# The Genus Problem for Cubic Graphs 

Carsten Thomassen<br>Mathematical Institute, Technical University of Denmark, DK-2800 Lyngby, Denmark<br>Received March 5, 1996


#### Abstract

We prove that the following problem is NP-complete: Given a cubic graph $G$ and a natural number $g$, is it possible to draw $G$ on the sphere with $g$ handles added? © 1997 Academic Press


View metadata, citation and similar papers at core.ac.uk
rne grapn genus proorem was insted as unsorved prooiem a oy Garey and Johnson [1]. The NP-completeness of this problem was established in [5]. Ringel [4] raised the problem of characterizing those graphs which triangulate some surface. (If the surface is orientable, a triangulation is of minimum genus, by Euler's formula). The NP-completeness of Ringel's question was established in [6]. In this paper we consider a dual version of Ringel's question, namely the genus problem in the cubic case. This question was raised by Richter [3] who observed that vertices of large degree play an important role in [5]. (They are even more important in [6].) The complexity of a combinatorial problem may change when restricted to the cubic case. Thus unsolved problem 1 in [1], the graph isomorphism problem, is solvable in polynomial time for cubic graphs [2], whereas its complexity for general graphs is unknown. If $\varphi: G \rightarrow H$ is an isomorphism, then it is easy to replace every vertex of $G$ or $H$ by an appropriate subgraph such that $\varphi$ can be modified to an isomorphism of the two resulting cubic graphs. Also, if $G$ is drawn on a surface of minimum genus it is easy to modify $G$ into a cubic graph drawn on the same surface of minimum genus, see Figure 2, below. However, these modifications work only if we already know the isomorphism or the minimum genus embedding, respectively. Also, it does no seem feasible to derive the cubic case from [6] using duality. Firstly, we do not know the dual graph before we know the embedding. Secondly, if an embedding is of minimum genus we cannot conclude that the dual graph embedding is of minimum genus. (To see this, take a cubic graph $G$ and embed it on a surface which is not of minimum genus and such that all faces are bounded by cycles no two of which have more than one edge in common. Then the dual graph $G^{*}$ is a triangulation
and therefore a minimum genus embedding. But, its dual $G$ is not a minimum genus embedding.)

We shall reduce the independence number problem to the genus problem for cubic graphs using ideas similar to those in [5] combined with an estimate of the genus of a graph $G$ expressed in terms of (generalized) genera of $G_{1}, G_{2}$ where $G_{1}, G_{2}$ are the components of $G$ minus an edge-cut.

## 2. AN INEQUALITY FOR THE GENUS

The terminology and notation is the same as in [5]. In particular, embeddings of a connected graph $G$ may be treated purely combinatorially by a rotation system $\Pi=\left(\pi_{1}, \pi_{2} \ldots, \pi_{n}\right)$ where the vertices are labelled $v_{1}$, $v_{2}, \ldots, v_{n}$ and $\pi_{i}$ is a cyclic permutation of the edges incident with $v_{i}$ for $i=1,2, \ldots, n$. We call $\pi_{i}$ the clockwise orientation of the edges incident with $v_{i}$. As in [5], the $\Pi$-genus $g(G, \Pi)$ of $G$ is defined by Euler's formula, and the genus $g(G)$ of $G$ is the minimum $\Pi$-genus taken over all embeddings $\Pi$. If $A \subseteq V(G)$ and $\Pi$ is an embedding of $G$, then we let $m$ denote the smallest number of facial walks $W_{1}, W_{2}, \ldots, W_{m}$ such that each vertex of $A$ is contained in some $W_{i}, 1 \leqslant i \leqslant m$. We write

$$
g(G, \Pi, A)=g(G, \Pi)+m / 2
$$

and we define $g(G, A)$ as the minimum $g(G, \Pi, A)$ taken over all embeddings $\Pi$ of $G$. With this terminology we now have:

Proposition 2.1. Let $G_{1}, G_{2}$ be disjoint connected graphs and let $A_{1} \subseteq V\left(G_{1}\right), A_{1} \neq \varnothing$. Let $\varphi: A_{1} \rightarrow V\left(G_{2}\right)$ be $1-1$. Let $G_{0}$ be the graph obtained from $G_{1} \cup G_{2}$ by adding all edges from $x$ to $\varphi(x)$, where $x \in A$. Put $A_{2}=\varphi\left(A_{1}\right)$. Then

$$
\begin{equation*}
g\left(G_{0}\right) \geqslant g\left(G_{1}, A_{1}\right)+g\left(G_{2}, A_{2}\right)-1 \tag{1}
\end{equation*}
$$

