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In this paper, reconstructing past fractional upper (lower) records from any absolutely
continuous distribution is proposed. For this purpose, two pivotal quantities are given and their exact
distributions are derived. More detailed results, including the case of unknown parameters, are given
for the exponential and Fréchet distributions. Moreover, the exact mean square reconstructor errors
are obtained and some comparisons between the pivotal quantities are performed. To explore the
efficiency of the obtained results, a simulation study is conducted and two real data sets are analyzed.
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1. Introduction

Let {Z,, n > 1} be a sequence of independent and identically
distributed (iid) random variables (rv’s) with cumulative distri-
bution function (cdf) F(z) and probability density function (pdf)
f(z). Furthermore, assume that Z.,,, Z5. ,, ..., Z,. , denote the or-
der statistics of the random sample Z;, Z>, ..., Z,,. The kth upper
record times, Ty(n), n > 1, of the sequence {Z,, n > 1} is defined
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for fixed k > 1, as 7T;.(1) = 1 and
Ti(n+1) =min{j > Ti(n) : Zj:/'+k—1 > ZT/((n):Tk(n)+k—1}s n>1,

and the kth upper record values as Xn(k) = Z5m: T k-1, 1 =
1. Clearly, X,*' = Z;;, = min{Z,, ..., Z}. For k = 1 we have
X, = Z,, = max{Z,, ..., Z,} is the upper record value of a ran-
dom sample of size . (cf. Dziubdziela and Kopocinski [1]). The
kth lower record times and the kth lower record values are de-
fined similarly.

The first result of record values for iid observations was re-
ported by Chandler [2]. Dziubdziela and Kopocinski [1] gener-
alized the concept of record values to a more generalized na-
ture and called them kth record values. The concept of order
statistics process was originally introduced by Stigler [3], which
may be considered as fractional order statistics for non-integer
index. Jones [4] gave an alternative construction of Stigler’s uni-
form fractional order statistics. Bieniek and Szynal [5] followed
a similar method of fractional order statistics to introduce the
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fractional record values or the record-values process, which can
be considered as a family of record values with non-integer or
fractional indices.

Inference based on record values have been extensively stud-
ied by many authors, including Kaminsky and Nelson [6], Ah-
sanullah [7,8], Dunsmore [9], Nagaraja [10], Balakrishnan et al.
[11], AL-Hussaini and Ahmed [12], Raqab and Balakrishnan
[13], Barakat et al. [14] and Barakat et al. [15], among others.
The problem of reconstructing missing records based on cur-
rent available records is of special interest in a wide fields of ap-
plications. Recent works on the reconstruction problem include,
Klimczak and Rychlik [16], Balakrishnan et al. [17], Khatib and
Ahmadi [18], Khatib et al. [19] and Aly [20].

Fractional record values (or record values with fractional in-
dices) concept was originally introduced by Bieniek and Szynal
[5]. In the rest of this section, some basic concepts and results
which will be needed in the sequel are given (for more details see
Bieniek and Szynal [5]).

Let k € N be fixed and W® = [W,(k), > 0] be a stochastic
process such that:

(i) WP = 0 almost sure,
(i) W,® has independent increments,
(iii) for every t > s > 0, WX — W® has gamma distribution
with parameters 1 — s and k, respectively.

Then {W,(/"), t> 0] is called the exponential kth upper

record-values process. Moreover, the rv’s W,(k), t > 0, are said
to be exponential fractional kth upper record -values. Further-

more, the stochastic process X ® = {X,(k), t> 0}, where

X =F (1 —exp[-W,P]), >0,

is called the kth upper record-values process based on the cdf
F and the rv’s X, t > 0, are said to be fractional kth upper
record values from F. Fractional kth lower record values from
F are defined similarly (cf. Bieniek and Szynal [5]).

