
Theoretical Computer Science 39 (1985) 135-154 135
Noah-Holland

AUTOMATIC SYNTHESIS OF TYPED A - P R O G R A M S ON.
TERM ALGEBRAS*

Corrado BOHM and Alessandro BERARDUCCI
Dipartimento di Matematica, Universit?t degli Studi di Roma "La Sapienza", 1-00185 Roma, Italy

Communicated by R. Milner
Received May 1984
Revised February 1985

Abstract. The notion of iteratively defined functions from and to heterogeneous term algebras is
introduced as the solution of a finite set of equations of a special shape.

Such a notion has remarkable consequences: (1) Choosing the second-order typed lambda-
calculus (A for short) as a programming language enables one to represent algebra elements and
iterative functions by automatic uniform synthesis paradigms, using neither conditional nor
recursive constructs. (2) A completeness theorem for A-terms with type of degree at most two
and a companion corollary for A-programs have been proved. (3) A new congruence relation
for the last-mentioned A-terms which is stronger than A-convertibility is introduced and proved
to have the meaning of a A-program equivalence. Moreover, an extension of the paradigms to
the synthesis of functions of higher complexity is considered and exemplified. All the concepts
are explained and motivated by examples over integers, list- and tree-structures.

Introduction and summary

Automatic program synthesis will be considered in the following as a formal
definition of a compiler translating from an algebraic specification language into a
suitable high level language.

The data structures considered belong to the class of heterogeneous term (or
absolutely free) algebras and the specifications of the functions to be computed
belong to the simplest kind of recursive definitions on such algebras, the so-called
'iterative' definitions, thoroughly identified in the paper.

The high level language used is the second-order or polymorphic typed lambda-
calculus (A). More precisely, heterogeneous term algebras correspond, by a Com-
pleteness Theorem (Theorem 6.3), to a natural restriction of the types of A, namely
those of degree <~2. Every such type uniquely identifies the corresponding term
algebra, together with its constructors or basic functions; moreover, it can be
interpreted as an induction principle which may be used to systematically remove
recursion from the iterative definitions of functions over the algebraic data structures.
The two-way correspondence mentioned above induced a correspondence between

* This research has been supported partly by Grants of the Ministry of Public Instruction and partly
by Contract No. 820076097 of the Consiglio Nazionale delle Ricerche, Italy.

0304-3975/85/$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland)

136 C. BShra, A. Berarducci

elements of an algebra and A-terms. The formal definition of the compiler assumes

in this paper the appearance of four paradigms the sufficiency of which is warranted
again by the completeness Theorem.

It may be useful, at this point, to give the reader a better understanding of the
line of research followed in this paper.

A theory of functionality is presently being developed, where traditional ideas of
data structures are being reformulated in such a way that a structure is now seen
as a functional operator missing some if its arguments (see [1]). For instance, an
integer is akin to a for-loop missing its body, a boolean is akin to a conditional
missing its pair of branches, etc. Such highly functional programming should be
familiar to any programmer of APL (reduce operator) or ML (itlist function) in the
context of list processing. But the ideas can be traced directly back to Church, since
Church's numerals and booleans are the precursors of this very general view of
data structures. Whatwas missing was a proper view of types, since the Curry-Church
types were too weak to support this notion. And, thus, the theory of functional of
finite types developed by G6del [6] had to rely on a primitive type 0 for integers.
We had to wait until Girard 's [4] development of second-order types to have a
typed lambda-calculus where the type structure was rich enough to express the
notion of a free algebra over a signature, permitting a uniform development of the
standard data structures. Second-order types were invented independently by
Reynolds [8] in 1974, and various typed lambda-calculi were experimented within
De Bruijn's AUTOMATH project, but it was not until recently that the Curry-Howard
isomorphism between types and propositions was understood in the computer
science community as a fundamental notion. Constable's [2] popularization of
Martin-L/Sf's work was certainly a key influence, along with the works of Fortune,
Leivant and O'Donnell [3], Goad [5], and Takasu [9], among others.

More recently, Leivant [7] has done some research on second-order types that is
related, but not identical. For example, it appears that he independently formulated
the data synthesis paradigm.

In Section 1, a data system is defined as a (heterogeneous) term-algebra satisfying
some (very weak) properties, and a data structure is defined as a carder set of some
data system.

In Section 2, the set of the iterative functions on arbitrary data structures is defined
as the least set containing the basic operations of the data systems and closed under
both explicit definitions and what we have called "iterative definitions'.

It turns out that every primitive recursive function on natural numbers is iterative
according to our definition.

By the way, we remark that the proposed definition is machine-independent and
does not make use of any coding into natural numbers.

In Sections 3, 4, and 5 we have several 'synthesis paradigms' to represent any
data structure and any iterative function inside second-order typed A-calculus (A).

It is important to underline that our approach is completely uniform and auto-
matic.

Automatic synthesis of typed A-programs 137

Namely, considering A as a programming language for total functions, a computer
may easily be programmed to translate specifications of data structures and iterative
functions into A-terms representing the data and functions respectively.

We notice that the compiled A-programs for iteratively defined functions contain
neither recursive nor conditional constructs. This is possible because, as already
expressed in this Introduction, the computation of a program on a given input is
driven by the input itself (which behaves like a functional).

In Section 6, a Completeness Theorem is proved according to which, given a
closed A-term t, a (necessary and) sufficient condition for t to represent an element
belonging to some data structure D is that the type of t represents D in A. As a
consequence of the Completeness Theorem we develop, in Section 7, a method for
proving A-program equivalence without induction. This method often enables one
to eliminate basic operations from A-programs.

In Section 8 we illustrate by an example how to extend the 'A-program synthesis
paradigm" to functions of higher complexity.

