 0 \) by R6.

If \(r(f) = 4 \) then \(ch^*(f) = 4 - 6 - 4 \times \frac{1}{2} = 0 \) or \(ch^*(f) = 4 - 6 - 2 \times \frac{1}{3} + 2 \times \frac{3}{8} + \frac{1}{6} = 0 \) by R6.

3. Similarly, we have \(ch^*(v) = 0 \) if \(v \) has just one or no incident 5-face by R1(iii) and R1(iii), respectively.

Subcase 2.2. \(d(v) = 3 \). If \(v \) is triangular, then \(v \) does not participate in discharging, so \(ch^*(v) = ch(v) = 0 \).

Suppose \(v \) is surrounded by faces \(f_1, f_2, \) and \(f_3 \), where \(5 \leq r(f_1) \leq r(f_2) \leq r(f_3) \). Note that each of at least two non-weak neighbors of \(v \) gives \(v \) either \(\frac{1}{5} \), or \(\frac{1}{6} \) by R2(i, ii). If \(r(f_1) = 5 \) then \(ch^*(v) = ch(v) = 0 \); if \(r(f_1) = 5 < r(f_2) \) then \(ch^*(v) = \frac{3}{5} \times \frac{2}{5} = 0 \) by R2(ii); if \(r(f_2) = 5 < r(f_3) \) then \(ch^*(v) = \frac{2}{5} \times \frac{2}{5} = 0 \) by R2(ii). Finally, if \(r(f_3) = 5 \) then \(ch^*(v) = \frac{3}{5} \times \frac{2}{5} = 0 \).

Subcase 2.3. \(d(u) = 4 \). Now \(ch^*(v) = 2 \), while \(v_2(v) \leq 1 \) by Lemma 2(ii).

Subsubcase 2.3.1 There is a 4-face \(f = uvwx \).

First suppose that \(d(w) = 2 \). Recall that \(v \) neither gives charge to adjacent 3-vertices by R2, nor participates in R4 due to Lemma 4. Note that \(f \) causes the total expenditure \(\mu = \frac{3}{5} \) for \(v \) by R0(iii), R1(iv), and R6. Indeed, if \(d(w) = 3 \) then \(\mu = \frac{5}{6} + \frac{1}{3} - \frac{1}{2} = \frac{5}{6} \); otherwise, \(\mu = \frac{5}{6} + \frac{1}{3} - \frac{1}{2} \). Furthermore, \(v \) can only give either \(\frac{1}{2} \) to a triangle by R5(ii) if \(v \) is poor, or at most \(\frac{1}{2} \) to another incident 4-face by R6, or else \(\frac{1}{2} \) to a 5-face by R3. Therefore, \(ch^*(v) \geq 2 \times 4 - 6 \leq \frac{5}{6} - \frac{1}{2} = 0 \).

Now we can assume by symmetry that \(v_2(v) = 0 \), i.e. \(v \) is not adjacent to a quadrangular 2-vertex. In this case, \(f \) causes the total expenditure at most \(\frac{1}{2} \) for \(v \) by R0(iii), R2(ii), and R6. Indeed, it suffices to note that if \(v \) gives \(\frac{1}{2} \) to \(f \), then \(v \) receives \(\frac{1}{2} \) by R0(iii). (If, say, \(d(w) = 3 \), then \(v \) gives \(\frac{1}{2} \) to \(u \) by R2(iii)) but gets \(\frac{1}{2} \) from edge \(uv \) by R0(i). The same is true for \(u \). Let \(f_1 = \ldots u_1 w_1 v \) be the face at \(v \) opposite to \(f \). In addition to the donation of at most \(\frac{1}{2} \) caused by \(f \), our \(v \) can give at most 1 to \(f_1 \) if \(r(f_1) = 3 \) by R5, or at most \(\frac{1}{2} \) to \(f \) if \(r(f_1) = 4 \) (since \(f_1 \) is non-incident with 2-vertices adjacent to \(v \) by the assumption that \(v_2(v) = 0 \)), or else \(\frac{1}{2} \) by R3 if \(r(f_1) = 5 \). Furthermore, \(v \) gives either at most \(\frac{11}{10} \) to a 2-vertex \(u_1 \) or \(w_1 \) by R1(ii), R3(ii), or at most \(\frac{1}{2} \) to the 3-vertices in \(\{u_1, w_1\} \) by R2(ii), (ii). However, if \(r(f_1) = 5 \) then \(\beta(v) = 0 \), which means that \(d \) does not participate in R4. Therefore, in all these cases \(v \) gives at most \(\frac{11}{10} + \frac{1}{2} + \frac{1}{2} = \frac{3}{5} - 2 \times \frac{1}{4} = 1 \) to \(f_1, u_1, \) and
Subsubcase 2.3.2. There are no 4-faces at v.