In what follows, we shall assume that Fis an absolutely con-
tinuous cdf with pdf f. The pdf £ (x), of X,*’ is given by

t

F(t)[H(x)]"l[F(x)]k‘lf(x), —c0<x <00, t>0,

fP ) =

and the joint pdf, f,fkt)\ (xy, x;) of X,f_k) and X,ik), with ¢, > ¢, can
be written as

Iy

— e _ fy—ty—1
L)t — 1) [H ()" [H (x,) = H(x,)]

x [F(x)Fh(x,)h(x,), —00 < X, < X, < 00,

k
fti,t)s (xl‘7 xs) =

where, H(x) = —In[1 — F(x)]. The pdfgﬁk)(y) of the fractional
kth lower record values, Y,(k), is

t

T ()

800) = s =[=InFOIT'FWI f (), —00 <y < 00, 1> 0,

and the joint pdf of Y,f,/") and Y,}fk), t;>1>0for —oo <y, <
¥, < 0o, is given by

1s
(k) _
8o Vs Vs) FeOT G —1)

—InF)] " [F )]

[—InF(y)]" ' [InF(y,)

0 fy)
F(y) F(yy)'

The rest of this paper is organized as follows: Section 2 con-
tains the theoretical results for the fractional kth upper record
values formulated in general form and more details for two-
parameter exponential distribution whenever the parameters
are known or unknown are derived. A similar results are ob-
tained for fractional kth lower record values with some detailed
results of Fréchet distribution in Section 3. A simulation study
is presented in Section 4, while illustrative examples are given in
Section 5.

2. Reconstruction of past fractional kth upper record values

In this section, a reconstruction method based on reconstructive
pivotal quantities, that allows one to obtain statistical intervals,
called reconstructive confidence intervals (RCI’s), Furthermore,
point reconstructors are given for past missing fractional kth
upper record values from two-parameter exponential distribu-
tion.

Theorem 2.1. Assume that X,E"'), X,g"), X,f_k) are missing frac-
tional kth upper record values with fractional indices, 0 =ty <
t <ty <--- <ty froman absolutely continuous population with
cdf F, pdf f and that X,fk) s e X,f/“), r < s < n are observed
ones from the same population. Then, the pivotal quantity P =
(X7 = X)X, follows beta distribution with parameters t; — t,
and t,, respectively. Furthermore, an observed 100(1 — §)% RCI
for X,f,k), is (Lp, U) where,
Lr=F (1= (FX®)™),  v=x",

p, can be obtained by solving the non linear equation Pr(P <
p,) =1-38 and X; = HX").

Theorem 2.2. Under the conditions of Theorem 2.1, the cdf of the

pivotal quantity, Q = ﬁ is given by,
FQ(q) :Iﬁ (Zs_tr»tn_ts)s q= 0, (21)

where, I.(a, b), denote the incomplete beta function defined by
L(a,b) = #/Zu“_l(l—u)”_'du for 0<z<1
o B(a, b) Jo ' 7

and B(a, b) = fol w1 — u)’~'du, is the beta function. More-
over, an observed 100(1 — 8)% RCT for X,fk) . is (Lo, U) where,
Lo=F (1= FH(XO)F (). U= X
and q, satisfies the non linear equation Fp(q,) =1 — 6.

2.1. Two-parameter exponential distribution with known
parameters

Corollary 2.1. Under the conditions of Theorem 2.1, if the popu-
lation follows two-parameter exponential distribution, Exp(i, B),
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where the location parameter p and the scale parameter B are as-
sumed to be known. Then an observed and expected limits of a
100(1 — 8)% RCT for X,’(,k), based on the pivotal quantity P, re-
spectively, are (Lp, U) and (E[Lp], E[U]) where,

Lp=(1-p)X®)+pu. U= X" and
E[Lp] = B(1 = p)its/k + n, E[U] = Bt;/k + .

Moreover, an unbiased point reconstructor for X,fk), based on P
and its mean square reconstructor error (MSRE), respectively, are
given by

5 Lo
X0 = ?(/\’,f.") — 1)+, and

s

MSRE()?,}_“) = E[X,f,“ - X,fk)]z _5 (t — 1,). (2.2)

2
k2t
Corollary 2.2. With the same conditions of Corollary 2.1, an ob-
served and expected lower limits of a 100(1 — §)% RCT of X,f/"),
based on the pivotal quantity Q, (Lo, U), are

LQ — A/[E/c) _ qg (A/t,(lk) _ /‘/IE/C)) and
B
E[LQ] = %(l‘s — (s (tn - ts)) + u.