Section 9 proposes further data structures by merely specifying their A-types.

1. Heterogeneous algebras

1.1. Basic definitions

An algebra is a pair A = (Ae, ~) in which

(1) ~ = {SK}K~r is a family of nonempty sets each called a carrier set of the
algebra A,

(2) ~ = {g~}~a is a set of finitary operations (called basic operations), where
each g~ is a mapping

g=: Sk(1,=) ×" " " XSk(n(o~),oL)---> Sr(a) (n(og)E N, k(1, a) , . . . , k(n(a) , a) , r(ot)~ K) .

Here, n (a) is the arity of g= and k(K, a) is the index of the carder set of the
Kth argument of g~.

If n (a) = 0 (i.e., if g~ is a nullary operation), we identify g~ with a selected

element of S ~) .
An algebra with only one carder is called a 'homogeneous algebra', an algebra

with more than one carder is called a 'heterogeneous algebra'.

1.2. Term algebras

A term algebra (or absolutely free algebra) in an algebra (6e, ~) such that, whenever

g=~ c~, g e e ~, and g ,~ (x l , . . . , x , (=))=g~(y l , . . . , y , (,)) , we have a = f l and xK=yK
for all K = 1 , 2 , . . . , n(a) = n(fl).

Hence, in a term algebra equality means formal identity.
Given a carder S e 6e and an element x ~ S we say that x is a generator iff it is

is not in the codomain of any basic operation g ~ ~; in particular, a generator is
not a nullary basic operation.

138 C. B6hm, A. Berarducci

There are algebras with no generators at all; for example, the natural numbers
with successor and zero as basic operations (see example (a) of Section 1.4). Different
is the case of the algebra of lists considered in example (b) of Section 1.4; here,

the elements a h . . •, an of the list

c o n s (a 1 , . . . , cons(a, , n i l) . . .)

are generators of the algebra and not basic operations.
Since, in our treatment, the generators play the role of arbitrary objects, we shall

often call them 'parameters ' .
The presence of the parameters is quite irrelevant in the theory and in the proofs

we shall give, so that it is possible to ignore them at first reading; nonetheless, we
have included them in our discussion for their relevance in providing examples of
familiar data structures and algorithms which do not depend on the particular nature

of the parameters.
For the notion of 'iterative definition' (see Section 2.1) to make sense it will be

essential that the carders in which the parameters range are kept distinguished from
the other carders.

This motivates the following definition of data system (we owe the name 'data

system' to Leivant [7]).

1.3. Data systems and data structures

From now on we shall only be interested in term algebras such that there is no
carder which contains both parameteric and non parametric elements and in which,
moreover, there are only finitely many carders and basic operations. Such an algebra
will be called a data system and its carriers will be called data structures. A data
structure will be called parametric if its elements are parametric, and proper
otherwise.

Given a data system D = (,9 °, (g> we shall often denote by {A~}~j the family of
its parametric data structures and by {P,},~t the family of its proper data structures.

So, we write D = (Se, cg)= ({An}.Oe J k.){P,},~F{g~},,~o) and we assume that each
basic operation g~ is a mapping

ga : A j (1 , a) X ' " • x Aj<p(,,).~) x P,(a,~) x . . • x Pi(m(a).a)-> P,(~)

where a~g2 , p (a) , m (a) e N , j (1, a) , . . . , j (p (t ~) , a) ~ J , i(1, a) , . . . , i (m (a) , a) ,
r (a) s I .

For simplicity, we have placed all the parametric data structures A, 7 to the left
of the nonparametr ic ones; of course, this restriction is inessential. I f there are no
parameters, i.e., if p (a) = 0 , then all the A,~'s disappear.

Remarks 1.1. Below we list some consequences of our definitions:
(a) A data structure S ~ 5e is parametric iff it is not the codomain of any basic

operation g~ ~ ~3.

Automatic synthesis of typed A-programs 139

(b) A data system is completely determined up to isomorphism by the cardinality

of its parametric data structures and by its ' language', that is, by the symbols by
which we denote its data structures, its functions, and the respective domains and
codomains of its functions.

(c) If in a data system D = (Se, ~) there are no parameters, i.e., if all the da ta
structures S ~ Se are proper, then there must be some nullary operation g ~ ¢g.

For example, there is no data system with language ({B}, {g: B--> B}).
Here, we implicitly assume that infinitely long terms such as g(g(g(. . , are not
allowed; therefore, it is possible to make definitions by induction on the complexity
of the elements of a data structure.

(d) Both the arguments and the values of a basic operation are elements of some
data structure and not functions themself; so, a function g: (B --> B) --> B with domain
B--> B is not allowed as a basic operation. This restriction will be crucial in the
proof of the Completeness Theorem (Theorem 6.3).

1.4. Examples: natural numbers, lists, trees and forests

By Remark 1.1(c) we can give examples of data systems by just exhibiting their
respective languages (we are not interested in the cardinality of the parameters).

(a) Natural numbers:

D = ({NI, {s: N--> N, o: Nt) .

(b) Lists:

D = ({A, L}, {cons : A x L--> L, nil : L}),

where A (a set of atoms) is a parametric data structure (since it is not the codomain
of 'cons', neither the codomain of 'nil '), and L (a list of atoms) is a proper data
structure.

(c) Trees and forests:

D = ({ A , T, F } , { s p a n : A x F--> T, join: T x F--> F, empty: F}),

where A (a set of atoms) is a parametric data structure, and T (finite nonempty
trees with nodes labelled by atoms) and F (forests) are proper data structures.