(A) v is non-triangular. Suppose $v_3(v) = 1$; due to Lemma 4 we have $\beta(v) = 0$. Recall that if $v_3(v) \geq 1$, then our v is weak, so it does not give charge to 3-vertices by R2, which means that whatever $v_3(v)$, we have $ch^*(v) \geq 2 - \frac{6}{5} - 4 \times \frac{1}{5} = 0$ by R1 and R3.

Now suppose $v_3(v) = 0$, and let $v_5(v)$ be the number of 5-faces at v. Note that $v_5(v) + \beta(v) \leq 4$, since no bad neighbor can be incident with a 5-face; this implies that $ch^*(v) \geq 2 - \frac{\beta(v)}{2} - \frac{3(4-\beta(v))}{10} - \frac{v_5(v)}{5} \geq 2 - \frac{\beta(v)}{2} - 4 - \frac{4-\beta(v)}{2} = 0$ by R2–R4.
(B) v is triangular. If $\tau_3(v) = 2$ then $ch^*(v) \geq 2 - 2 \times 1 = 0$ by R5. Suppose $\tau_3(v) = 1$. Recall that if $v_2(v) \geq 1$ then $v_2(v) = 1$ and $\beta(v) = 0$ due to Lemma 2(ii) and Lemma 4.

Suppose $v_2(v) = 1$. Now v gives at most 1 to its 3-face and nothing to the other 3-vertex adjacent to v along a nontriangular edge by R2. If v is not incident with a 5-face, then $ch^*(v) \geq 2 - 2 \times 1 = 0$ by R5 and R1(iii) since v gives at most 1 to its 2-vertex. If v is incident with 5-face f, then f lies opposite the triangle incident with v. Then Lemma 5 ensures that v gets $\frac{5}{14}$ by R0 and gives $\frac{3}{2}$ to the incident triangle by R5(iii) and Lemma 4. Also, v gives $\frac{3}{7}$ to its 5-face and $\frac{11}{10}$ to its 2-neighbor. Thus, $ch^*(v) \geq 2 + \frac{5}{7} + \frac{3}{14} - \frac{6}{14} - \frac{3}{14} - \frac{11}{10} = 1 + \frac{5}{14} - 1 - \frac{3}{10} > 0$.

Now assume $v_2(v) = 0$. If $\beta(v) \geq 1$ then v is not incident with 5-faces, which implies $ch^*(v) \geq 2 - 1 - 2 \times \frac{5}{4} = 0$ by R3, R4, and R5; otherwise, $ch^*(v) \geq 2 - 2 \times \frac{5}{4} = 0$. Hence $ch^*(v) \geq 2d(v) - 6 - v_2(v) \times \frac{5}{4} - v_2^*(v) \times \frac{3}{7} - (d(v) - v_2(v)) \times \frac{3}{7} = \rho(v)$.

For example, suppose that there is a 4-face $f = uwwv$. If $d(w) \geq 4$, then v gets $\frac{1}{5}$ by R0(iii) from a 8-face incident with edge uw. Similarly, if $d(w) \leq 3$, then our v gets $\frac{1}{4}$ by R0(i). These two examples already show us that in many cases $ch^*(v) > \rho(v)$. Moreover, we can easily check that the actual expenditure of v on f, u, and w is at least $\frac{1}{2}$ less than that included in the formula for counting $\rho(v)$. In other words, we can say informally:

(•) Each 4-face saves at least $\frac{1}{2}$ with respect to $\rho(v)$.