If $\varphi$ can be extended to a isomorphism of $G_{1}$ onto $G_{2}$, then (1) is an equality, that is,

$$
\begin{equation*}
g\left(G_{0}\right)=2 g\left(G_{1}, A_{1}\right)-1 \tag{2}
\end{equation*}
$$

Proof. Let $\Pi_{0}$ be an embedding of $G_{0}$ such that $g\left(G_{0}, \Pi\right)=g\left(G_{0}\right)$. Let $\Pi_{i}$ be the induced embedding of $G_{i}$ for $i=1,2$. For each $i \in\{0,1,2\}$ we let $n_{i}, q_{i}$, and $f_{i}$ denote the number of vertices, edges, and $\Pi_{i}$-facial walks of $G_{i}$, respectively. Let $m_{0}$ denote the number of $\Pi_{0}$-facial walks containing at least one edge between $G_{1}$ and $G_{2}$, and let $m_{i}$ denote the number of those
$\Pi_{i}$-facial walks in $G_{i}$ which are not $\Pi_{0}$-facial walks in $G_{0}$. By Euler's formula,

$$
\begin{equation*}
n_{i}-q_{i}+f_{i}=2-2 g\left(G_{i}, \Pi_{i}\right) \tag{3}
\end{equation*}
$$

for $i=0,1,2$.
Clearly,

$$
\begin{align*}
& f_{0}=\left(f_{1}-m_{1}\right)+\left(f_{2}-m_{2}\right)+m_{0},  \tag{4}\\
& n_{0}=n_{1}+n_{2},  \tag{5}\\
& q_{0}=q_{1}+q_{2}+|A|, \tag{6}
\end{align*}
$$

and

$$
\begin{equation*}
m_{0} \leqslant|A| . \tag{7}
\end{equation*}
$$

(7) follows from the fact that every edge is traversed precisely twice by facial walks (which may be identical), and every facial walk which traverses an edge from $G_{1}$ to $G_{2}$ also traverses an edge from $G_{2}$ to $G_{1}$. For $i=1,2$, and for each vertex $z$ in $A_{i}$, at least one of the $m_{i}$ facial walks defined above contains $z$. Hence

$$
\begin{equation*}
g\left(G_{i}, \Pi_{i}, A_{i}\right) \leqslant g\left(G_{i}, \Pi_{i}\right)+m_{i} / 2 \tag{8}
\end{equation*}
$$

for $i=1,2$.
We now combine (3)-(8):

$$
\begin{aligned}
2-2 g\left(G_{0}\right) & =2-2 g\left(G_{0}, \Pi_{0}\right)=n_{0}-q_{0}+f_{0} \\
& =n_{1}+n_{2}-q_{1}-q_{2}-|A|+f_{1}-m_{1}+f_{2}-m_{2}+m_{0} \\
& =\left(2-2 g\left(G_{1}, \Pi_{1}\right)\right)+\left(2-2 g\left(G_{2}, \Pi_{2}\right)\right)-|A|-m_{1}-m_{2}+m_{0} \\
& \leqslant 2-2 g\left(G_{1}, \Pi_{1}, A_{1}\right)+2-2 g\left(G_{2}, \Pi_{2}, A_{2}\right) \\
& \leqslant 4-2 g\left(G_{1}, A_{1}\right)-2 g\left(G_{2}, A_{2}\right)
\end{aligned}
$$

which implies (1).
We now prove (2). Let $\Pi_{1}$ be an embedding of $G_{1}$ and let $W_{1}, \ldots, W_{m_{1}}$ be facial walks such that

$$
g\left(G_{1}, A_{1}\right)=g\left(G_{1}, \Pi_{1}, A_{1}\right)=g\left(G_{1}, \Pi_{1}\right)+m_{1} / 2
$$

Let $\Pi_{2}$ be the embedding of $G_{2}$ obtained from $\Pi_{1}$ by changing "clockwise" to "anticlockwise", and let $W_{1}^{\prime}, \ldots, W_{m_{2}}^{\prime}$ be the facial $\Pi_{2}$-walks corresponding to $W_{1}, W_{2}, \ldots, W_{m_{1}}\left(\right.$ where $\left.m_{2}=m_{1}\right)$. We form an embedding $\Pi_{0}$ of $G_{0}$ which we describe topologically as follows (and we leave it to the reader
to translate it to the combinatorial terminology): For each $i=1,2, \ldots, m_{1}$ we cut out a disc in the faces bounded by $W_{i}$ and $W_{i}^{\prime}$, and we connect these two faces by a tube (or cylinder or handle). We add all edges from $x$ to $\varphi(x)$, where $x \in A \cap W_{i}$ across that tube. Then (7) becomes an equality. Combining (3)-(8) now gives

$$
g\left(G_{0}, \Pi_{0}\right)=g\left(G_{1}, A_{1}\right)+g\left(G_{2}, A_{2}\right)-1
$$

Combining this with (1) gives (2).