The intended meaning is

a

/ \ =span(a, join(t l , . . . , join(tn, empty) . . .)) (n~>0).
tl • • • tn

So, we see that trees (which are obtained 'spanning' atoms to forests) and forests
(i.e., finite sequences of trees) are defined in terms of each other.

In the following we shall sometimes write for short s, o, c, n, sp, j, e instead of
s, o, cons, nil, span, join, empty, respectively.

140 C. B6hm, A. Berarducci

2. Functions on data structures

Since a data system D is a term algebra, we can define functions on its data

structures by some set of recursive equat ions and prove terminat ion by induction

on the length of the inputs (since a term is a finite object).

Thus, starting f rom the basic operat ions we can define new (total) functions in

terms of already defined ones.

However, since we deal in general with heterogeneous algebras, it may happen

that we cannot define only one funct ion at a t ime; we have rather to define

s imultaneously a whole family of functions {f~},~ ~ (one for each proper data structure

of the system) in terms of a family {h~}~n of a lready given functions (one for each

basic operat ion of the data system).

The following defini t ion should now be clear.

2 . 1 . I t e r a t i v e d e f i n i t i o n s

Given a data system

D = ({A,7},7~ j u {P,},~,,{g~}~n}

and a family of p roper data structures { Q , } ~ (possibly belonging to some other

data systems) we say that a family { f~} ,~ of unary functions f~" P, --> Q~ is iteratively
defined in terms of a family {h~}~n of funct ions

ha" Aj(1 ,~)x-- . x Aj(p(~).~)x Qi(L,~) x - . - x Qi(,,(~),~)--> Q~(~)

(the indexes are as in Section 1.3) if for each ~ I and for each element

g , ~ (a l , . . . , ap(a), x l , . . . , Xm(~)) E P, we have

f ~ (g ~ (a , , . . . , ap(,,), x , , . . . , Xm(,~)))

= h , , (a l , . . . , a p (, ~) , f i o , , ~) (x ,) , . . . , fi(m(~),~)(Xm(~))). (1)

E x p l a n a t i o n

Since P, i s -a p rope r data structure, for each x ~ P, there exist a ~ O, a~

A j (L ~) , . . . , ap(~) ~ A j (p (~) , ~) , x l ~ P i (L~) , . . . , Xm(~) ~ Pi (m(~) ,~) such that x =
g ~ , (a l , . . . , ap(=), x l , . . . , xm(,~)) .

Thus, for every x ~ P , we can compute the value o f f (x) using the equat ion above

and the values of the funct ions f (L~) , - - - ,f(m(~).~) at arguments of less complexity.
I f m (a) = O , we have the induct ion basis, that is, f (g ~ (a l , . . . , a p (~ ,))) =

ha (a 1, • • •, ap(~)); in part icular , if there are no parameters , f (g~) = ha.

I t e r a t i o n v e r s u s r e c u r s i o n

It is impor tant to notice that x l , . . . , Xm(,~) do not appear as arguments of ha in

equat ion (1) above. This is the reason for the name 'iterative definitions' instead of
'primitive recursive definit ions' .

Automatic synthesis of typed A-programs 141

Of course, an approach based on recursion rather than iteration is also possible,
but the advantage of an iterative definition of a function is that it can be very simply
translated into a A-term representing that function (see Section 5.2) once the data
structures have been suitably represented (generalizing the representation of the
natural numbers due to Church).

The well-known fact that primitive recursion on natural numbers can be reduced
to iteration by means of a pairing function can easily be generalized to arbitrary
algebras. Hence, we do not lose expressive power by restricting ourselves to iteration.

In particular, the predecessor function and, more generally, the inverse functions
of the basic operations of any algebra (which can obviously be defined by recursion)

can also be defined by iteration.

Remark 2.1 (the identity function iteratively defined). Let us notice that, if for all
a ~ ~ we set (in equation (1)) ha = g~, then each of the iteratively defined functions
f~ turns out to be the identity function on P~.

Nonunary functions
Iterative definitions are extended to nonunary functions f replacing equation (1)

by

f , ()7, g,~(al, . . . , ap(,,), xl, . • •, Xm(~)))

= h~0 7, al, • • •, ap(~,), fi(1,,,)(37, x 1) , . . . , f/(m(a),t~)(Y' Xm(a))), (2)

where 37 is a sequence of variables ranging over a sequence of data structures (the
role of)7 is not to be confused with the role of the parameters a ~ , . . . , ap(~)).

2.2. Examples: some iterative schemes

In the following examples the functions f~ are iteratively defined in terms of the
functions ha (the codomains are left unspecified).

(a) Take D = ({ N } , {s:N-> N, o:N}) and define f l (s (x))=h l (f~ (x)) , f l (O)=h2
(the usual scheme of iteration on natural numbers).

(b) Take D = ({ A , L} ,{cons:A×L-->L, nil:L}) and define f l (c o n s (a , y)) =
hl(a,f~(y)) , f l (ni l)--hE (this scheme is also known as 'tail recursion')

(c) Take D = ({A, T, F}, {span: A x F -> T, join: T x F-> F, empty: F}) and define

f~(span(a, y)) = h~(a, f2(y)), f2(join(x, y)) = h2(f~(x),f2(y)), f2(empty) = h3.

2.3. Iterative functions

The following clauses inductively define what it means for a function f : $1 x . • • x
Sm --> S (with $ 1 , . . . , Sin, S data structures) to be 'iterative'.

(a) A basic operation g (of some data system D) is an iterative function.
(b) Constant functions and projection functions U';(x~, . . . , xn)= xi are iterative

functions. Iterative functions are closed under composition, that is, i f f (x ~ , . . . , xn) =
h (h ~ (x l , . . . , x ,) , . . . , h , , (x h . . . , x ~)) and h, h i , . . . , hm a r e iterative, then f is
iterative.