Subcase 2.4. $d(w) = 5$. Now $ch^*(v) = 5$, and $v_2(v) \leq 3$ due to Lemma 2(ii).

First suppose $v_2(v) = 3$. Due to Lemma 6, v is non-triangular, and by Lemma 2(iii), $\rho(v)$ we know that $\tau_3(v) = \beta(v) = 0$ and the central 2-neighbor of v is surrounded by two 6-faces. If $\tau_4(v) = 0$, then this implies that $ch^*(v) \geq 4 - 1 - 2 \times \frac{3}{10} - 3 \times \frac{5}{4} > 0$ by R1 and R3. Suppose $\tau_4(v) = 1$; it follows that v gets at least $2 \times \frac{1}{4}$ by R0(i). Furthermore, v gives 1 to the central 2-vertex and at most $2 \times \frac{5}{4} + 2 \times \frac{1}{4}$ to the other 2-vertices, and at most $2 \times \frac{1}{4}$ to the incident 4- and 5-faces. This implies that $ch^*(v) \geq 4 + 2 \times \frac{5}{4} - 1 - 2 \times \frac{3}{4} - \frac{2}{2} = 0$.

If $v_2(v) \leq 1$ then $ch^*(v) \geq \rho(v) > 0$, so suppose $v_2(v) = 2$. If v is incident with a 4-face, then it gets $\frac{1}{2}$ by (•) and $ch^*(v) \geq \rho(v) + \frac{1}{2} \geq 4 - 2 \times \frac{3}{4} - \frac{3}{4} + \frac{1}{2} = 0$. Suppose that $\tau_4(v) = 0$. Now $\rho(v) = -\frac{3}{10}$, but we can improve the lower bound $ch^*(v) \geq -\frac{1}{10}$ by arguing more carefully.

If v is adjacent to a 4-vertex z along a non-triangular edge, then the actual modified donation of v to z is at most $2 \times \frac{1}{10}$ rather than $\frac{1}{2}$ included into the formula for $\rho(v)$, which implies that $ch^*(v) \geq \rho(v) + \frac{1}{2} - 2 \times \frac{1}{10} = 0$.

Thus, from now on we can assume that every nontriangular edge from v leads to a 3-vertex. Let us subdivide the neighbors of v into two subsets. We say that a neighbor of v is of type 1 either if edge uv is triangular or if u is a bad neighbor of v (note that edge uv cannot be incident with a 5- or 6-face). Otherwise, edge uv is nontriangular and $d(u) \leq 3$, in which case u is said to be a vertex of type 2. A 7-face ... uww is special if u and w belong to different types. A 5-face ... uww is non-special if u and w are of the same type.

It is not hard to see that if there is a 3-face $T = xuv$ or v has a bad neighbor b, then there exist at least two special faces at v. Indeed, consider the longest clockwise sequence S_1 of non-special 7-faces around v, starting from face ... xuv (where T is oriented clockwise) or ... bv, respectively. Since $v_2(v) = 2$ by assumption, it follows that our S_1 will end in a special face. The same is true for the counter-clockwise sequence S_2 that starts from a 7-face ... yuv or ... bv. Clearly, the two terminal special faces obtained this way are distinct. Note that every special face saves $\frac{1}{10}$ on edge uw and also brings $\frac{1}{2}$ to v by R0(i), so $ch^*(v) \geq \rho(v) + 2 \times \frac{1}{2} + 2 \times \frac{1}{10} = \frac{3}{5} + \frac{3}{10} + \frac{1}{2} > 0$.

Finally, assume that $v_2(v) = 2$, $v_3(v) = 3$ and $\tau_3(v) = \beta(v) = 0$. By Lemma 2(iv), there is a 6-face $f = \cdots uww$ at v, which means that we have a rough estimate $ch^*(v) \geq 2 \times 5 - 6 - 2 \times \frac{5}{4} - 3 \times \frac{1}{4} - 4 \times \frac{1}{2} = -\frac{1}{10}$. However, this bound should be strengthened by $2 \times \frac{1}{2}$ due to the fact that each of the vertices u and w takes from v at most $\frac{1}{10}$ if it is a 2-vertex or at most $\frac{1}{3}$ if it is a 3-vertex. Thus in fact $ch^*(v) \geq -\frac{1}{10} + 2 \times \frac{1}{2} > 0$.

