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Abstract In this study, we reviewed six imputation methods

(Impute 2, FImpute 2.2, Beagle 4.1, Beagle 3.3.2,MaCH, and

Bimbam) and evaluated the accuracy of imputation from

simulated 6K bovine SNPs to 50K SNPswith 1800 beef cattle

from two purebred and four crossbred populations and the

impact of imputed genotypes on performance of genomic

predictions for residual feed intake (RFI) in beef cattle.

Accuracy of imputationwas reported in both concordance rate

(CR) and allelic r2 and assessed via fivefold cross-validations.

Running times of differentmethodswere compared. Impute 2,

FImpute and Beagle 4.1 yielded the most accurate imputation

results (with CR[91%). FImpute was the fastest and had

advantages over all other methods in imputing rare variants.

Minor allele frequency (MAF) and genetic relatedness

between individuals in reference and validation populations

can affect accuracy of imputation. For allmethods, imputation

accuracy for genotypes carrying the minor allele increases as

the MAF increases. Impute 2 outperformed all other methods

on MAF[ 5% and onwards. FImpute and Impute 2 that

adopted the nearest neighbour scheme coped better with

individuals of distant relativeness. Bimbam yielded the

poorest CR (76%) due to admixed reference panels. Imputed

genotypes and actual 50K/6K genotypes were employed to

predict genomic breeding values (GEBVs) of RFI using a

Bayesian method and GBLUP. Accuracies of GEBV were

similar using actual 50K genotypes or imputed genotypes,

except those from Bimbam, and the imputation errors had

minimal impact on the genomic predictions.

Keywords Genotype imputation � Genomic prediction �
Residual feed intake

Introduction

With the development of high-throughput DNA genotyping

chips of various densities and the advance of sequencing

technologies [1–4], numerous genetic variants have

become available for use in livestock improvement. In

bovine genomics, the 1000 Bull Genomes Project (http://

www.1000bullgenomes.com/) identified 28.3 million

genetic variants including 26.7 million single nucleotide

polymorphisms (SNPs) and 1.6 million INDELs [5]. These

types of dense SNPs that exhibit variations in regions along

the whole genome have become a valuable tool for parental

verification [6], identification of potential disease-risk

genes [3] and genomic selection (GS) with the aim of

improving genetic gains [7, 8].

Various statistical approaches have been proposed for

genomic predictions, and they differ in their assumptions

about marker effects. For example, the genomic best linear

unbiased prediction (GBLUP) model [9] assumes all
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markers contribute to the trait. On the other hand, some

Bayesian alphabet methods including BayesB adopt a

Bayesian inference framework for parameter estimation

and assume that the trait is influenced by only a fraction of

all markers, while others have no effect [8].

Genotype imputation traditionally is a procedure of

inferring the small percentage of sporadic missing geno-

types in the assays, but it now commonly refers to the

process of using a reference population genotyped at a

higher density to predict untyped genotypes that are not

directly assayed for a study sample genotyped at a lower

density [10]. Genotype imputation is expected to boost the

statistical power because it equates the number of SNPs for

datasets genotyped using different chips and leads to an

increased number of SNPs in association studies, which in

turn should result in higher persistence of linkage phase

between quantitative trait loci (QTL) and SNPs, and

potentially increase the accuracy of genomic predictions.

Additionally, dense SNP markers will more likely contain

some causative SNP markers, which can increase the sta-

tistical power for genome-wide association studies and

genomic predictions.

Both Illumina (https://www.illumina.com) and Affyme-

trix (http://www.affymetrix.com) offer general purpose

commercial SNP chips for genotyping. For example, the

BovineSNP50 BeadChip (Bovine50K; Illumina Inc., San

Diego,USA), amedium-density SNP chip containing 54,609

SNPs, has been successfully applied in dairy cattle for esti-

mating breeding values [7, 11]. The high-density bovine SNP

chips, the Illumina BovineHDBeadChip (‘‘Illumina 770K’’)

containing more than 777,000 SNPs and the Affymetrix

AxiomGenome-Wide BOS 1BovineArray containingmore

than 640,000 SNPs (‘‘Affymetrix 640K’’), are available for

genetic merit evaluations and comprehensive genome-wide

association studies. Although SNP genotyping enjoys a

lower typing error rate due to their bi-allelic nature, denser

genomic coverage, lowering cost and standardization among

laboratories [6, 7], the price of genotyping of high-density

chips remains a major challenge for a large number of can-

didate animals to be typed for genomic selection, not to

mention the more expensive genome sequencing. A com-

mercially available ‘‘BovineLD Genotyping BeadChip’’ of

6909 SNPs (‘‘Illumina 6K’’; Illumina Inc., San Diego, USA)

has been developed as a cost-effective low-density alterna-

tive to the Illumina 50K with selected markers optimized for

imputation [1] and was reported to contain lower genotyping

errors than its low density predecessor the Illumina Golden

GateBovine3K chip. In addition, the Illumina 6K chip can be

customized by adding SNPs.

The key idea of the existing genotype imputation

methods is to explore and hunt for shared ‘‘identical by

descend’’ (IBD) haplotypes that exhibit high linkage dise-

quilibrium (LD) measured in r2 from a high-density ref-

erence panel of genotypes or haplotypes over a region of

tightly linked markers, and use them to fill untyped SNPs

of any low-density study samples. The success of genotype

imputation depends on the length of correlated markers in

LD blocks. Markers common to both study samples and

reference panels serve as anchors for guiding genotype

imputation approaches imputing any unobserved haplo-

types within the LD block. Because of domestication,

selection and breeding in cattle, Matukumalli et al. [3]

reported that the length of LD blocks of correlated markers

in cattle is about three times greater than that of human

populations. In human populations, substantial efforts have

been made to produce accurately phased ‘‘haplotype’’ ref-

erence panels, available from the International HapMap

project [12] and the 1000 Genome Project [13]. Yet, in

cattle and many other livestock species, ‘‘unphased’’ SNPs

from sequencing or in HD genotyping chips and medium-

density genotyping chips are commonly used as reference

panels for imputation.

Existing methods for genotype imputation can be cate-

gorized computationally into the linear regression model

by Yu and Schaid [14], clustering models [15–18], hidden

Markov models (HMMs) and expectation–maximization

(EM) algorithms. More recent works have included

‘‘BLIMP’’ by Wen and Stephens [19] based on ‘‘Kriging’’

for imputation from summary data and ‘‘Mendel-Impute’’

via matrix completion [20].

Alternatively, imputation methods can be divided into

two broad categories: ‘‘population-based’’ imputation

methods that use LD information and the ‘‘family-based’’

imputation methods that use both pedigree and LD infor-

mation such as rule-based AlphaImpute [21] and sampling-

based GIGI [22]. In general, family-based imputation pro-

grams using Mendelian segregation rules and LD informa-

tion result in better accuracies than population-based ones

for rare variants because pedigrees record patterns of rela-

tionship among individuals, and performance of population-

based imputation programs can be weakened by low LD of

distant SNPs in sparse low-density chips [21–24]. We focus

on population-based programs that do not require pedigree

information because of the following three reasons. First,

pedigree information is not always available for reasons of

privacy or missing pedigree records. Second, population-

based methods yield more accurate imputation for common

variants than family-based imputation [22]. Third, some

family-based programs require availability of dense geno-

types for all immediate ancestors [21].

There have been several excellent reviews on genotype

imputation methods and applications to human genome-
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wide association studies [10, 25, 26] as well as related

reviews on haplotyping methods [27]. Several studies have

investigated the performance of imputation methods in the

context of livestock applications [28] and evaluated their

effects on genomic predictions [28–30]. In this review, we

attempt to survey and categorize various historical and

more recent population-based genotype imputation meth-

ods that accept unphased reference panels as input and then

evaluate effects of imputed data on feed efficiency genomic

predictions for beef cattle. We focus on the most important

population-based imputation methods that have been

widely adopted and relevant to both human and bovine

genomics and their underlying computational schemes for

parameter estimations, including Beagle [15], the ‘‘PAC’’

model of Li and Stephens [31] and its variants [17], and a

simple rule-based method called FImpute [32] inspired by

‘‘long range phasing’’ [33]. We also evaluate the impact of

genotype imputation accuracy on genomic predictions

based on real beef cattle data.

Imputation Models and Popular Methods

In this section, we review the most widely used computa-

tional models underlying several population-based geno-

type imputation methods. The population-based genotype

imputation problem can be formally defined as follows:

given a panel of known, unrelated and unphased high-

density genotype data DG, our goal is to impute the

untyped markers that are not directly assayed in a geneti-

cally similar dataset SG, termed a ‘‘study sample’’, geno-

typed on a low-density chip. Strictly speaking, individuals

are ‘‘related’’ to some degree in that even two distant

individuals can be traced back to a common ancestor if we

follow genealogy into the past. To clarify the context of

‘‘unrelatedness’’, we imagine that unrelated individuals are

independent, identically distributed observations drawn

from a population and they are not recently related, not

related via close family relationships in a pedigree [34].