142 C. BiJhm, A. Berarducci

(c) Iterative functions are closed under iterative definitions. We can consider
iterative functions as a generalization of the primitive recursive functions (see Section

2.1) to arbitrary data structures.

2.4. Examples: list concatenation and preorder traversal of a tree

In the following examples we refer to the data systems defined in Section 1.4.
(a) We define the iterative function c a t : L x L ~ L (list concatenation; usually

called append) as follows: first define f : L x L ~ L iteratively by f(y, cons(z, w)) =

cons(z,f(y, w)), f(y, nil) = y. Then define cat(x, y) = f(y , x).
(b) We give an iterative definition of the function preorder: T ~ L which, when

applied to a tree x ~ T, gives the list preorder (x) consisting of all the nodes of the
tree x ordered according to a 'preorder traversal'. First define fl : T-> L, f2: F ~ L

iteratively by f l (span(a , y))=cons(a, f2(y)), f2(join(x, y))=cat(fl(x),f2(y)),
f2(empty) = nil. Then define preorder (x) = f l (x) .

3. Second-order A-calculus

Our purpose is now to represent any data structure and any iterative function in
second-order A-calculus (A for short). We refer to [8, 3] for a description of A.

It is important to underline that our approach is completely uniform and auto-
matic: we can represent in A whatever data structure and, most importantly, given
an iterative function f, we can define by a mere syntactical inspection of the definition

of f, a typed A-term f which represents f in A.
Of course, the iterative functions form a rather small subset of all the functions

representable in A ; in Section 8 we shall consider the possibility of extending our
automatic method to functions of higher complexity.

3.1. Names

In order to carry out our program, we first make an inessential enlargement of
the language of A by adding, for each parametric data structure A, a 'parametric '
A-type A called the 'name' of A and, for each parametric element a ~ A, a
'parametric ' A-term a, of A-type A, called the name of a.

Parametric A-types A and parametric A-terms a must be considered as closed
A-types and closed A-terms respectively, and it is not allowed to abstract with
respect to them. We will instead abstract with respect to variables of parametric types.

Note that a parametric A-term a always behaves as an argument and never as a
function (i.e., it cannot be applied to any A-term). For notational convenience,
before defining A-representations, we first give 'names ' also to proper data structures
P and proper elements x ~ P.

(a) For each proper data structure P we choose a type variable P (in A) called
the name of P.

Automatic synthesis of typed A-programs 143

(b) For each basic opera t ion

g~ : Aj(,,~)×- • • × Aj(p(~,).~)X P i (1 , a) x - • • x Pi(m(~).~)~ Pr(a)

(of some data system) we choose a A-variable g~ of A- type

called the name of g~.
The name of a proper element x ~ P is inductively defined as follows:

(c) If x = g ~ , (a l , . . . , ap, x ~ , . . . , x m t ~ ,)) , the name x of x is the open A-term

(g~al • • • ap(,~)xl • • • x,,,(,~)). It can be checked that x has type P. For example, the

name of the natural number s (s (o)) is the open A- term s (s o) where s, o are

A-variables of A-type N-~ N and N respectively.

4. Representation of data structures in A

Once we have defined names, we can define representat ions. More precisely, given

a data system

D = (Ae, ~)=({A1, . . . , A~, P I , . . . , P,,}, {g~, • • •, gk}),

we shall define for each data structure S e Ae a closed A- type _S, called the representa-

tion of S, and, for each element x s S, a closed A-term x of A-type _S, called the

representat ion of x. We shall say that _S is defined by the type synthesis paradigm,

and x by the data synthesis paradigm. We shall now expla in how to define these

representat ions.

Definition 4.1 (t y p e s y n t h e s i s p a r a d i g m) . T h e representat ion of a parametr ic data

structure Aj is its own name, that is _Aj-= Aj. The representat ion of a proper data
structure Pi is given by

_Pi =- A P I "" • A P n (O~--> " " - > Ok --> P~),

where 0 1 , . . . , Ok are the types of the A-variables g l , . . . , g k as defined in (b) of
Section 3.1.

Examples 4.2. (a) If D = ({ N} , {s" N--> N, o: N}), then _N --- A N ((N --> N) -> N --> N ~.
(b) If D = ({A, L}, {cons" A x L-> L, nil" L}), then

_A == A , _L =- A L ((A -> L --> L) ~ L -> L) .

(c) D = ({A, T, F}, {span" {A x F--> T, jo in : T x F--> F, empty : F}), then

_ A - - A , T - - A T A F ((A --> F -> T) --> (T --> F -> F) --> F -> T) ,

F =-- A T A F ((A --> F --> T) -+ (T -> F -> T) --> F --> F) .

144 C. B6hm, A. Berarducci

Definition 4.3 (d a t a s yn thes i s p a r a d i g m) . T h e representat ion of a parametr ic data

element a ~ A is its own name, that is, a = a. The representat ion of a nonparametr ic

element of a nonparamet r i c e lement x e Oi is given by

_x - A P 1 " " " A P , Agl • • • Agk. x,

where x is induct ive ly defined in (c) of Section 3.1.

On other words, the A-representa t ion _x on an element x of a data structure is

the abstract ion closure of its 'name ' x. It follows from the definition that

_xP~ • • • P , , g l " " " g k : A)6, where " = " A means A-convertibil i ty. It can easily be

checked that if x belongs to a data structure S, then x has A- type S.

Examples 4.4. Wi th reference to Section 1.4 we have, for example:

(a) s (s (°)) N s N - ~ N ° N =A S(SO)

(that is, s (s (o)) = A N A s N ~ N A O N . S (S O)) . Here s and o are var iables of A not to be

confused with the successor and the zero functions.