## 3. REDUCTION OF MAXIMUM INDEPENDENCE TO GENUS OF CUBIC GRAPHS

Let $H$ be a connected graph of minimum degree at least 3 in which we want to find $\alpha(H)$, that is, the maximum cardinality of a set of independent vertices. We let $\beta(H)$ denote the smallest number of vertices covering (meeting) all edges. Let $n, q$ denote the number of vertices and edges of $H$, respectively. Clearly,

$$
\alpha(H)+\beta(H)=n .
$$

Now let $\Pi$ be any embedding of $H$. Let $M$ be obtained from $H$ by replacing each edge $x y$ by the graph of Fig. 1.
(Note that, if we identify $x$ and $y$ in Fig. 1, then the resulting graph is nonplanar and has therefore no embedding with more than 5 facial walks. In Fig. 1 we also put $y_{i}=x_{i}$ for $i=5,6,7$.)

Let $\Pi_{0}$ denote the embedding of $M$ such that $\Pi_{0}$ agrees with $\Pi$ in $H$ and is as shown in Fig. 1 for all vertices not in $H$. (In particular, the edges $x_{6} x_{7}, x_{6} y_{2}, x_{6} x_{2}$ occur in clockwise order around $x_{6}$.) Then $M$ has $n+11 q$ vertices, $17 q$ edges, and $n+4 q \Pi_{0}$-facial walks. Hence

$$
(n+11 q)-17 q+(n+4 q)=2-2 g\left(M, \Pi_{0}\right)
$$

which implies that

$$
g\left(M, \Pi_{0}\right)=q-n+1
$$

Let $A$ denote the set of vertices of the form $x_{7}$. If $S$ is a set of vertices of $H$, then the $|S| \Pi_{0}$-facial walks of $M$ containing the vertices of $S$ also contain all vertices of $A$, if and only if $S$ meets all edges of $H$. Hence

$$
g\left(M, \Pi_{0}, A\right)=q-n+1+\beta(H) / 2
$$

Let $G_{1}$ be obtained from $M$ by modifying each vertex and its clockwise orientation as indicated in Fig. 2. Let $\Pi_{1}$ denote the resulting embedding of $G_{1}$.


Figure 1
Clearly

$$
g\left(G_{1}, \Pi_{1}\right)=g\left(M, \Pi_{0}\right)=q-n+1
$$

and

$$
g\left(G_{1}, A\right) \leqslant g\left(G_{1}, \Pi_{1}, A\right)=g\left(M, \Pi_{0}, A\right)=q-n+1+\beta(H) / 2 .
$$

With this notation we shall now prove

## Proposition 3.1.

$$
g\left(G_{1}, A\right)=q-n+1+\beta(H) / 2
$$

Proof. Let $\Pi_{2}$ be an embedding of $G_{1}$, and let $X=\left\{W_{1}, W_{2}, \ldots, W_{m}\right\}$ be a collection of $\Pi_{2}$-facial walks such that

$$
g\left(G_{1}, A\right)=g\left(G_{1}, \Pi_{2}, A\right)=g\left(G_{1}, \Pi_{2}\right)+m / 2 .
$$

Subject to this we choose $\Pi_{2}$ such that it agrees with $\Pi_{1}$ around as many vertices as possible.


Figure 2

Consider an edge $x y$ in $H$. Let $W$ be the $\Pi_{2}$-facial walk containing $x x_{1}$. If $W$ leaves the graph of Fig. 1 along $x_{1} x$ (after having entered along $x x_{1}$ ), then there is a $\Pi_{2}$-facial $W^{\prime}$ containing $y y_{1}$ and $y_{1} y$. Possibly $W^{\prime}=W$. We now change $\Pi_{2}$ so that it agrees with $\Pi_{1}$ on all vertices $x_{1}, \ldots, x_{7}, y_{1}, \ldots, y_{7}$. The new embedding has at least as many facial walks as $\Pi_{2}$ (because $\Pi_{2}$ does not have more than 4 facial walks that are contained in the graph of Fig. 1). Also, the new embedding has a collection of $m$ facial walks containing all vertices of $A$. By the maximality of $\Pi_{2}$ we may assume that $\Pi_{2}$ agrees with $\Pi_{1}$ on the subgraph of Fig. 1.