Furthermore, an unbiased point reconstructor for X, tfk) , based on
Q and its MSRE, respectively, are

k k
(tn - tr)A/tE ) — (ts - tr)A/tf, )

X0 = and
! t, — 1
2
k) ﬁ (tn - lr)(ls - lr)
MSRE(Xt,_ ) e 2.3)

2.2. Two-parameter exponential distribution with unknown
parameters

The main task of this subsection, is to apply our method
for the two-parameter exponential distribution, whenever the
distribution parameters are unknown. The likelihood function
of the fractional kth upper record values, X,*', ..., X,©’, can be

obtained by using (2.4) of Bieniek and Szynél [5], that is,

L(x; ©) = [ (g, .o, X3 ©) = C(H (x5; ©)) 1 (1 = F(x,; ©)F

x [JHG) = H-)l ™ hixs ©)), (24)
where, x; < xo1 < ... < X,, with s < n, are observed frac-
tional kth upper record values., ® is an unknown vec-
tor of parameters and C = k" [I"(t,_1 + 1) [T, T'(t; — 1 )]71.
For Exp(u, B), we have £(u,B)=InL(u,pB)x —t,Ing +
te_1In(x, — ) — %(xn — ). Therefore, the maximum likeli-
hood estimates (MLE’ s) of u and B, respectively, are

2.5)

However, the MLE’ s are biased estimators and the corrected un-
biased estimators are

k x® _ y® A
. i Loty — 1
b = M and p=p-"P (7‘> (2.6)

Iy — I k Iy — ls—1

The estimated lower limit, Lp, as well as the point reconstruc-

tor, /\:/,f,k) , based on the pivotal quantity P can be obtained from
Corollary 2.1 by replacing 1 with /1.

3. Reconstructing past fractional kth lower record values

In the following two theorems, two pivotal quantities are de-
veloped and their distributions are obtained to reconstruct past
fractional kth lower record values.

Theorem 3.1. Suppose that Y,fk), Y,Ek), poes Y,/(,k) are unobserved
fractional kth lower record values with fractional indices, 0 =
to <ty <ty <---<t, froman absolutely continuous distribu-
tion with cdf F and pdf f. Furthermore, let Y,Y‘), vees Y,fllo be ob-
served from the same population. Then, the pivotal quantity P* =
(Y; — Y,,*)/ Y, follows beta distribution with parameters t, — t,
and t,, respectively. Furthermore, a 100(1 — §)% RCT for Y,fk), is
(L, Up+) where,

L=Y®,  Up=F((F(0) ),

P! satisfies Pr(P* < p*) = 1 — § and Y = log[F (Y,")].

Theorem 3.2. With the same conditions of Theorem 3.1, the cdf

of the pivotal quantity, Q* = oy

s n

quently, a 100(1 — 8)% RCI for Y,fk), is (L, Ug+) where,

is given by (2.1). Conse-

—y®
L=Y",

and g satisfies the non linear equation Fp-(q5) =1 — 4.

Corollary 3.1. Under the conditions of Theorem 3.1, if
the population distribution is Fréchet, with cdf F(y) =

exp [—(% , >0, a,B>0, then an observed and ex-

pected limits of a 100(1 — 8)% RCI for the lower record values
with fractional indices from an absolutely continuous distribution,
Y,f_k), based on the pivotal quantity P*, are respectively, given by
(L, Up+) and (E[L], E[Up+]) where,

1
L=Y® Up=(1-py «r®,

B

B = m”

-1
(t; —a™"), E[Up] =
Moreover, an unbiased point reconstructor for Y,fk), is

()T (1, — ")

YW =_—"r —Ly® 3.1
= oo e 3.1)
and its MSRE is given by
MSRE(Y,) = £ !
(Y,") = [T (6 —207")

22t —a')
(1, —a™') =TT (t, = 2271, — 7)),
(3.2)

fort, > f

As in the case of upper record values, we derive the like-
lihood function of the fractional kth lower record values,
Y,fk), e Y,,(lk), namely,
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L*(y; ©) = f(Vss e Vs ©)
= C(=log(F (y5; ©)))" ' (F (3; ©))*
. F(i®\]"" " fn ©
1—[ In (G S ) ’ (3.3)
e F(y; ©) F(yi; ©)
where y; > yoy1 > --- > y, for s < n, are observed fractional kth
lower record values. For Fréchet distribution, the MLE’ s can be

. 1 . .
obtained by (3.3), namely, B = (%)* Y, where @ is the solution
of the nonlinear equation,

to1 In(yy) + Z In(y;)

i=s

n

+ Z [(ti —ti1t+ l)y: InGn) -y an’i—l)]

vt =i

i=s

— 1
_nos+l 1, In(y,) = 0.