We use SGij to denote the genotype of study individual i at

marker j, where SGij can be 0, 1 or 2 representing the

number of copies of the alternative allele if observed and

SGij ¼ ? if untyped. Likewise, DGij denotes the genotype

of individual i at marker j on the reference panel R. DG

and SG share an overlapping set of markers, denoted T ,

representing the set of typed markers in both low-density

and high-density chips. Assume that all markers of the two

datasets are bi-allelic and they fall into two disjoint subsets:

an overlapping set of markers T typed in both the low-

density study sample and high-density reference panel, and

a set U of markers that are typed only in DG but untyped in

SG.

All existing genotype imputation methods, in essence,

try to find matches of similar haplotypes over a short

chromosomal region between the study sample and the

reference panel [35]. That is, the population-based geno-

type imputation methods pool information from typed

markers that are in linkage disequilibrium with the untyped

markers, and due to correlation, untyped markers U in SG

can be filled with observed genotypes from DG if there is a

match at typed markers T [19, 36]. Most methods not only

perform genotype imputation for the study sample but infer

haplotype phases as well [15, 35, 36].

The ‘‘Product of Approximate Conditionals’’ (PAC)

Model

The statistical model of Li and Stephens [31] for popula-

tion patterns of linkage disequilibrium (LD) and identifi-

cation of recombination hotspots is a milestone in the

development of genotype imputation methods, and a

number of methods including Impute 1 [36], Impute 2 [35],

MaCH [37], fastPHASE [17] and Bimbam [16] are all

variants based on this idea. Li and Stephens [31] proposed

‘‘the product of approximate conditionals’’ (PAC) model

for approximating coalescence with recombination and

mutation in a population. Given n sampled diploid indi-

viduals at L markers, there are in total 2L possible haplo-

types for each sample. Due to the fact that recombination

and mutation are both rare events and individuals are

related in some degree, instead of considering the expo-

nential number of haplotypes 2L, one can narrow down the

search list of candidate haplotypes and approximate a new

haplotype as an imperfect mosaic of the N observed hap-

lotypes, which represent the hidden states of a HMM. The

‘‘PAC’’ model approximates the recombination event as a

Markov jump process along the genome: the new haplo-

type can copy from different haplotypes at two consecutive

loci. Incorporation of recombination rates into the HMM

significantly simplifies the transition probabilities and

allows for transition from one marker to the next that is

independent of the current hidden state from which the new

haplotype copies. There is a chance that an allele of the

new haplotype is close to but not exactly the same as the

one from which it copies, reflecting that a mutation or a

genotyping error occurs [31].

Discrete HMM Models—Impute1, Impute 2 and MaCH

Impute 1 [36], Impute 2 [35] and MaCH [37] can be

grouped together as they treat the observed genotypes as

discrete counts of alleles and adopt a sampling scheme for

estimating the posterior probabilities of missing genotypes

in SG in an HMM framework.
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Impute 1 [36] assumes the availability of a high-density

haplotype reference panel (denoted DH, which can be

thought of as a ‘‘phased’’ version of DG), a fine-scale

recombination map q that defines the probability of

recombination occurring between two consecutive loci, an

effective population size parameter Ne that is a scaling

factor for genetic distance between two consecutive loci.

For each individual SGi genotyped with low-density chip,

it defines PðSGijDH; q; kÞ in the HMM framework of Li

and Stephens [31], where k is the mutation rate dependent

on the number of individuals in the reference panel R.

PðSGijDH; q; kÞ ¼
X

Zi

P SGijZi; kð ÞPðZijDH; qÞ;

i ¼ 1; . . .; n;

where qm is the probability that a recombination event

occurs between loci m and m ? 1. The hidden state Zim ¼
k1; k2f g at each marker m is an unordered pair of haplo-

types k1; k2 in the reference panel from which two alleles of

SGi receive the copies, and therefore the number of hidden

states is quadratic in the number of the haplotypes in R.

Posterior probabilities of untyped or missing genotypes

SGim are computed via the forward–backward algorithm

and are estimated in a sampling process, and computation

grows linearly in the number of markers and quadratically

in the number of haplotypes [36].

MaCH [37] further extends Impute 1’s discrete-valued

HMM model to the usage of unphased genotypes of DG for

the reference panel R. Phasing of DG is obtained through a

Monte Carlo Gibbs sampling procedure P DGijDG�i; q; kð Þ;
and only a few rounds of updates are needed to obtain

accurate consensus haplotype templates [37]. The detailed

path-sampling procedure of the HMM can be found in

Appendix B of Scheet and Stephens [17]. The phasing

procedure takes O N3ð Þ if all individuals in DG are used

since each update needs to sample a path from OðN2Þ
hidden states and the number of updates grows linearly in

N. The cubic running time for phasing becomes an issue

when thousands of individuals are present in DG. To make

MaCH scalable to a large number of individuals in DG, Li

et al. [37] suggested using a randomly selected subset of

DG for sampling phases of DGi at a small cost of accuracy.

Howie et al. [38] proposed a two-step strategy named

‘‘minimac 2’’ that relies on MaCH for estimating haplo-

types for target samples in a pre-phasing step, which can

handle large reference panels of tens of thousands of

individuals. In the second step, minimac 2 then imputes

them using a selected set of reference haplotypes.

Impute 2 [13, 35] is considered as a major improvement

over Impute 1 and is flexible with either ‘‘phased’’ or

‘‘unphased’’ reference panels. The major contribution of

Impute 2 is a general strategy for HMM-based genotype

imputation: first to resolve phasing in DG and SG, then to

impute alleles in haplotypes of SG. Computation is allo-

cated more to the phasing step, as the accuracy of phased

haplotype is key in obtaining accurate imputed alleles in U
of SG. Impute 2 adopts MaCH’s ‘‘Markov chain Monte

Carlo’’ sampling strategy for phasing with modifications in

each iteration as follows:

• it initializes a set of haplotypes that are consistent with

each individual of DG and SG, respectively;

• it iteratively updates phasing in DGi conditional on

k‘‘closest’’ haplotypes to obtain DHi from

PðDGijDH�i; q; kÞ;
• it iteratively updates phasing in SGi at typed markers T

conditional on current ‘‘phased’’ DH and current guess

of the rest of individuals from

PðSGT
i jSHT

�i;DH
T [U ; q; kÞ;

• it imputes two alleles at U untyped markers for SHi;1

and SHi;2 from PðSHi;djDH; q; kÞ via the forward–

backward algorithm, where SHi;1 and SHi;2 are the two

phased haplotypes that make up SGi.

Unlike MaCH, the phasing routine in Impute 2 is con-

ditional on k closest haplotypes, which are determined by

hamming distance to the current individual, and computa-

tion burden of phasing grows quadratically with k closest

neighbours O k2Nð Þ and increases linearly in the number of

markers O Lð Þ. As phasing is resolved in the preceding step,

imputation step becomes haploid imputation, and compu-

tation is linear in the number of individuals in DG and the

number of markers L.

Continuous Local Cluster-Based HMM Models—

fastPHASE and Bimbam

fastPHASE [17] is another HMM-based method that can

estimate phasing and impute sporadic missing genotypes.

The model is based upon the observation that haplotypes

over tightly linked regions tend to cluster into groups of

similar patterns [17]. Each unobserved cluster can be

viewed as a common haplotype from which underlying

haplotype of genotype data originates. The transition

probabilities in the HMM are modelled as a Markov jump

process related to recombination events independent of the

current state; however, the emission probabilities are no

longer dependent on the mutation rate but modelled with

regard to the real-valued ‘‘allele frequencies’’ of each

cluster. The total number of clusters K is a parameter

specified by users. The relative frequencies of clusters akm
are initialized to be drawn from a Dirichlet prior distribu-

tion, and hkm are initialized to be drawn from uniform

distribution on [0.01, 0.99]. We regard the underpinning
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HMM of fastPHASE as continuous in that at every marker

m, each cluster is associated with a real-valued ‘‘relative

frequency’’ akm and a real-valued ‘‘allele frequency’’ hkm of

allele 1 with the constraints
PK

k¼1 akm ¼ 1 and

hkm 2 0:01; 0:99½ �. Structure 2.0 [39], a software developed

for inference of population structure, shares similarity to

fastPHASE’s local cluster HMM model, assuming that

each cluster represents a sub-population, and using com-

putationally expensive Markov chain Monte Carlo sam-

pling for parameter estimations.