Suppose next that $\Pi_{2}$ has a facial walk $W$ containing $x x_{1}$ and $y_{1} y$. Then there is also a $\Pi_{2}$-facial walk $W^{\prime}$ containing $y y_{1}$ and $x_{1} x$. Possibly $W^{\prime}=W$. Then there are at most $3 \Pi_{2}$-facial walks contained entirely in the subgraph of Fig. 1. Again, we change $\Pi_{2}$ so that it agrees with $\Pi_{1}$ in the subgraph of Fig. 1. If $W \neq W^{\prime}$, then $W$ and $W^{\prime}$ correspond to only one facial walk in the new embedding. But we get instead 4 facial walks in the subgraph of Fig. 1. Also, $m$ is not increased. Hence the new embedding also realizes $g\left(G_{1}, A\right)$ contradicting the maximality of $\Pi_{2}$. If $W=W^{\prime}$ then the new embedding has at least two facial walks more than $\Pi_{2}$ and $m$ increases by at most one. Again, we get a contradiction.

We have proved that $\Pi_{2}$ agrees with $\Pi_{1}$ on each subgraph shown in Figure 1. Hence $\Pi_{2}$ and $\Pi_{1}$ have the same number of facial walks. Also, $m \geqslant \beta(H)$. This implies that

$$
g\left(G_{1}, A\right) \leqslant g\left(G_{1}, \Pi_{1}, A\right) \leqslant g\left(G_{1}, \Pi_{2}, A\right)=g\left(G_{1}, A\right)
$$

Theorem 3.2. The following problem is NP-complete. Given a cubic graph $G_{0}$ and a natural number $k$. Is $g\left(G_{0}\right) \leqslant k$ ?

Proof. Let $H$ be any connected graph of minimum degree at least 3, and let $m$ be any natural number. Now form $G_{1}$ and $A$ as in Proposition 3.1. Then form $G_{0}$ as in Proposition 2.1 where $G_{2}$ is isomorphic to $G_{1}$, and $A_{1}=A$ is the set of vertices of degree 2 in $G_{1}$. Note that $G_{0}$ is cubic. By Propositions 2.1, 3.1

$$
g\left(G_{0}\right)=2 g\left(G_{1}, A\right)-1=2(q-n+1)+\beta(H)-1=2 q-n-\alpha(H)+1 .
$$

Hence the inequality $\alpha(H) \geqslant m$ is equivalent to the inequality

$$
g\left(G_{0}\right) \leqslant 2 q-n-m+1
$$

As it is an $N P$-complete problem to decide if the former inequality holds, see [1], Theorem 3.2. follows.

The proof of Theorem 3.2 easily extends to the nonorientable case and to $r$-regular graphs where $r=4$, 5. It probably extends to $r$-regular graphs for each fixed $r$. If $c$ is a fixed constant, $0<c<1$, one may also consider the genus problem for $\lfloor c n\rfloor$-regular graphs with $n$ vertices. The complexity may depend on $c$. Perhaps the problem is $N P$-complete for $c=1 / 100$, but in $P$ for $c=99 / 100$.

## REFERENCES

1. M. R. Garey and D. S. Johnson, "Computers and Intractability, a Guide to the Theory of NP-Completeness," Freeman, San Francisco, 1979.
2. E. M. Luks, Isomorphism of graphs of bounded valence can be tested in polynomial time, in "Proc. 21st IEEE Symp. on Foundations of Computer Science, Syracuse 1980," pp. 42-49, IEEE, New York, 1980.
3. R. B. Richter, private communication, 1991.
4. G. Ringel, Non-existence of graph embeddings, in "Theory and Applications of Graphs" (Y. Alavi and D. R. Lick, Eds.), pp. 455-475, Springer-Verlag, Berlin, 1978.
5. C. Thomassen, The graph genus problem is NP-complete, J. Algorithms $\mathbf{1 0}$ (1989), 568-576.
6. C. Thomassen, Triangulating a surface with a prescribed graph, J. Combin. Theory Ser. B 57 (1993), 196-206.