(b) c (a l , c (a2 , n)) L c a ~ L ' r n L =A c a l (c a 2 n) .

(c) s p (a , , j (s p (a 2 , e) , e)) T F s p A ~ r ~ 7) r - ' F - ~ r e F = A s p a , (j (s p a 2 e) e) .

5. Representation of functions in A

Once we have represented data, we can represent functions.

Definition 5.1 (r epre sen tab i l i t y o f f u n c t i o n s in A). Given a funct ion f : S~ x- • • x S,, -> S

(with S b . . . , Sin, S data structures) we say that f is A-representable if there exists

a A-term _f of A- type S~ ->. • • -> _Sin --> _S such that, for all x~ ~ S ~ , . . . , xm ~ Sm,

f _xl " " " _Xm = f (x l , . . . , Xm),

where all the under l ined A-terms, except f, are defined by the data synthesis
paradigm.

For a given A-representable funct ion f there are, in general , infinitely many

nonconvert ible A-terms which represent f ; however, we shall see that not only is

each iterative func t ion f A-representable , but, once we are given a definition o f f ,

we can effectively find one s tandard representat ion f of fi

Let us first cons ider the case of the basic operations.

5.1. R e p r e s e n t a t i o n o f the bas ic o p e r a t i o n s

Let

D = (~ f , ~) = ({A1 , A ~ , P 1 , . . . , P , } , { g l , . . . , g k })

A u t o m a t i c s y n t h e s i s o f t y p e d A - p r o g r a m s 145

be a da t a sys tem a n d let

g~" Ai(,,~) x - • • × Aj(p(~).~) × P,(,,~) x . • • x Pi(m(~),~)--> P r (~) ~

be a bas i c o p e r a t i o n (a ~ { 1 , . . . , k}).

Def ine a c losed A - t e r m g~ o f A - t y p e

• • er()
as fo l lows.

Definition 5.2 (b a s i c o p e r a t i o n s y n t h e s i s p a r a d i g m)

(g ~ u , • • • u p (~) v l • • • v,,(~))Pl " • • P ~ g , • • • g k

= A g ~ u ~ " • • u p (~) (v , P , • • • P . g , • • • g k) " " " (V m (, ~) e l " " " P ~ g l " " " g k) ,

where u , , . . . , u p (~) , v , , . . . , V m (~) are var iab les o f type

A/ (1 .~) , . . . , Ai(p(,~),~), P i (, , ~) , . . . , P i (m (~) , ~)

respec t ive ly .

Proposition 5.3. g ~ r e p r e s e n t s g,~ i n A , t h a t i s , f o r e v e r y a , , . . . , an , x ~ , . . . , x , , , i n t h e

d o m a i n o f g ~ ,

g ~ a , • • • a p x l • • • X m = A g , ~ (a l , • • • , ap, x , , . . . , xm).

(H e r e , p i s p (a) a n d m i s m (a) .)

Proof

g~ al • • • ap xl • • • xm

by Def in i t i on 5.2

= A A P 1 " " " A P , A P , A g l • • . g k . g ~ a , " " " a p (X , P l • • • P , g , • • • gk)

• " " (X m e l " " " P , g , " " " g k)

by Def in i t i on 4.3

= A A P 1 " " " A P n A g , • • • A g k . g ~ a , • • • a r t 1 • • • x m

by Def in i t i on 4.3 a g a i n

- g ~ (a , , . . . , a p , X l , . . . , X m) .

Examples 5.4. Wi th r e f e r e n c e to Sec t ion 1.4 a n d Def in i t ion 5.2 we have, for

e x a m p l e ,

(s v ~) N s N - ~ N o N = A S (v N s o) ,

- O N s N ~ N O N = A O,

(-cu -A ~)-L) L c A ~ L ~ L n L : A c u (v L c n) ,

n L c A " L ~ L ll L
- ~-A n ,

(sp u - A v - ~) T F s p A - ~ - " r j r - ~ F - ' F e F = A s p u (v T F s p j e) .

146 C. B6hm, A. Berarducci

5.2. Representation o f iterative functions in A

Let

D = ({A~, . . . , A~, P ~ , . . . , P,}, { g b . . . , gk})

be a data system.
Suppose that a family {f~lt = 1 , . . . , n} of unary functions f~ : P~ --> Q, is iteratively

defined in terms of a family of already given functions {ha]a = 1 , . . . , k} (as in
equation (1)) and suppose that each ha is A-representable by a A-term _ha, say.

Define f, as follows.

Definition 5.5 (program synthesis paradigm). For each ~ e { 1 , . . . , n} define a A-term

f~ of A-type P~ ~ Q, by

(a) f~ -- Ave,.vQ, • • . Q,h~ . • • hk.

Similarly in case of nonunary functions (see equation (2)) define f~ by

(b) £ a = A X v ' , . v Q , . . . Q , (h , a) . . . (h k a) ,

where ~ is a sequence of A-variables.

We claim that f represents f~ in A. Let us prove it only in case of unary functions

f~:p~->Q,.

Theorem 5.6. For each x ~ P,

£x =A£(x)

where x and f , (x) are given by the data synthesis paradigm (Definition 4.3) and f ,

is given by Definition 5.5(a).

Proof. Let x ~ P,. The proof follows by structural induction on x.
Since P, is a proper data structure, there exists a basic operation ga" Aj(1,a) ×" • • ×

Aj(,,(a) a)x P i o . a) x - . . XPi(m(a),a)->Pr(~) such that, for some a l , . . . , ap, X l , . . . , xm
in the domain ofga, x = g a (a l , . . . , ap, X l , . . . , x,,,). (Here, p i s p (a) and m is m(a) .)