Unlike its predecessors that employ MCMC for phasing

and imputation, fastPHASE speeds up the process of esti-

mating parameters via a maximum likelihood (ML)

approach. An ‘‘expectation–maximization’’ (EM) algo-

rithm is employed for finding ML estimates of all param-

eters. It should be noted that Kimmel and Shamir [40]

formalized a similar HMM model (‘‘HINT’’) for disease

association studies and proved that the genotype opti-

mization problem is neither convex nor concave, and their

exact form of maximization for updating hkm does not exist.

In HINT, Kimmel and Shamir [40] proposed to update hkm
via a grid search in the neighbourhoods of 0 and 1 at the

maximization step of the EM. In fastPHASE, Scheet and

Stephens gave a formula for approximating maximal hkm,
which updates the current value of hkm with the value in the

preceding step of the maximization step. To obtain better

parameter estimates, authors suggested setting K ¼ 20,

running EM multiple times and taking the average of

estimates to overcome local maxima issues. The compu-

tational time is in O n � L � K2ð Þ; which increases linearly in

the number of individuals n in the dataset and number of

markers L and quadratically in the number of clusters K.

Missing genotypes are imputed by choosing the value that

maximizes PðGija; h; qÞ.
The model was not originally designed for imputation

with reference panels, and special care must be taken to

ensure the maximum likelihood approach does not yield

higher error rate [10, 16]. When applying fastPHASE for

imputation with a reference panel DG, Guan and Stephens

[16] suggested using parameter estimates obtained from

maximizing the likelihood for DG only, PðDGja; h; qÞ,
rather than the full likelihood function PðDG; SGja; h; qÞ as
they believed inclusion of SG in the model fit for parameter

estimation would reduce the number of clusters available to

model DG.

The idea of fastPHASE has been incorporated into

Bimbam [16, 18], a software for Bayesian imputation-

based association mapping. Guan [41] extended fas-

tPHASE’s idea into a two-layered HMM for inference of

population structure and local ancestry, and proposed an

alternative to approximating and updating hkm in EM by

solving a linear system at the cost of OðK3Þ.

Blimp

Following the arguments by Guan and Stephens [16] on

fitting the cluster-based HMM to only DG for estimating

parameters and looking into the EM step, if we treat

homozygous genotypes as known alleles and heterozygous

genotypes as missing allele, we can further simplify the

genotype-based Bimbam [16], derive EM updates for the

haplotype-based Bimbam (all clusters collapse into iden-

tical ones) and obtain a much simplified linear model.

Update for hkm is only dependent on the frequencies of

typed alleles—the summary level data mentioned by Wen

and Stephens [19]. Wen and Stephens [19] developed a

linear model called ‘‘BLIMP’’ based on Kriging by incor-

poration of recombination rate between two loci in the

linear model. BLIMP requires as input a genetic map for

information of recombination rates and is capable of not

only untyped SNP loci frequency inference but individual

level imputation as well. Imputation accuracy with BLIMP

that uses summary data was comparable to that obtained

from the current best available method Impute 2 [19].

Beagle 3.3.2 and Beagle 4.1

Beagle 3.3.2 is based on a flexible ‘‘localized haplotype-

cluster’’ model [42] that groups locally similar haplotypes

into clusters [15]. It is capable of imputing untyped

genotypes, phasing haplotypes and handling multi-allelic

markers. It allows users to incorporate the pedigree infor-

mation as an option, and supports family-based genotype

imputation. The underlying model of Beagle is an HMM

that does not explicitly model recombination and mutation

events, but adapts to data for local clusters at each marker

and transitions [15]. The HMM of Beagle is a directed

acyclic graph that has variable number of hidden states at

each marker, representing local clusters as nodes. Each

cluster only emits one possible allele. Also, Beagle allows

at most two transitions coming out of each cluster. Com-

pared to the HMMs based on the ‘‘PAC’’ model, which has

the fixed number of hidden states at each marker, Beagle

has fewer hidden states (clusters) and transitions, which

speeds up computations. Beagle achieves fewer number of

hidden states (clusters) and transition through a pruning

procedure. The pruning procedure detects the length of

IBD segments shared among individuals by examining

haplotype frequencies at each node. Nodes at each level of

Beagle’s graph that are IBD are merged and combined. The

other notable difference between Beagle’s model and the

‘‘PAC’’ model lies in how they use haplotype information

among individuals. Unlike Bimbam that only uses infor-

mation from reference dataset in the model fit, Beagle 3.3.2

pools observed haplotypes from all individuals at each
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marker. The algorithm starts with randomly phasing

genotypes and imputing missing values of individuals. An

iterative EM-style update is repeated in subsequent steps

for re-estimating phases and re-inferring missing values

from current sampling of phasing information.

Browning and Browning [43] further improved the IBD

detection algorithm (termed ‘‘Refined IBD’’) in Beagle in a

two-step manner. In the first step, a linear time algorithm

‘‘GERMLINE’’ by Gusev et al. [34] is used to find can-

didate sharing IBD segments. In the second step, Beagle

uses a probabilistic approach to refine the candidate IBD

segment to get consensus haplotypes. Such changes have

been reflected in the latest version (4.0) of Beagle.

O’Connell et al. [44] reported in their studies that the

phasing results from Beagle 3.3.2 tended to have a much

larger number of switch errors than SHAPEIT [45].

FImpute

FImpute [32] is an efficient, rule-based, and deterministic

method for phasing and genotype imputation inspired by

‘‘long range phasing’’ [33]. Kong et al. [33] reasoned that

the length of shared haplotypes reflects the degree of

relatedness between two individuals. The closer two indi-

viduals are, the longer their shared haplotype is [32]. The

algorithm first resolves phasing for homozygous genotypes

of each individual, treats heterozygous genotypes as

missing or wild card, and gradually builds up a library of

haplotypes with frequencies. Next, the algorithm iteratively

looks for perfect or near perfect ([99%) matches at cur-

rently phased markers using an ‘‘overlapping sliding win-

dows’’ from the maximum length of whole genome to the

minimum of 2 SNPs, i.e., from close relatives to distant

relatives. If a match is found, FImpute infers phasing for

heterozygous genotypes, merges similar haplotypes in the

library and updates their frequencies accordingly. If more

than one match is found, FImpute uses match with higher

frequencies for imputation and phasing. It imputes the

remaining genotypes by random sampling of alleles based

on observed frequencies. If additional pedigree information

is provided, FImpute starts with family-based imputation,

and then performs population-based imputation.

Materials and Methods

Genotypes and Phenotypic Records

A total of 1800 animals were used in this study, from a

large pool of 11,414 beef cattle genotyped on the Illumina

BovineSNP50 BeadChip (Illumina 50K) collated from

various projects and research herds across Canada includ-

ing a purebred Angus, a purebred Charolais, a composite

population sired by Angus, Charolais, or hybrid bulls from

the University of Alberta’s Roy Berg Kinsella Research

Ranch (Kinsella), a population of multibreed and crossbred

cattle mainly Angus with proportions of Simmental,

Piedmontese, Gelbvieh, Charolais, and Limousin from the

University of Guelph’s Elora Beef Cattle Research Station

(Elora), a population of animals whose sire breeds were

Angus, Charolais, Gelbveih and commercial crossbred

from the the Phenomic Gap Project (PG1), and a TX/TXX

commercial population that is heavily influenced by

Charolais with infusion of Holstein, Maine Anjou and

Chianina [46]. Quality controls (QC) were performed

considering merged samples of all breeds simultaneously

to filter out SNPs for the merged dataset of 11,414 animals

if one of the following holds: SNP (1) with minor allele

frequency (MAF)\ 0.01 (2) call rate \0.90 and (3)

heterozygosity excess [0.15 [46]. A selected group of

animals from the most influential beef cattle breeds and

crossbred populations genotyped with both Illumina 50K

and Affymetrix HD were used to further remove SNPs with

conflicting alleles between the two panels because there are

some genotyping discrepancies due to the design of the two

genotyping chips. Exclusion of SNPs with missing or

duplicated coordinates and SNPs on sex chromosomes

resulted in 33,911 remaining SNPs with known physical

positions on 29 autosomes for the Illumina 50K panel.

Among the 33,911 SNPs, we identified 5088 SNPs shared

with the Illumina BovineLD Genotyping BeadChip (Illu-

mina 6K). The physical map of the bovine genome used in

this work was the UMD 3.1 assembly. From each of the six

populations, 300 animals were randomly selected for our

study. We refer to Kinsella, Elora, PG1 and TX/TXX as

crossbred populations. All animals in this study are taurine

breeds.