Remark 3.1

1. The point reconstructor does not depend on the scale pa-
rameter or the significance level §.

2. The point reconstructor AA/,f,k) based on Q for Exp(u, B), is
exactly the best linear unbiased reconstructor (see Khatib
and Ahmadi [18] for ordinary record values) and it is free of
the distribution parameters.

3. The ordinary upper (lower) record values are obtained as
special cases from the preceding results by setting ¢; = 7, for
alli=1,2,...,n.

4. Tt is not difficult to verify, MSRE()?,,(_’”) < MSRE(AA/,f")).

5. For Exp(u, B), if we replace  and g with /i, and ﬁ?c, we have
j/[dc) — X%,

The proof of the results given here, can be accomplished by
following the same argument of Barakat et al. [15,21], or by a
standard method of transformations of random variables after
routine mathematical calculations and some effort. We only ex-
plain how one can obtain a point reconstructor from the limits
of the RCI. A simple method for this goal is to find the constant
¢ such that X’,fk) =L+ c¢(U—L)with0 < ¢ < 1, is an unbiased
for Xt,(_k) or has minimum variance, where L and U denote the
lower and upper limits for RCI. For Exp(u, 8), based on the piv-
otal quantity P(the case of upper record values), the value of ¢ is
c= Cp =1- (ts - tr)/pats» and CQ =1- (ts - tr)/[qg (tn - ts)]s
based on the pivotal quantity P. The proof of (3.1) is similar.

4. Simulation

In this section, simulation experiments are carried out to
demonstrate the efficiency of the proposed method. The fol-
lowing two algorithms are essential to accomplish our simula-
tion. In view of the results of Rider [22], Rahman [23], Cramer
[24] and Burkschat et al. [25], we can generate ordinary and
fractional record values from any continuous cdf F by using
Algorithm 1.

Algorithm 1. (Generation of fractional kth upper record values)

Step 1. Determine the cdf F and choose the values of n, k,
Step 2. generate a random sample, By, B, ..., B,, of size n from
beta distribution, B(k, 1),

Step 3. find the rth ordinary upper kth record value X® from

the relation X® = F~1{ 1 - [] B~>,
=l
Step 4. generate W, from Exp(1) by Theorems 2.1 or 2.2 and
3.1 of Bieniek and Szynal [5],
Step 5. compute X,fb based on F from the relation X,f"’ =

F—'(l - e—W‘““f)) i=1,2,...n

The fractional kth lower record values can be generated sim-
ilarly.

Algorithm 2.

Step 1. Determine k,r,s,n, the fractional indices, 0 = ¢, <
t) < --- < t,, and the number of replicates M,

Step 2. select a continuous distribution and its parameter(s),

Step 3. generate M arrays, each array include n of X,ﬁk) and
then store them,

Step 4. find the numerical values of p,(g,) by solving
the nonlinear equations F,(p,) = Pr(P < p,)=1-4
(Fy(g,) = 1 — &) for fractional kth upper record values,
orF,(p)=1-3 (FQ, (¢)=1- 8), for fractional kth
lower record values,

Step 5. compute the point reconstructors, lower and upper
limits for the RCI’s based on the pivotal quantities P
(P*) and Q (Q*) by Theorems 2.1, 2.2, 3.1, and 3.2,

Step 6. check whether, the observed value of X, (¥,*) did
belong to the RCI,

Step 7. repeat Steps 5 and 6 after replacing the parameters
with their MLE’s, which can be obtained by (2.4) or
(3.3),

Step 8. repeat Steps 5, 6 and 7, M times,

Step 9. compute the percentage of the coverage probability,
and the average of lower (upper) limits,

Step 10. compute the expected value of upper (lower) limits
based on P(Q) and P*(Q*), and the root mean square
reconstructive errors (RMSRE’ s) by using Corollaries
2.1,2.2 and 3.1.