Therefore, in A, by Proposition 5.3,

f,_x =f ,(ga 1" ' " ap x l ' ' " xm) =

by Definition 5.5(a)

= ga al • • • a t, X 1 " " " X m Q1 • • • Q , , h i • • • h i • " • h k =

by Definition 5.2

= ha al"''a__pp(X_A Q I " ' " Q,, h i " ' " h k) ' ' " (x,,, Q l ' ' " Q,, h l " " h k) =

by Definition 5.5(a)

= h~, a l "" " a p (f / (l , a) x 1) " " " (f / (m , a) Xm) =

A u t o m a t i c s y n t h e s i s o f t y p e d A - p r o g r a m s 147

by induction hypothesis and since _he represents he in A

= h ~ (a l , . . . , ap, f i o , , ~) (x l) , . . . , fi<m,,~)(Xm))-

by equation (1)

" f ~ (g a (g h . . . , a p , X l , . . . , X m))

=-£(x).

For m = 0 we have the induction basis.
It can easily be checked that all the expressions above are well typed. []

Notice that the A-program f, (, = 1 , . . . , n) defined by the program synthesis
paradigm (Definition 5.5) depends on t only in the type of its argument variable.

Corollary 5.7 (fixed point equation). L e t D = ({AI , . . . , A~, P1 , . . - , Pn, { g l , . . . , gk})
be as above . Then , f o r al l x ~ P~,

_X P l " " " Pn gl " " " gk =A_X.

(Do not confuse the last expression with _ x P ~ ' ' ' P ~ g ~ ' ' ' g ~ ' ' ' g k = A X which
is nothing but the definition of x (Definition 4.3).)

Proof. Let us put, in Section 5.2, hi = g l , . . . , h k = g k .

Then, by Remark 2.1, each iteratively defined function f," P~ --> Q, is the identity
function on P~, that is, Q~ = P, and f ,(x) = x.

Therefore, in A,

x=A(x)=f,x=

by definition o f f (Definition 5.5)

=_x P1 "" " Pn gl " " " gk. []

Corollary 5.8 (representability of iterative functions). E v e r y i tera t ive f u n c t i o n is

A - r e p r e s e n t a b l e (a n d we h a v e a n a u t o m a t i c m e t h o d to represent i t) .

Proof. In the definition of iterative functions (Section 2.3), point (a) is settled by
the basic operation synthesis paradigm (Definition 5.2) point (c) by the program
synthesis paradigm (Definition 5.5), and point (b) is trivial. []

5.3. E x a m p l e s : s o m e A - p r o g r a m s

(a) With references to point (a) of Section 2.4 we have, by Definition 5.5(b),

f v -L = A AU ¢ . u L cons v.

It follows that

cat u-Z v -L = A f v u = A u L cons v,

hence

cat-- Au-LAv-L.uL cons v.

148 C. BShm, A. Berarducci

(b) With reference to point (b) of Section 2.4 we have, by Definition 5.5(a),

preorder-- ArT.v I_, cons cat nil.

6. Completeness

We raise the following question: given a dosed A-type y, which is the set of all
the closed A-terms in normal form having type y?

Notice that, in general, this set is recursively enumerable. Using the Cur ry-Howard
homomorphism between proofs and A-terms we could rephrase this question in the
following equivalent way: given a sentence in second-order (intuitionistic) logic,
which is the set of all its closed normal proofs?

Of course, a false sentence has no proof at all; therefore, the corresponding
A-type is not the type of any closed A-term. This is the case, for example, of the
A-type A/3((/3-> 13)->/3) (which corresponds to the false sentence (V/3)((/3->/3)-->

/3)).
Imposing suitable restrictions on the structure of y, the Completeness Theorem

below settles our question. The result is that the class of all closed normal forms
of type y consists exactly of all the A-representations of the elements of a suitable
data structure which is uniquely determined by the relation _S = y (_S is defined in
Section 4).

In particular, if y = _N = AN((N--> N) -> N--> N) , our result says that the closed
normal forms of type _N are the A-representations of the natural numbers and (most
importantly) no other closed normal form has type y.

Actually, the restrictions on y can be expressed simply by y = _S for some data
structure S.

For a more syntactical characterization of y we need a definition. For simplicity,
in the following we work in A without parameters (the general case requires some
minor changes).

Definition 6.1 (degree o f a type). For a A-free type a we define the degree d (a) of
a as follows:

d (a) = 0 if a is a type variable,

d (a -->/3) = max{1 + d (a) , d(/3)}.

Proposition 6.2 (on the restrictions), y = S for some data structure S (without pa-

rameters) i f f y is a closed nonempty type (i.e., there is some closed A-term o f type y)
and y = AP1 • • • APn.O for some n > 0, where 0 is A-free and d(O) <<- 2 (in the case

with parameters we must further require that 0 does not contain any subtype ot-> fl,
where fl is a parameter type).

A u t o m a t i c s y n t h e s i s o f t y p e d A - p r o g r a m s 149

Actually, the restriction that 3" be n o n e m t p y is unnecessary if we enlarge the

definition of da ta system to enclose empty data structures (like ({B}, {g: B ~ B}),

see Remark 1.1(c)).
Since we do not want to prove the Proposi t ion stated above because it is quite

tedious and trivial, we shall assume directly that 3' = _S for some data structure S.

Theorem 6.3 (Completeness Theorem). Le t

D = (6e, ~) = ({ A 1 , . . . , A t , P 1 , . . . , P , } , { g l , . . . , g k })

be a data sys tem. I f S • b" is a da ta s t ructure a n d t is a closed A - t e r m o f A- type 3' = _S,

then there exis ts a (un ique) e l emen t x • S such that x_ =A t (where x_ is given by

Def ini t ion 4.3).