The phenotypic trait we considered in this study is

residual feed intake (RFI), which is a measure of feed

efficiency and is defined as the difference between an

animal’s actual daily feed intake and expected daily feed

intake required for maintenance of body weight and

growth, proposed by Koch et al. [47]. Values of RFI for all

1800 genotyped animals in the Illumina 50K panel were

adjusted for contemporary groups including herd-year-sex,

age at feedlot test and breed composition. The animal

populations and traits are described in Basarab et al. [48],

Chen et al. [49] and Lu et al. [46].

Scenario

Six imputation methods were investigated in this study,

including Impute 2, FImpute 2.2, Beagle 4.1, Beagle 3.3.2,

MaCH 1.0 and Bimbam 1.0. The imputation task was to

impute genotypes from the Illumina 6K panel to the
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Illumina 50K panel. Fivefold cross validation (CV) was

performed by randomly partitioning animals in each pop-

ulation into five non-overlapping groups. Each group

consisted of 60 animals from each population, in total 360

across six populations. We simulated a low-density study

sample by masking SNPs that belong to the 50K but not the

6K. About 15% (5088/33,911) of SNPs in a study sample

were typed. In turn, each group was used as a study sample

in the Illumina 6K, while the rest of the four groups formed

the reference set of Illumina 50K genotypes. That is, in

each round of fivefold CV, imputation was carried out for

low-density target samples across six populations using a

single reference panel composed of the 1440 animals

across six populations. The partition of the dataset was

used for both imputation and subsequent genomic

predictions.

We used two genomic prediction methods including an

efficient GBLUP with a genomic relationship matrix G

[50] and a Bayesian method (BayesB), together with

imputed 50K genotypes from different methods and asso-

ciated phenotypic values to predict the genomic breeding

values (GEBVs) in fivefold cross validation. In each round,

actual 50K genotypes and associated adjusted RFI for

animals in the reference panel were fit in the model as the

training data, whereas a dataset containing imputed 50K

genotypes was held for validation, assuming unknown

phenotypic values. Additionally, we predicted the GEBV

using BayesB and GBLUP based on actual 50K and 6K

genotypes for comparisons.

Genomic Predictions Using BayesB and GBLUP

This section describes a Bayesian method (BayesB) and a

genomic best linear unbiased prediction (GBLUP) method,

both of which use information from a SNP dataset Xn�L

containing genotypes for n animals over L SNP loci. Each

element Xij in X represents animal i’s genotype coded as

-1, 0 and 1 for the homozygote ‘‘AA’’, the heterozygote

‘‘AB’’, and the other homozygote ‘‘BB’’, respectively,

assuming that two alleles at the jth locus are ‘‘A’’ and ‘‘B’’.

The BayesB model proposed by Meuwissen et al. [8] fits

all SNP effects simultaneously and assumes the following

linear model.

yi ¼ lþ
XL

j¼1

bj � Xij þ ei; i ¼ 1; . . .; n;

where yi is the adjusted RFI for animal i in the training

population, l is the overall mean, bj is the regression

coefficient (allele substitution effect) on the jth SNP, Xij is

the jth SNP genotype of animal i defined above, and ei is

the random residual effect for animal i, which is drawn

from a normal distribution Nð0; r2e) and variance r2e is

drawn from a scaled inverse v2 distribution with the

degrees of freedom me set to 10 and the scale parameter S2e

set to
r̂2e me�2ð Þ

me
, with r̂2e being the estimated random residual

effect variance. The regression coefficient bj has proba-

bility p to be exactly 0 (indicating no effect for the marker),

denoted as dð0Þ, and probability (1� pÞ to be drawn from

the normal distribution Nð0; r2j Þ. That is, a mixture of a

normal distribution and point mass at zero was used in the

BayesB for bj as shown below.

bjjr2j � pd 0ð Þ þ 1� pð ÞN 0; r2j

� �
;

where p is our prior belief of the proportion of SNP that has

no effects on the trait. In this study, the value of p was set

to 0.99 under all scenarios, and the locus specific variance

r2j is the unknown and is estimated from the data. Again,

the prior for r2j is assumed to be from a scaled v2 distri-

bution with the degrees of freedom set mj to 4 and the scale

S2j set to mj � 2
� �

r̂2a

.
mjð1� pÞ

PL
j¼1 2pjð1� pjÞ

h i
; where

r̂2a is the additive genetic variance component calculated by

the phenotypic variance (after adjustment for fixed effects)

on the training data, multiplied by heritability h2, and pj
and ð1� pjÞ are the two allele frequencies at SNP j. In this

study, heritability h2 ¼ 0:25 was used under all scenarios.

The unknowns including the regression coefficient bj and

its associated locus-specific variance r2j were estimated via

a Markov chain Monte Carlo (MCMC) sampler. An

implementation of the BayesB method by Fernando and

Garrick [51], known as ‘‘Gensel’’, was used in this study.

Since Gensel requires no missing values in the Genotypic

data Xn�L, Impute 2 with the option ‘‘–phase’’ was used to

infer the small percentage (0.36%) of sporadic missing

genotypes. In all experiments, we set the total number of

iterations running the MCMC sampling to 150,000 itera-

tions and discarded first 20,000 as burn-in. We examined

Gensel’s output file ‘mcmcSample’ for trace plots of the

residual variance in all experiments (results not shown) and

confirmed all the chains had good mixings for the chosen

chain length and burn-ins [7]. SNP effects were estimated

by averaging all the samples after the burn-in period. The

GEBV for animal i in the validation population was then

predicted by adding up SNP effects over all loci:

GEBVi ¼
PL

j¼1 b̂jXij, where L is the total number of SNPs,

and b̂j is the estimated effect for marker j.

The GBLUP method [50] assumes a linear model that

uses a genomic relationship matrix G derived from the SNP

dataset Xn�L for estimating GEBVs. The linear model can

be written as
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y ¼ 1lþ Zaþ e,

where y is the vector of adjusted RFI, and adjusted RFI was

assumed unknown for animals in the validation population.

l is the overall mean, a is the vector of breeding values, Z

is the incidence matrix relating a to y, and e is the vector of

random residuals. G measures genomic similarity between

each pair of individuals based on SNPs genotypes and

allele frequencies. Let p 2 Rm be a vector whose ith

component (denoted pi) is the frequency of allele ‘‘A’’ at

locus i. Define P ¼ 1n�1p
0 to be the matrix of allele fre-

quencies with n identical rows. Next, define

Z ¼ X � 2Pþ 1n1
0
m. Then, the genomic relationship

matrix can be obtained via

G ¼ ZZ0

2
Pm

i¼1 pið1� piÞ
:

GEBV are obtained by solving the following set of

equations [52–54].

â ¼ G Gþ Rð Þ�1 y� 1l̂ð Þ;

where R is a diagonal matrix with entries Rii ¼ 1
h2
� 1, and

h2 is the heritability and is set to 0.25. The genomic rela-

tionship matrix G was efficiently computed using Colleau’s

indirect method [55]. We used an implementation of

GBLUP by Sargolzaei et al. [53] in the software ‘‘GEBV’’

to estimate GEBV for animals in the validation population.

Evaluation

To assess the qualities of imputed genotypes among vari-

ous methods, a validation dataset is usually held with

actual SNP genotypes assayed and by comparing the

imputed genotypes against the actual ones one can get

concordance rate (CR, aka accuracy), which is defined as

proportion of imputed genotypes and actual ones at all

untyped SNP loci. However, as Hickey et al. [21, 56]

pointed out, CRs are allele frequency dependent and do not

reflect the power of any imputation method to infer rare

allele variants with MAF less than 1%. Additionally, Calus

et al. [28] demonstrated that use of Pearson correlation

coefficient between true and imputed genotypes is pre-

ferred to CR because it is more sensitive to errors at loci

with lower MAF. Alternatively, the squared Pearson cor-

relation coefficient (r2) between the best guess (dosage) of

genotypes and the actual genotypes can be used for

imputation accuracy [13]. The closer to one r2 is the more

power to detect an imputation method exhibits. We fol-

lowed the notion of Howie et al. [13] by assigning unde-

fined r2 to 0 when imputation methods yielded all identical

predictions for all individuals at a marker. For programs

(e.g. Impute 2) that report only marginal posterior

probabilities P G ¼ xð Þ; the best guess genotype (or impu-

ted allele dosage) can be computed as
P2

x¼0 x � PðG ¼ xÞ.
The accuracy of the genomic prediction for RFI in the

validation population was calculated as Pearson’s correla-

tion coefficient between the estimated GEBVs using either

GBLUP or BayesB and the adjusted phenotypic values of

RFI.

Program Settings

We performed all the experiments on a local computational

cluster consisting of 15 identical nodes with dual quad-core

64-bit CPUs run at 2.0 GHz and shared 8 GB memory. We

ran all the programs using their population-based config-

urations without any pedigree information in the model fit.