The results are shown in Table 1, where they are based on
M = 10° replicates of n = 17 kth upper records (including 9
ordinary records and 8 fractional records) corresponding to
t;i=1,1.52,25,..9, k=5, from Exp(8, 2.5). In this study,
we assume that the upper records, X,is ., X,ff )| have been ob-
served and the first upper records, X,;S ), X,f,s ) are to be re-
constructed. In Tables 1 and 2, we consider the following two
situations: (i) The distribution parameters are known and (ii)
the distribution parameters are unknown and in this case, the
MLE’ s (or their corrected unbiased estimators) are obtained by
(2.5) (2.6) or by (3.3) for the kth lower records. For each value
of t,, the first line includes average values based on M = 10°
replicates, while the RMSRE’ s are given in the second line be-
tween parentheses. Table 2, contains similar results but for lower
records with n = 20, k = 2 (including 10 ordinary records and
10 fractional records) from Fréchet distribution with @ = 2 and
B = 5 based on the pivotal quantity P*. It is worth to mention

here that, Lp(Lp) and ):(f)(f(l /@) denote the average lower limit
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Table 1  90% coverage probability, limits of RCI, point reconstructor, and RMSRE’ s of past ordinary and fractional kth upper

record values from Exp(8, 2.5) based on M = 10° replicates.

ts MLE's ty CPQ% CPp% CAPPO/O ZQ = iQ ip ip X}ES) ):(tES) ):(';ES) = ):(tfs) U
4.0 @C =7995 35 90.150 90.068  86.947 9.175 9.320 9.319 9.748 9.748 9.747 9.997
B, =2.503 0.700)  (0477) (0.613) (0.187) (0.331)  (0.371) (1.000)
3.0 90.165 90.045  83.326 8.533 8.927 8.924 9.498 9.498 9.497 9.997
(1.148)  (0.605) (0.844) (0.173) (0.433)  (0.548) (1.000)
2.5  90.157  90.034  79.532 7.949 8.630 8.626 9.250 9.248 9.246 9.997
(1.562)  (0.650) (1.008) (0.158) (0.484)  (0.698) (1.000)
2.0 90.174  89.984  75.522 7.389 8.391 8.387 8.999 8.999 8.996 9.997
(1.958)  (0.629) (1.130) (0.141)  (0.500)  (0.837) (1.000)
1.5 90.144 89.944  70.960 6.841 8.203 8.198 8.749 8.749 8.746 9.997
(2342)  (0.546) (1.220) (0.122) (0.484)  (0.968) (1.000)
3.5 éé‘ =799 3.0 90.116 90.056 87.324 8.940 9.073 9.071 9.498 9.498 9.497 9.748
Bc =2.503 (0.681) (0.469)  (0.604)  (0.173)  (0.327)  (0.369) (0.935)
2.5 90.036 90.046  83.428 8.316 8.696 8.693 9.250 9.248 9.247 9.748
(1.101) (0.578)  (0.819)  (0.158)  (0.423)  (0.544) (0.935)
2.0 90.107  89.963  79.062 7.750 8.422 8.418 8.999 8.999 8.997 9.748
(1491)  (0.594) (0.965) (0.141) (0.463)  (0.691) (0.935)
1.5 90.046  90.020 74.317 7.208 8.215 8.211 8.749 8.749 8.746 9.748
(1.860)  (0.532) (1.066) (0.122) (0.463)  (0.826) (0.935)
3.0 liL( =7.997 2.5 90.095 90.087 87.447 8.704 8.827 8.826 9.250 9.249 9.248 9.498
/§(‘ =2.502 (0.664) (0.455)  (0.595) (0.158)  (0.323)  (0.368) (0.866)
2.0 90.022 90.059 82.979 8.094 8.474 8.472 8.999 8.999 8.998 9.498
(1.064)  (0.538) (0.792) (0.141)  (0.408)  (0.540) (0.866)
1.5 89992  90.041  77.831 7.543 8.234 8.232 8.749 8.749 8.748 9.498
(A431)  (0511) (0915 (0.122) (0.433) (0.685) (0.866)
2.5 @C =799 2.0 90.015 90.160 87.304 8.466 8.585 8.585 8.999 9.000 9.000 9.250
B. = 2.501 0.653)  (0.434) (0.589) (0.141) (0.316)  (0.367) (0.791)
1.5 89.934 90.036  81.940 7.868 8.269 8.269 8.749 8.750 8.750 9.250
(1.033)  (0474) (0.760) (0.122) (0.387) (0.537) (0.791)
2.0 /i,LC =799 1.5 90.071 89.926  87.059 8.224 8.351 8.351 8.749 8.750 8.749 8.999
B. = 2.501 0.642)  (0.398) (0.577) (0.122) (0.306)  (0.366) (0.707)