Proof (without parameters) . Let so S be a p roper data structure, say S = P,, and let

t be a closed A-term of A-type PL -- AP1 • • • A P , (O I -->. • • --> Ok --> P,) (see Defini t ion

4.1).
The p roo f will make essential use o f the fact that 01, . . . , Ok have degree 1 (check!)

and PL has degree 0.

We have to prove that, for some x • Po

t =A _x - - A P 1 " " • A P , , A g l • • • A g k . x

(see Defini t ion 4.3), or equivalent ly tP~ • • " P i n g 1 " " " gk -~-A X.

We are done if we have proved that there exists an x • P~ such that the normal

f o r m t' o f t P 1 • • • P r i g 1 " " • g k is ident ical to x (indeed x is a normal form by poin t

(c) of Section 3.1).
By Section 3.1 it follows t h a t t h e requirement that t' is identical to x for some

x • P, amounts to fulfill all of the fol lowing points:

(a) t' is a normal form of A-type P.

(b) t' has at most g l , . . . , gk as free variables.

(c) t' is abstraction-free (i.e., ne i ther "A" nor " A " occur in t').

Since (a) is trivially satisfied and (b) follows from the hypothesis that t is a closed

A-term, the only nontrivial point is (c).

Suppose, by contradict ion, that t' is not abstraction-free. Since t' has a type P~

of degree 0, t' is not an abstract ion term, that is, t ' ~ h x . N and t ' ~ A3".N.

Since t' is normal , t ' has no subterms of the form (A x . N 1) N 2 or of the form

(A3" .N)a .

The only possibil i ty left is that t ' has a subterm of the form N I (A x . N 2) (or o f the

form N1(A3".N2)) .

If we consider the leftmost among such subterms, we can assume that N1 is
abstraction-free and that it is bui l t up by appl icat ion from a subset of the free
variables g ~ , . . . , gk of t' only.

Since the types 01, • • . , Ok of gl, , gk have degree 1 and, since this proper ty is
hereditary w.r.t, appl icat ion, the type of N1 has also degree 1.

150 C. Brhm, A. Berarducci

Since any A-term whose type has degree 1 can only be applied to a A-term whose

type has degree 0, it fo l lowsthat N~(Ax.N2)(respect ive ly N~(AT.N2)) has no type;

a contradiction. Thus, t' is abstraction-free. []

Corollary 6.4. The Completeness Theorem extends to functional types; that is, i f

$1,. • . , Sm, S are data structures and t is a closed A-term o f A-type S1 -->" • • --> Sm --> _S,

then there is a (unique) function f : S1 x . • • x Sm --> S such that t A-represents f (see

Definition 5.1). (In general, f may not be iterative.)

Proof. Choose x ~ s S I , . . . , x m ~ S m and apply Theorem 6.3 to the A-term

(tXl • • • X m) . []

7. An equivalence of programs in A

G i v e n a A-representable function f : S 1 x . . - x S m --> S (with S 1 , . . . , Sin, S d a t a

structures), there are, in general, several nonconvertible A-terms which represent f

in A. We say that two A-terms, or 'A-programs', are equivalent if they represent

the same function. We shall give in Lemma 7.2 a sufficient condition for A-program

equivalence, based on the fixed point equation (Corollary 5.7) and on the Complete-
ness Theorem 6.3.

More precisely, we shall define an equivalence relation " = " between A-terms

such that if a, b are A-programs and a = b, then a, b are equivalent A-programs.

In this way we can prove equivalence of programs without using induction on the
structure of the input.

Definition 7.1 (the basic operations drop out). Let a, b be A-terms. Define "-~" as

the least congruence extending =A and such that

(*) if D = ({A~, . . . , A~, P ~ , . . . , Pn}, { g ~ , . . . , gk}) is a data system and v is a A-
variable of A-type Pi, then

vP~ • • • Pn g~ " • • gk ~- v.

The last equation is similar to the fixed point equation (Corollary 5.7) except that

there is a free variable v instead of a closed A-term _x. Note that since = extends

= A, the variable v may actually be replaced by any A-term t of A-type Pi.

Lemma 7.2. Let P1 , . - . , Pm be proper data structures, and v b . . . , v,, be A-variables
o f A-type P 1 , . . . , Pm respectively.

Let a [v l , . . . , Vm] and b [v b . . . , Vm] be A-terms containing at most v ~ , . . . , Vm as
free variables. We claim that i f a [v l , . . . , v ~] ' b [V l , . . . , vm], then, for all Xl~

P 1 , . . . , Xm ~ Pm, we have a[x_l , . . . ,Xm] =A b[_xb...,_xm].

Automatic synthesis of typed A-programs 151

Proof. The proof follows by induction on the derivation of a [v b . . . , v , ,]=

b [V l , . . . , vm]; the only critical point is rule (*) of Definition 7.1, which is settled

by the fixed point equation (Corollary 5.7). []

Theorem 7.3 (A-program equivalence). I f a, b are closed A- terms o f A- type PI -->" " ""->

p,,, --> _P (with P1, • • . , Pro, P proper data structures) and a ~- b, then a, b are equivalent

A-programs.

Proof. Choose A-variables v l , . . . , Vm of A-type P ~ , . . . , P,, respectively. Since a -~ b,
and " ' ' " is a congruence, (av~ . . . v,,,)= (bVl " • • Vm); thus, by Lemma 7.2, for all

Xl ~ P I , • • • , x , , , ~ P r o ,

(a X l " " " X m) = A (b x , " ' ' x , .) ,

since both members have type _P, by the Completeness Theorem there is an x c P
such that both (a_x~ • - • _x,,,) and (b_Xl • • • _x,,,) reduce to x. Thus, a, b are equivalent
A-programs. []

7.1. Applications

The following examples show how the equivalence "-~" can be used to transform
A-programs, obtained by the program synthesis paradigm, into equivalent A-
programs which satisfy some extra properties.