For Impute 2.3.1, we followed its example commands

under the scenario ‘‘imputation with one unphased refer-

ence panel’’, set the effective population size Ne to 150 for

cattle populations, calculated the recombination rates

between two consecutive loci using the Haldane [57]

recombination model by assuming that 1 million base pair

approximately corresponded to 1 Morgan and used the

default total MCMC iterations 30. For FImpute 2, we

adopted its default settings for population imputation. For

Beagle 4.1 (‘‘09Nov15.d2a.jar’’) and Beagle 3.3.2, the

default numbers of iterations 15 and 10 were used in the

study, respectively. For MaCH 1.0, we first used MaCH’s

haplotyping option to phase genotypes in the reference

panel with two input files (a MERLIN formatted data file

followed by the option ‘‘–d’’ and a pedigree file followed

by the option ‘‘–p’’) and the flags ‘‘–phase’’ and ‘‘–states

200’’. It took 14 h and 18 min on average for phasing the

reference panel per fold. We did not provide with MaCH

any map file in the all experiments. After completion of

phasing unphased reference data, we used MaCH for

imputing the study samples without any genetic map. For

BimBam 1.0, we set the number of clusters ‘‘-c’’ to 15, and

provided inputs as 1) a physical positions at each marker in

each chromosome, 2) two unphased genotype files (one for

the reference dataset and the other for the study sample), 3)

default number of EM runs (‘‘-e 10’’), and 5) the default

steps of each EM run ‘‘-s 1’’ of 4) the number of warm-up

EM step runs (‘‘-w 20’’).

Results

Accuracy of Genotype Imputation

Table 1 shows a huge variation among different methods in

accuracies of imputation when a reference panel containing

animals from all six populations was used. The overall
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mean CR and mean allelic r2 were the highest when Impute

2 was used for imputation, followed by FImpute 2 and

Beagle 4.1 both of which yielded above 91% mean CR and

above 66% mean allelic r2. Beagle 3.3.2 yielded a mean

CR 87.38% and a mean allelic r2 0.5556. MaCH 1.0 and

Bimbam 1.0 gave mean CRs 80.21% and 71.72%,

respectively, and mean allelic r2 0.4180 and 0.2506,

respectively.

In terms of speed, as shown in Table 1, FImpute 2.2 was

the fastest program yet achieved competitive imputation

accuracies in terms of CR and allelic r2 to the currently

best performing program Impute 2. FImpute 2.2 finished

the whole-genome imputation only at a fraction of the

latter’s run time. Impute 2 was able to complete whole-

genome imputation within a day for 360 animals. Beagle

4.1 had a great improvement over Beagle 3.3.2 in terms of

imputation accuracies but had the longest running time of

191 h. Impute 2 overcame the quadratic running time with

the number of animals by heuristically searching the

closest reference haplotypes (defined by humming dis-

tances) [13]. However, the model-based imputation meth-

ods such as Impute 2 and Beagle 4.1 both suffer scalability

issue once we would like to impute from genotype chips up

to the full sequence level.

In Table 2, each method performed well with pure breed

populations Angus and Charolais and the crossbred popu-

lation Kinsella. Each method achieved the highest mean

CRs with Angus, followed by Charolais and Kinsella. Due

to differences in their breeding programs, crossbred pop-

ulations Elora, PG1 and TX/TXX exhibit high levels of

genomic divergence in their population structure as evi-

denced by the number of genotypes that carry the minor

allele in each class of MAF and as measured by principal

components in Fig. 1. Impute v2 clearly outperformed all

other methods in both mean CR and mean allelic r2 for the

two purebred and four crossbred populations.

Effect of Minor Allele Frequency (MAF)

on Accuracy of Genotype Imputation

We are also interested in the accuracy of each method for

imputing genotypes that carry uncommon or rare variants

as much of the causation is due to rare variants [58]. We

evaluated imputation methods for their CRs on genotypes

‘‘AB’’ and ‘‘BB’’ carrying the minor allele ‘‘B’’ at each

locus. To investigate the association between MAF and the

accuracy of imputation among different methods, we

classified the untyped markers into the following six clas-

ses according to MAF, (0, 1%), [1%, 2%], [2%, 5%], [5%,

10%], [10%, 20%] and [20%, 50%]. Figure 2a–f shows the

relationship between MAF and CRs of genotypes ‘‘AB’’

and ‘‘BB’’ for different methods. As MAF increased, CRs

of all methods for imputing genotypes ‘‘AB’’ and ‘‘BB’’

increased. The trends of imputation accuracy with MAF

classes were consistent with reports from other studies in

maize populations [56] and whole-genome sequencing

Holstein–Friesian cattle [59]. Greater differences among

different methods were observed across variant MAF

classes in the CRs of genotypes ‘‘AB’’ and ‘‘BB’’. FImpute

2.2 outperformed Impute v2 for extremely rare variants

[MAF class (0, 1%)] across both pure and crossbred pop-

ulations. For rare variants in MAF class [1%, 2%] and [2%,

5%], Impute v2 outperformed FImpute in purebred

Table 1 Accuracy of genotype imputation from Illumina 6K to

Illumina 50K for different methods

Program Mean CR (%) Mean r2 Running time

Impute 2 93.95 0.7545 22 h 7 min 41 s

FImpute 2.2 91.88 0.6626 4 min 12 s

Beagle 4.1 91.70 0.6655 191 h 6 min 5 s

Beagle 3.3.2 87.38 0.5556 31 h 22 min

MaCH 1.0 80.21 0.4180 16 h 53 min 46 sa

Bimbam 1.0 71.72 0.2506 3 h 15 min 50 s

a Additional 14 h 18 min 14 s for pre-phasing the unphased animals

in the reference panel for MaCH 1.0

Table 2 Accuracy of genotype imputation from Illumina 6K to

Illumina 50K for different methods and different populations

Population Impute 2 FImpute 2.2 Beagle 4.1

CR r2 CR r2 CR r2

Angus 97.75 0.7557 96.47 0.7065 96.74 0.7152

Charolais 95.84 0.7523 93.57 0.6616 93.00 0.6526

Kinsella 95.93 0.8458 94.84 0.7875 94.51 0.7827

Elora 91.01 0.747 88.21 0.6151 87.68 0.6091

PG1 92.12 0.7738 89.64 0.6595 89.87 0.6722

TX/TXX 91.08 0.7319 88.55 0.6132 88.39 0.6167

All 93.95 0.7545 91.88 0.6626 91.70 0.6655

Population Beagle 3.3.2 MaCH Bimbam

CR r2 CR r2 CR r2

Angus 94.69 0.6585 87.64 0.5288 77.89 0.3509

Charolais 87.89 0.5207 78.13 0.3259 68.39 0.1543

Kinsella 90.85 0.6787 83.16 0.5105 72.18 0.2895

Elora 82.15 0.4685 76.42 0.354 71.07 0.2518

PG1 85.36 0.553 78.98 0.4178 72.17 0.2960

TX/TXX 83.48 0.4962 76.95 0.3645 68.64 0.2068

All 87.38 0.5556 80.21 0.418 71.72 0.2506
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populations Angus and Charolais, but did worse than

FImpute in crossbred populations Kinsella, Elora, PG1 and

TX/TXX. Impute v2 had advantages over FImpute 2.2 for

MAF greater 10%. The success of FImpute 2.2 was pos-

sibly due to their rule-based strategy for keeping haplo-

types anchoring the rare allele in their update library. On

the other hand, model-based Impute v2 may ignore rare

variants as mutations or errors when MAF was small.

Beagle 4.1 and Beagle 3.3.2 performed worse than FImpute

2.2 and Impute 2 in each MAF class and were in the second

tier. Beagle 4.1 outperformed Beagle 3.3.2 in each MAF

class. MaCH did not yield comparable CRs in that we did

not supply with the program an accurate haplotype refer-

ence. Although we applied MaCH’s own phasing options

in the first step for the reference data, no genetic map was

added and MaCH seemed to have difficulty in modelling

the recombination and resolving phasing for the reference

genotype data. Inaccurate haplotype data would have a

significant impact on the subsequent genotype imputation

process for MaCH as we observed in Fig. 2e. A possible

explanation for Bimbam’s poor performance in imputation

would be its over-generalization of the reference panel and

its MLE for parameter inference. Bimbam was not

designed for dealing with admixed populations and

assumed that the reference data can be generalized through

an MLE estimation with a local-clustered HMM. When the

admixed population contained several breeds with distinct

patterns of co-ancestry, the small number of clusters could

result in MLE stuck in the local maxima as the distribution

of the admixed data is likely to be multimodal.