of the RCI and the average of the point reconstructor based on
the pivotal quantity P whenever the parameters are assumed to
be known(unknown), respectively.

5. Illustrative examples

In this section, two real data sets are analyzed for illustrative
purposes.

Example 5.1. The first real data set represents the times (in min-
utes) between 48 consecutive telephone calls to a company’s
switchboard which was obtained from Castillo et al. [26] and
have been analyzed by Khatib and Ahmadi [18]. It was shown
that the two-parameter exponential distribution is a suitable
model for this data. The vector of observed upper records (for
k=1)isxV = (1.34,1.68, 1.86,2.2,3.2,3.25). The MLE’ s and
their corrections are computed from (2.5) and (2.6), respectively.
Table 3 summarizes the reconstruction results of Example 5.1.

Example 5.2. The second set of data consists of, 720 monthly
maximum wind speed of Boston in the United States dur-
ing the period from 1950 to 2009. The data are obtained
from the Mathematica Documentation Center. Relying on
Kolmogorov—Smirnov (K-S) test, we can judge whether the

data follows two parameter-Fréchet distribution or not. The
observed value of K-S test statistic is 0.0790207, which indi-
cates that two parameter-Fréchet distribution is adequate model
for this data. The vector of observed lower records is y") =
(66.6, 55.8, 51.84, 50.04, 42.48, 38.88, 37.08, 33.48, 29.52). The
MLE’s, of & and B, as well as the reconstruction results are
shown in Table 4.

6. Concluding remarks

In this paper, we have proposed reconstruction method for frac-
tional kth upper (lower) records based on pivotal quantities.
Point reconstructors and RCI’s with comparisons based on the
MSRE have obtained for two-parameter exponential distribu-
tion in upper case and two-parameter Fréchet distribution for
lower case. Moreover, a simple method has given to get an
unbiased point reconstructor from the reconstruction interval
for the exponential and Fréchet distributions. In addition, the
likelihood function based on the available fractional kth up-
per (lower) records, X,(\_k), X,:/‘) (Yt‘fk), thlk)), has derived
and the MLE’ s of parameters have obtained which reveal that
the results are satisfactory when the parameters are replaced by
their estimators. To demonstrate the efficiency of the proposed
method simulation experiments have carried out and two real
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Table 2 90% coverage probability, limits of RCI, point reconstructor, and RMSRE’ s of past ordinary and fractional kth lower
record values from Fréchet distribution with @ = 2, B = 5 based on M = 10 replicates.

s MLE'’ s f CPp, Cpp, T 7,2 7,2 7,2 Op, O,

40  &=2565 35 89958 86145 39159  4.2569 42546 42654 4.8164 4.8384
B=5117 (0.5779) (0.6144) (1.0156) (1.1491)

3.0 90078 84165 39159  4.6998 4.6991 47366 5.7478 5.8297
(1.0085) (1.1385) (1.6908) (2.1404)

25 90.090 82632 39159 53195 5.3183 5.4214 6.9740 7.1934
(1.6319) (1.9801) (2.8675) (3.8650)

20 89922 81163 39159 62786 6.2655 6.5546 8.8497 9.4110
(2.7765) (3.9044) (5.5472) (7.5654)

15 89.892  80.132 39159  7.9967 7.9775 9.0726 12.2891 13.8956
(54767)  (29.9364)  (23.4942)  (26.3142)

35 &=251 30 90125 86367 42569  4.6998 47016 47240 5.4337 5.4811
B =5.120 (0.7787) (0.8289) (1.4619) (1.6261)