Subcase 2.5. $d(v) = 6$. Now $ch(v) = 6$, and $v_2(v) \leq 4$ due to Lemma 2(ii). First suppose that $v_2(v) = 4$. Then this lemma also says that $v_3(v) = 0$. Here, $\rho(v) = 6 - 4 \times \frac{1}{2} - 2 \times \frac{1}{2} = -1$, so we are done by (•) if $\tau_4(v) \geq 2$. If $\tau_4(v) = 1$, then $ch^*(v) \geq 6 - 2 \times \frac{5}{4} - 2 \times \frac{1}{2} - 3 \times \frac{1}{2} + 2 \times \frac{1}{4} = 0$ by R1(iv), R1(i), R6, R3, and R0, unless $\tau_5(v) = 1$, in which case $ch^*(v) \geq 6 - 2 \times \frac{5}{4} - 2 \times \frac{1}{2} - \frac{3}{10} - \frac{9}{7} - \frac{1}{2} + \frac{3}{4} + \frac{1}{8} > 0$ by the same rules augmented by R5(iii).
Suppose that $τ_d(v) = 0$. If $τ_3(v) = 1$ then $φ_3(v) ≤ 3$ and v gets $1/7$ at least twice from incident 7^+-faces by $R_0(j)$, which implies that $ch^*(v) ≥ 6 − 1 − 2 × 11/10 − 2 × 6/5 − 3 × 1/2 + 2 × 1/5 > 0$. If $τ_3(v) = 0$ then $ch^*(v) ≥ 6 − 4 × 6/5 − 6 × 1/5 = 0$ by Lemma 2(v). Finally, if $v_2(v) ≤ 3$ then $ch^*(v) ≥ ρ(v) ≥ 6 − 3 × 2/3 − 3 × 1/2 = 0$.

Subcase 2.6. 7 ≤ $d(v) ≤ 9$. Due to Lemma 2(iii), we have $v_2(v) ≤ d(v) − 2$. Suppose that $τ_4(v) ≥ 1$, then by (⋆) we can improve the bound $ρ(v)$ by at least $1/2$, which implies that $ch^*(v) ≥ ρ(v) + 1/2 = 2d(v) − 6 − (d(v) − 2) × 7/5 − 2 × 1/2 + 1/2 = 2(d(v) − 7) − 7/2 ≥ 0$. If $τ_d(v) = 0$, then $v_2^*(v) = 0$ and so $ch^*(v) ≥ ρ(v) = 2d(v) − 6 − (d(v) − 2) × 7/5 − 2 × 1/2 + 1/2 = 2(d(v) − 7) − 7/2 ≥ 0$ by Remark 1.

Subcase 2.7. $d(v) ≥ 10$. If $τ_d(v) = 0$, then $ch^*(v) ≥ 2d(v) − 6 − 7d(v)/5 = 3/5(d(v) − 10) ≥ 0$. Suppose that $τ_d(v) ≥ 1$; now (⋆) works again. If $d(v) ≥ 11$, then $ch^*(v) ≥ ρ(v) + 1/2 = 2d(v) − 6 − d(v) × 7/5 + 1/2 = ρ(v) ≥ d(v) − 11/2 ≥ 0$. If $d(v) = 10$, then $v_2(v) ≤ 9$ by Lemma 2(ii), so $ch^*(v) ≥ 14 − 9 × 2/3 − 1/2 + 1/2 = 0$.

Hence, after discharging according to rules R_0–R_6 the charge of each vertex and face of G is non-negative, which contradicts (1).

Acknowledgments

This work was supported by the Ministry of Education and Science of the Russian Federation (contract number 14.740.11.0868). The second author was supported by grants 12-01-00631, 12-01-00448, and 12-01-98510 of the Russian Foundation for Basic Research.

References

[16] M. Chen, A. Raspaud, A sufficient condition for planar graphs to be acyclically 5-choosable, J. Graph Theory (in press).