The distribution of genotypes ‘‘AB’’ and ‘‘BB’’ in each

MAF class for different populations in Table 3 clearly

shows crossbred populations Kinsella, Elora, PG1 and TX/

TXX in general contained more genetic variants than

purebred populations Angus and Charolais. We can see

from Table 3 the total number of variants was the fewest

with Angus. Even though CRs of genotypes ‘‘AB’’ and

‘‘BB’’ were poorest for Angus with the MAF class (0, 1%),

the number of such rare variants was extremely small and

all methods were capable of imputing well for all MAF

classes with Angus.

Accuracy of Genomic Predictions Using Actual 50K

and Imputed 50K

We investigated two strategies of constructing training and

validation datasets for genomic prediction. Across-breed

training and validation datasets were constructed using

animals across all six populations, whereas within-breed

training and validations were constructed using animals of

the same breed. That is, in the case of genomic predictions,

in each round of fivefold CV, the across-breed training

dataset of actual 50K genotypes corresponded to our ref-

erence panel of 1440 animals across six populations,

whereas the within-breed training dataset was composed of

only 240 animals of the same breed as the within-breed

validation dataset.

In Table 4, columns with ‘‘actual 50K’’ and ‘‘actual 6K’’

show the genomic prediction results using actual 50K and

actual 6K datasets as both training and validation datasets.
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obtained from 50K genotype
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Columns that have imputation methods-50K as titles report

prediction accuracies when using imputed 50K of the

imputation method as validation datasets. A slight increase

in r or genomic prediction accuracy was observed for

Angus, Charolais, Elora and TX/TXX via either BayesB or

GBLUP when actual 50K training and validation datasets

were compared with the actual 6K ones for the across-

breed genomic prediction. However, there were no signif-

icant differences observed in correlation coefficients

between the actual 50K and the actual 6K datasets for both

BayesB and GBLUP methods when the standard errors are

considered.

In comparison of genomic prediction accuracies of 50K

to that of imputed 50K for across-breed genomic
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prediction, imputed 50K genomic prediction results from

all the imputation methods except for Bimbam gave

comparable accuracies r to the actual 50K results using

both GBLUP and BayesB. For purebred Charolais, the

most accurate mean r were 0.24 using BayesB on imputed

50K via MaCH, although the mean CR of MaCH was only

78.13%, 0.23 using BayesB on imputed 50K via FImpute,

0.22 using GBLUP on imputed 50K via FImpute, 0.22

using BayesB on imputed 50K via Impute 2 and 0.22 using

BayesB on actual 50K genotypes. With Charolais on either

imputed or actual 50K panels, BayesB gave slightly better

or similar accuracies than GBLUP, although the advantage

was not statistically significant. With Angus on either

imputed or actual 50K panels, GBLUP tended to give

higher accuracies than BayesB, and again the small

advantage was not significant. While in crossbred cattle

populations Kinsella, Elora, PG1, TX/TXX, the most

accurate mean r was 0.19 using BayesB on imputed 50K
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TX/TXX from Beagle 3.3.2 and actual 50K. Bimbam

imputed 50K yielded slightly lower prediction accuracies

in comparison to that of actual 50K for purebred Angus and

Charolais. For across-breed genomic prediction based on

either actual 50K or imputed 50K SNPs, BayesB and

GBLUP had similar prediction accuracies for all the breed/

populations except for PG1, for which BayesB yielded

significantly higher prediction accuracies than that of

GBLUP.

Within-breed accuracies of GEBV predictions for RFI

using BayesB and GBLUP in all six populations are pre-

sented in Table 5. Similarly, genomic prediction accuracies

of actual 50K, actual 6K and imputed 50K are comparable.

Unlike across-breed genomic prediction, Bimbam imputed

50K of within-breed genomic prediction had similar pre-

diction accuracies to that of actual 50K. Moreover, within-

breed GBLUP improved accuracies using either imputed

50K or actual 50K/6K for crossbred population PG1.
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However, GBLUP still yielded slightly lower prediction

accuracies for Charolais than that of BayesB using either

actual 50K, actual 6K and imputed 50K of various meth-

ods, while for breeds including Angus, Kinsella, Elora,

PG1, and TX/TXX, GBLUP and BayesB had comparable

genomic prediction accuracy for the trait.

In comparison to the results of across-breed genomic

predictions, the within-breed genomic prediction yielded

relatively better accuracies for purebred Angus under

BayesB and for crossbred PG1 under GBLUP. For both

across and within-breed genomic predictions based on

either actual 50K, actual 6K and imputed 50K SNPs,

purebred populations (Angus and Charolais) had relatively

higher prediction accuracies than that of crossbred popu-

lations Kinsella, Elora, PG1, TX/TXX.

Discussion

Factors that affect the accuracy of imputation from previous

studies include the number of genotyped immediate ances-

tors, the size of the reference panel, the linkage disequilib-

rium between typed and untyped SNPs, the composition of

the reference panel, the relationship of individuals between

the study sample and reference population and minor allele

frequencies [10, 26, 28, 56, 60, 61, 62, 63]. Bouwman and

Veerkamp [60] showed that combining animals of multiple

breeds was preferred to a small reference panel comprised of

animals of the same breed for imputation from high-density

SNP panels to whole-genome sequence, especially for low

MAF loci. In our study, we adopted this strategy to construct

reference panels with animals across six populations. Since

rare alleles might be under-represented in a single popula-

tion, as shown in Table 3 under the column ‘‘(0, 1%)’’ for

Angus for example, and FImpute relies on observed alleles to

build up its haplotype library, haplotypes carrying the rare

variants can be borrowed from other breeds or populations.

As we move from low MAF to high MAF, the accuracy of

imputation for genotypes that carry the minor allele

improves for all methods as shown in Fig. 2a–f, because

imputation methods have higher confidence in imputing

untyped genotypes at higher MAF loci.

Genotype imputation methods such as fastPHASE and

Bimbam that adopt maximum likelihood estimation (MLE)

yielded poor accuracies of imputation likely due to their

model-based estimation of the admixed population struc-

ture of our genotype data. Compared to Beagle 3.3.2’s

haplotype frequency based model, which builds up clusters

based on the current estimates of haplotypes, fastPHASE

and Bimbam derive clusters from the generalization of

data. With fastPHASE and Bimbam, two haplotypes with

two distinct alleles at the current locus could end up in the

same cluster, whereas with Beagle 3.3.2, they are guaran-

teed to be in different clusters [25]. Therefore, at low-MAF

loci, fastPHASE and Bimbam tend to cluster the rare allele

and the major allele into the same cluster and mistake

heterozygous genotypes carrying the rare allele as

homozygous genotypes carrying the major allele [35], as

evidenced in Fig. 2f where Bimbam did not make any

correct predictions for genotypes carrying rare alleles

(MAF\ 1%). Figure 1 shows plot of the principal com-

ponent analysis (PCA) using the top two principal com-

ponents (PCs). It has long been known that the MLEs of

finite mixtures can lead to local maxima [64, 65]. Both

fastPHASE and Bimbam rely on estimation of clusters in

their model settings via the MLE. Recently, Feller et al.

[66] examined pathological behaviours of the MLEs via a

mixture of two normal distributions and showed the MLEs

can wrongly estimate the component means to be equal

when the mixture components are weakly separated and

convergence of the parameters in the MLE setting some-

times can break down.

Previous studies on Holstein dairy cattle for imputation

from 6K to 50K show an overall CR over 93% with Beagle

3.1.0 [67], over 97% with Fimpute [7], over 98% with

Fimpute [68]; from 6K to 50K, our findings with several

purebred/crossbred beef populations (overall mean CR

91.88% with FImpute) were similar to the ones from beef

Table 3 Distribution of the

number of genotypes (AB and

BB) that carry the minor allele

‘‘B’’ among minor allele

frequency classes in different

populations

Population MAF class

(0, 1%) [1%, 2%] [2%, 5%] [5%, 10%] [10%, 20%] [20%, 50%] All

Angus 40 1429 21,000 103,384 490,788 2,792,475 3,409,116

Charolais 226 4489 37,597 135,664 539,437 2,742,995 3,460,408

Kinsella 306 4190 38,420 134,292 533,583 2,806,099 3,516,890

Elora 444 3903 34,136 127,569 535,479 2,822,135 3,523,666

PG1 661 5066 40,973 137,047 542,973 2,834,610 3,561,330

TX/TXX 679 6402 49,277 150,388 559,059 2,798,682 3,564,487

All 2356 25,479 22,1403 788,344 3,201,319 16,796,996 21,035,897
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cattle reported by Piccoli et al. [69], Ventura et al. [70], and

Chud et al. [71]. Accuracies of imputation were in general

higher in Holstein dairy breeds than in beef breeds based

on previous reports and our studies as levels of LD were

higher in Holstein dairy breeds than in beef breeds as

Holsteins have a relatively small effective population size

[72]. The design of the Illumina 6K chip is another factor

that results in different accuracies of imputation in various

breeds and populations [71]. The SNPs on this panel were

selected to provide optimized imputation in dairy breeds

[1] and thus lower performance in beef breeds is expected,

as is lower performance in indicine breeds relative to tau-

rine breeds.