25 90.080  84.548 42569 53195 5.3211 5.4000 6.7467 6.9131
(1.4574) (1.6538) (2.6746) (3.2697)

20 89939 82917 42569  6.2786 6.2687 6.5071 8.6647 9.1318
(.6311) (3.2832) (5.4108) (6.8060)

15 89.844 81770 42569  7.9967 7.9816 8.9188 12.1328 13.5259
(53661)  (11.1138)  (23.4343)  (25.3600)

30 &=2485 25 90097 86637 46998 53195 5.3191 5.3655 6.3266 6.4222
B=5113 (1.1672) (1.2488) (2.4183) (2.6263)

20 89959 84571  4.6998  6.2786 6.2664 6.4479 8.3576 8.7116
(2.4180) (2.8093) (5.2241) (6.0715)

15 89.851 83270  4.6998  7.9967 7.9787 8.7435 11.8811 13.0482
(52099)  (10.9339)  (23.3556)  (24.6433)

25 §=2455 20 89779 86357 53195 62786 6.2669 6.3764 7.7748 7.9827
B=5116 (1.9927) (2.1808) (4.9076) (5.1954)

15 89.833 84765 53195  7.9967 7.9793 8.5881 11.4605 12.3689
(4.9018) (8.1952)  (232172)  (24.0134)

20 §=2429 L5 90016 86698 62786  7.9967 7.9942 8.3788 10.5923 11.1454
B=5114 (4.1803) (6.3613)  (22.9636)  (23.1844)

Table 3 Point and interval reconstruction with relative errors of past ordinary upper records for X,El) with r =

s—1,...,1, fors=4,3,2.

i b vooxD o x0 x0=x"  RE(X") RE(X")  osuRctp 95%RCIp
40 p =01 30 18 1938 L1675 0.0417 0.0995 (1.537,220)  (0.874,2.20)
f.=0.525 20 168 1675 1150 0.0030 0.3155 (1292,220)  (0.384,2.20)
10 134 1413 0.625 0.0541 0.5336 (1.168,2.20)  (0.136,2.20)
30 p,=047 20 168 1628 1397 0.0308 0.1687 (1320,1.86)  (0.781, 1.86)
f.=0463 10 134 1397 0933 0.0423 0.3035 (1.183,1.86)  (0.505, 1.86)
20 4, =085 1.0 134 1523 1288 0.1366 0.0392 (1382, 1.68)  (0.934, 1.68)

data sets have analyzed. The results of Example 4.1 are satis-
factory compared with Khatib and Ahmadi [18]. In view of the
results given in the preceding sections, we have noticed the fol-
lowing:

1. The lower (upper) limits of RCI’s as well as the point recon-
structor and their estimates are closed to each other when we
use the MLE’ s of parameters. Theoretically this is expected,
since MLE’ s are consistent and satisfy the asymptotic nor-
mality.

2. In most cases the RCI contains the exact value of X,f_” or
Y,V (see Tables 3, 4).

3. In all cases the mean square error decreases as s — r de-
creases.

4. An application of the pivotal quantity Q or Q*, requires the
restrictive condition,

which is not always satisfied.
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Table4 Point and interval reconstruction with relative error of past ordinary lower records for thl)

withn=9, r=s—1,...,2, fors =8, 5, 3.

ty MLE’sby (3.3) 1 A A RE(7,") 95%RCI based on P
8.0 a = 1.9860 7.0 37.08 36.075 0.0271 (33.48 , 41.531)
B = 89.248 6.0 38.88 39.380 0.0129 (33.48 , 48.485)
5.0 42.48 43.789 0.0308 (33.48 , 57.529)
4.0 50.04 50.095 0.0011 (33.48 ,70.903)
3.0 51.84 60.199 0.1613 (33.48 , 93.980)
2.0 55.80 80.455 0.4418 (33.48 , 146.418)
5.0 a =2.0415 4.0 50.04 48.408 0.0326 (42.48 , 61.306)
B = 86.602 3.0 51.84 57.854 0.1160 (42.48 , 84.000)
2.0 55.80 76.619 0.3731 (42.48 , 132.786)
3.0 a =2.1801 2.0 55.80 67.269 0.2055 (51.84,103.054)
B = 80.869
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