We observed in this study that the accuracies of geno-

mic prediction of RFI are not sensitive to imputation errors

in general when the 6K SNPs were imputed to the 50K

SNPs except for the Bimbam method, which yields lower

genomic predict accuracies in across-breed genomic pre-

diction. Also, genomic predictions based on actual 6K

SNPs resulted in similar accuracies to that of actual 50K

SNPs. However, in within-breed genomic prediction,

Bimbam imputed 50K achieved comparable genomic pre-

dictions to that of the actual 50K. Our results are in line

with reports by Li et al. [73] where a larger number of beef

cattle (over 5000) from the same data pool as ours were

used for evaluation of accuracy of genomic prediction for

Table 4 Across-breed accuracy of genomic estimated breeding values predicted with actual 6K panel, actual 50K panel, imputed 50K panels

from Impute 2, FImpute 2, Beagle 4.1, Beagle 3.3.2, MaCH, and Bimbam for RFI using GBLUP and BayesB for Angus, Charolais, Kinsella,

Elora, PG1, TX/TXX validation groups

Population Actual 50K Actual 6K

BayesB GBLUP BayesB GBLUP

Angus 0.18 ± 0.05 0.21 ± 0.04 0.13 ± 0.03 0.16 ± 0.03

Charolais 0.22 ± 0.05 0.21 ± 0.06 0.14 ± 0.05 0.18 ± 0.06

Kinsella 0.11 ± 0.08 0.08 ± 0.06 0.11 ± 0.06 0.08 ± 0.07

Elora 0.09 ± 0.06 0.16 ± 0.05 0.05 ± 0.04 0.15 ± 0.04

PG1 0.10 ± 0.05 -0.04 ± 0.06 0.12 ± 0.06 -0.01 ± 0.06

TX/TXX 0.19 ± 0.04 0.17 ± 0.04 0.14 ± 0.01 0.14 ± 0.04

All 0.15 ± 0.03 0.12 ± 0.03 0.11 ± 0.01 0.12 ± 0.03

Population Impute 2-50K FImpute 2.2-50K Beagle 4.1-50K

BayesB GBLUP BayesB GBLUP BayesB GBLUP

Angus 0.18 ± 0.05 0.20 ± 0.04 0.16 ± 0.05 0.18 ± 0.02 0.18 ± 0.05 0.20 ± 0.04

Charolais 0.22 ± 0.05 0.20 ± 0.06 0.23 ± 0.07 0.22 ± 0.07 0.21 ± 0.06 0.20 ± 0.07

Kinsella 0.10 ± 0.08 0.08 ± 0.06 0.09 ± 0.07 0.10 ± 0.05 0.11 ± 0.08 0.08 ± 0.06

Elora 0.09 ± 0.06 0.15 ± 0.06 0.11 ± 0.06 0.16 ± 0.03 0.07 ± 0.05 0.14 ± 0.05

PG1 0.10 ± 0.05 -0.04 ± 0.06 0.12 ± 0.06 -0.02 ± 0.07 0.11 ± 0.06 -0.04 ± 0.06

TX/TXX 0.18 ± 0.04 0.16 ± 0.04 0.16 ± 0.03 0.18 ± 0.06 0.17 ± 0.03 0.16 ± 0.04

All 0.14 ± 0.03 0.11 ± 0.03 0.14 ± 0.03 0.12 ± 0.03 0.14 ± 0.03 0.11 ± 0.03

Population Beagle 3.3.2-50K MaCH-50K Bimbam-50K

BayesB GBLUP BayesB GBLUP BayesB GBLUP

Angus 0.17 ± 0.05 0.20 ± 0.04 0.16 ± 0.05 0.19 ± 0.04 0.13 ± 0.04 0.15 ± 0.03

Charolais 0.22 ± 0.07 0.20 ± 0.08 0.24 ± 0.06 0.21 ± 0.07 0.18 ± 0.04 0.18 ± 0.05

Kinsella 0.10 ± 0.06 0.07 ± 0.05 0.11 ± 0.06 0.08 ± 0.05 0.08 ± 0.05 0.05 ± 0.04

Elora 0.07 ± 0.06 0.15 ± 0.05 0.05 ± 0.07 0.14 ± 0.06 0.06 ± 0.05 0.15 ± 0.05

PG1 0.10 ± 0.05 -0.04 ± 0.06 0.12 ± 0.07 -0.04 ± 0.06 0.10 ± 0.06 -0.07 ± 0.04

TX/TXX 0.19 ± 0.03 0.16 ± 0.03 0.15 ± 0.03 0.15 ± 0.03 0.12 ± 0.03 0.14 ± 0.03

All 0.14 ± 0.03 0.11 ± 0.03 0.13 ± 0.03 0.11 ± 0.03 0.11 ± 0.02 0.09 ± 0.03

Standard errors of the mean from the five-fold cross validation follow after ± and are defined as SEM = rffiffi
5

p where r is the sample standard

deviation. Training groups consist of animals pooled from all six populations (training groups consist of 1440 animals across six populations

while validation groups contain 360 animals from each of the six populations)

Accuracy is measured by Pearson’s correlation coefficient between the estimated genomic breeding values and the adjusted phenotype values in

the validation group
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RFI based on imputed Affymetrix HD SNPs (428K SNPs

used) and 50K SNPs under three different Bayesian

methods. The imputed HD and actual 50K SNP data yiel-

ded similar accuracies under all three methods [73].

Binsbergen et al. [74] also reported no improvement in

accuracy of genomic prediction was observed when using

imputed sequence data over BovineHD data, suggesting

that increases in density of genotypes may not necessarily

lead to an increase in accuracy of genomic prediction with

the current SNP panel information and statistical methods

[75].

Previous studies [49, 76, 77] have shown evidence that

RFI is a complex trait likely to be controlled by many SNPs

with small effects. Therefore, genomic imputation errors

from 6K to 50K SNP as observed in this study may have

minimal impacts on the accuracy of genomic prediction for

RFI. However, when a trait is influenced by a few of SNPs

with major effects, imputation error will likely affect the

genomic prediction accuracy as shown in Chen et al. [7],

studying genomic predictions of fat percentage using dairy

cattle. For RFI genomic prediction, FImpute was suggested

as an imputation method as it is fast and has advantages

over all other methods in imputing rare variants.

In our study, GBLUP and BayesB methods yielded

comparable genomic prediction accuracies for the trait for

across-breed andwithin-breed genomic prediction inmost of

the breed/populations, which is in agreement with the pre-

vious reports [11, 78, 76, 79]. GBLUP is believed to be less

sensitive than BayesB to the genetic architecture of any trait

as it relies mainly on pairwise relationship between

Table 5 Within-breed accuracy of genomic estimated breeding values predicted with actual 6K panel, actual 50K panel, imputed 50K panels

from Impute 2, FImpute 2, Beagle 4.1, Beagle 3.3.2, MaCH, and Bimbam for RFI using BayesB and GBLUP for Angus, Charolais, Kinsella,

Elora, PG1, TX/TXX validation groups

Population Actual 50K Actual 6K

BayesB GBLUP BayesB GBLUP

Angus 0.24 ± 0.03 0.25 ± 0.01 0.23 ± 0.05 0.26 ± 0.02

Charolais 0.21 ± 0.06 0.20 ± 0.06 0.19 ± 0.06 0.20 ± 0.05

Kinsella 0.10 ± 0.06 0.12 ± 0.06 0.11 ± 0.07 0.13 ± 0.06

Elora 0.17 ± 0.05 0.18 ± 0.05 0.16 ± 0.02 0.18 ± 0.04

PG1 0.13 ± 0.06 0.16 ± 0.08 0.15 ± 0.03 0.14 ± 0.07

TX/TXX 0.17 ± 0.04 0.18 ± 0.04 0.13 ± 0.05 0.14 ± 0.04

Population Impute 2-50K FImpute 2.2-50K Beagle 4.1-50K

BayesB GBLUP BayesB GBLUP BayesB GBLUP

Angus 0.25 ± 0.02 0.25 ± 0.01 0.24 ± 0.02 0.24 ± 0.01 0.24 ± 0.03 0.25 ± 0.01

Charolais 0.21 ± 0.06 0.20 ± 0.06 0.21 ± 0.06 0.21 ± 0.07 0.21 ± 0.06 0.20 ± 0.06

Kinsella 0.11 ± 0.06 0.12 ± 0.06 0.10 ± 0.06 0.12 ± 0.06 0.14 ± 0.04 0.12 ± 0.06

Elora 0.15 ± 0.05 0.16 ± 0.04 0.14 ± 0.05 0.17 ± 0.03 0.04 ± 0.06 0.16 ± 0.04

PG1 0.13 ± 0.06 0.15 ± 0.07 0.14 ± 0.06 0.15 ± 0.07 0.11 ± 0.06 0.16 ± 0.08

TX/TXX 0.16 ± 0.04 0.18 ± 0.04 0.15 ± 0.04 0.18 ± 0.05 0.16 ± 0.04 0.17 ± 0.04

Population Beagle 3.3.2-50K MaCH-50K Bimbam-50K

BayesB GBLUP BayesB GBLUP BayesB GBLUP

Angus 0.24 ± 0.02 0.25 ± 0.01 0.24 ± 0.02 0.24 ± 0.02 0.25 ± 0.03 0.26 ± 0.01

Charolais 0.21 ± 0.06 0.20 ± 0.07 0.22 ± 0.06 0.21 ± 0.06 0.22 ± 0.06 0.22 ± 0.06

Kinsella 0.11 ± 0.06 0.13 ± 0.06 0.11 ± 0.06 0.13 ± 0.06 0.12 ± 0.06 0.14 ± 0.05

Elora 0.13 ± 0.05 0.15 ± 0.04 0.15 ± 0.05 0.16 ± 0.05 0.13 ± 0.04 0.16 ± 0.05

PG1 0.14 ± 0.06 0.16 ± 0.08 0.14 ± 0.07 0.16 ± 0.08 0.14 ± 0.07 0.16 ± 0.08

TX/TXX 0.15 ± 0.05 0.17 ± 0.05 0.14 ± 0.05 0.16 ± 0.04 0.12 ± 0.05 0.14 ± 0.05

Standard errors of the mean from the five-fold cross validation follow after ± and are defined as SEM = rffiffi
5

p ; where r is the sample standard

deviation. Both training and validation groups consist of animals from the same breed/population (training groups consist of 240 animals from the

within-breed population, while validation groups contain 60 animals from the same breed)

Accuracy is measured by Pearson’s correlation coefficient between the estimated genomic breeding values and the adjusted phenotype values in

the validation group
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individuals across the genome for prediction [80–82].

However, it was observed that GBLUP gave lower predic-

tion accuracies than BayesB in the PG1 population for the

across-breed training strategy under all the SNP types (actual

50K, actual 6K and imputed SNPs), but resulted in compa-

rable prediction accuracies to BayesBwhen thewithin-breed

strategy was adopted. PG1 is a crossbred population with

animals being more widespread in the plot of PCA in Fig. 1,

indicating greater dissimilarity of animals in the population

in comparison to other populations, which usually lead to a

relatively lower prediction accuracy. Lund et al. [83]

reported that there was little or no benefit when combining

distantly related breeds such as Jersey and Holstein using

GBLUP. Effects of across-breed genomic predictions have

been studied by De Roos et al. [84] through simulation

studies, which conclude that the across-breed training could

lead to suboptimal marker effects for each population as

linkage disequilibrium between markers and QTL would

unlikely persist across populations and suggested high den-

sity marker set be needed when across-breed training is

applied. Therefore, the greater dissimilarity of animals in

PG1 may lead to lower prediction accuracies of GBLUP.

Moreover, the very low prediction accuracy of GBLUP in

PG1 could also be attributed to a greater sampling error due

to more genetic dissimilarity among animals as shown in

Fig. 1, coupled with a small validation population size

(N = 60) in the study.

The level of relatedness between training and validation

set has a determinant role on the accuracy of both impu-

tation and genomic prediction. Previous authors [85–87]

show the genetic relationship among animals as reflected in

LD or linkage phase persistence or co-segregation (CS) of

QTL with SNPs can contribute to accuracy of genomic

predictions in SNP-based models. CS of alleles at two loci

indicates that these alleles both originate from the same

chromosome of a parent. A closer relatedness between

training and validation leads to higher persistency of CS

among animals [86, 87], which will improve the accuracy

of both imputation and genomic prediction. When LD

between QTL and SNPs is weak, which is believed to be

the case for multiple beef cattle populations due to the

difference in breeding and selection of different breeds, CS

information therefore becomes a more dominant factor in

affecting accuracy of genomic predictions for the across-

breed strategy. Employing a within-breed training strategy

improves the accuracies in purebred populations in that

within-breed training and validation dataset which com-

prised more closely related individuals results in an

increase of CS, and its persistence is higher than that of

across-breed genomic prediction [87], which was shown by

Chen et al. [49] and also is consistent with the results in

this study for the purebred Angus and Charolais

populations.

Principal component analysis (PCA) has been widely

applied to inferring genetic structure and exploring the level of

relatedness in cattle. For more closely related individuals, the

expected length of shared haplotypes is larger and population-

based imputation methods have higher confidence to predict

untyped genotypes if immediate ancestors are present in the

reference panel [21, 28, 33]. From the plot of PCA in Fig. 1,

purebred Angus and Charolais cattle are positioned distantly

from each other, but tend to have similar major components

with animals of the same breed and exhibit a greater genetic

similarity and a closer relationship within each breed. How-

ever, crossbred animals within the same population are more

dispersed, implying that crossbred animals within the same

population aremore genetically divergent. If the study sample

is distantly related to the training population or the reference

panel, the average accuracy of imputation and genomic pre-

diction was lower, which has been demonstrated in previous

studies with dairy cattle populations [83, 85].

The density of DNA markers is expected to affect

accuracy of genomic predictions as use of genotypes in a

high-density SNP panel would on average result in an

increase of the level of linkage disequilibrium (LD)

between a SNP marker and a QTL. However, it is not

unprecedented to observe no gain or a small gain between a

low density 6K and a higher density SNP panel 50K as

observed in this study in beef cattle, suggesting that

increasing the density of SNP panels by simply adding

SNPs with high MAF will unlikely improve LD between

SNPs and QTL of rare MAF [88, 89], and further studies

are needed to make better use of existing higher density

SNP panels and to design better high-density SNP panels to

improve genomic prediction accuracy. Previous genomic

prediction studies of RFI and milk production traits in dairy

cattle by Pryce et al. [77], Erbe et al. [90] and Ertl et al.

[91] showed only a slight gain in accuracy as SNP marker

density increased. However, it may be still worthwhile to

investigate the impacts of imputation errors on genomic

prediction for high-density SNPs or whole-genome SNPs

on other traits in larger populations of beef cattle.

Conclusion

In this review, we compared six current best population-

based methods that use unphased reference panels for

genotype imputation and investigated the effects of impu-

ted 50K genotypes on feed efficiency genomic predictions

for beef cattle data from both purebred and crossbred

populations. The six genotype imputation methods fall into

three major categories: (1) methods based on Li and Ste-

phens’ ‘‘PAC’’ framework (2003); (2) Browning and

Browning’s IBD-based HMMs (Beagle 3.3.2 and Beagle

4.0) and (3) a fast, efficient, and rule-based method called
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FImpute inspired by Kong et al.’s ‘‘long range phasing’’

(2008). HMMs based on the ‘‘PAC’’ framework can be

further divided into two categories, one that models

genotypes as discrete counts of alleles including Impute 2,

MaCH and one that uses clustering and real-valued allele

frequencies including fastPHASE and Bimbam. For HMM-

based imputation methods, either Markov chain Monte

Carlo sampling or EM-based maximum likelihood esti-

mator is employed for parameter inference. In terms of

efficiency, rule-based FImpute is the fastest method and is

capable of yielding comparable accuracies to current best

Impute v2. Computational burdens scale quadratically with

the number of hidden states in ‘‘PAC’’-based models. Our

simulation studies confirmed that MAF plays a key role in

the accuracy of imputation. As MAF increases, accuracies

of all imputation methods to impute genotypes carrying the

minor allele increase. Existing imputation methods have

limitations in imputing rare alleles of frequencies less than

1%. FImpute shows advantages over other methods in

terms of running time and imputing rare alleles. Bimbam’s

poor performance is likely due to MEL for cluster infer-

ence of the underlying architecture of the data.

Accuracies of genomic predictions for RFI via either

BayesB or GBLUP were higher on purebred populations

than on crossbred populations, and no significant advantage

of usage of 50K panel over 6K panel in genomic predic-

tions was observed. Imputed 50K genotypes in the subse-

quence genomic predictions, via BayesB and GBLUP, in

general yielded similar results for the trait to that using

actual 50K genotypes in this study.
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