(a) With reference to example (a) of Section 5.3 we have

cat--- Au-LAv-L.uL cons v

= Au-LAv-~r.uL cons(vL cons nil)

L L A ~ L ~ L L =A AU- A v - . ((A L A c An . u L c (v L c n)) L cons nil)

Au-L Avb ALAcA-" L-* L AnL.uLc(vLcn)

d e f cat*.

We notice that the A-program cat* is associative with respect to every A-variables
u, v, w of type _L (i.e., cat* u (cat* v w) = cat*(cat* uv)w) , while the A-program cat
is associative with respect to closed A-terms of A-type _L only.

Moreover, cat* does not use the 'subprograms' cons, nil.
(b) We give, without proof, two equivalent A-programs for multiplication of

natural numbers:

Mul t~ Au -N Av -N.uN (v_Ns)o,

N N N---~ N Mult* --= Au- Av- A N A s . u N (v N s) .

It can easily be checked that Mult* is associative with respect to free A-variables
while Mult is associative with respect to closed A-terms only.

152 C. B6hm, A. Berarducci

Open problem
The congruence relation "-- introduced above proved itself stronger than A-

convertibility. It seems doubtful that a corresponding notion of normal form, stronger
than/3- r / normal form may easily be developed: for example (see example (a) of
Section 7.1), if we think cat* to be the normal form of cat, then the reduction cannot
be defined, as usual, asymmetrizing the congruence since cat* is obtained using the

relation on both sides.
It is an open problem (as suggested to us by M. O'Donnell) to characterize the

congruence = inside a precise and natural context.

8. Extension to higher functional types

We have given in Definition 5.5 a program synthesis paradigm for the A-
representation of any iterative function.

We shall illustrate by an example how the paradigm could be extended to functions
of higher type which we call 'iterative functionals'.

The definition of iterative functionals parallels the definition of iterative functions
(Section 2.3), except that their 'types' are arbitrary high finite types based on the
types of the data structures. The only proviso is obviously that the domain of a
functional given by iterative definition (parallel to Section 2.1) is a data structure.

Iterative functionals may be thought of as a generalization of the G6del recursive
functionals to any data structure (i.e., not necessarily natural numbers).

In the following example we assume any question of convergence to be settled.

Example 8.1. We define a functional ack: N--> N--> N and we use the (extended)
program synthesis paradigm to represent ack in A.

For each f : N--> N define o-y: N--> N iteratively as follows:

crf(o)=f(1), trf(s(m))=f(trf(m)).

Define or: (N--> N) --> N --> N explicitly by or(f) = try.
Notice that the previous definition transforms the iterative definition of the unary

function try into an iterative definition of the binary (curried) functional tr.

Define ack : N--> N --> N iteratively by

ack(o) = s, ack(s(m)) = o-(ack(m)).

Notice that, by definition, ack becomes an iterative functional.

It can easily be proved that ack(m)(n) = Ack(m, n) where Ack: N x N-> N is the
Ackermann function usually defined as follows:

Ack(o, n) = s(n),

Automatic synthesis of typed A-programs 153

A c k (s (m) , o) = Ack(m, 1),

A c k (s (m) , s (n)) = Ack(m, Ack(s (m) , n)).

By the (extended) p rogram synthesis parad igm we have, in A,

q-=_ A f -N-~-N A v - N . v _ N f (f l),

a c k - A v -N . v (_N --> _N) _o_s,

that is, a c k (m) (n) = _m(_N--> _N)_o-_s_n.
This representa t ion of the Ackermann function is almost the same as the one in

[8].

9. A-types as notations for data structures

We notice that any da ta structure S is completely determined by the A-type S
representing S. (This is evident if we look at Examples 4.2.)

Thus, we can use A-types as a system of notat ion to describe data structures.
Below we give a list of (A-types for) several interesting data structures (in addit ion

to those we have already considered):

(a) h e r e t o g e n o u s pa i r s : Afl((a i -> a2 -> fl) -> fl) (a l , a2 are parametric types).
(b) n - e l e m e n t s se ts : A f l (f l ->. • • --> f l -> f l) .

n t i m e s

(c) b i n a r y s t r i n g s : Afl((fl --> fl) -> (fl --> fl) ~ fl -> fl).
(d) b i n a r y l a b e l l e d t rees: A/3((a --> fl --> fl -->/3) -->/3 ->/3) (a is a parametr ic type).

Remark 9.1. It can easily be proved that if a A- type y is equal to _S for some data

structure S, then 3/is a closed A-type of the shape Afl~ - • • Afl , (O~-->. • •--> Ok--> fli),
where 0 ~ , . . . , Ok have degree 1. The converse is not true in general; for exampie,

the A-type Afl((fl-> fl)--> fl) has no corresponding data structure (this is related to
Remark 1.1(c)).

Acknowledgment

We owe our thanks to Mariangiola Dezani for the suggestion to work with
second-order po lymorphic l ambda calculus.

We are grateful to John Backus, Donald Knuth, Luis Sanchis, John Reynolds,
Alan Robinson, Mitchell Wand, Mario Coppo, and Wolf Gross for helpful and
encouraging discussions.

Special thanks are due to Michael O 'Donnel l for his useful criticism and an
unknown referee whose st imulating remarks were literally absorbed in our
introduction.

154 C. BiJhm, A. Berarducci

References

[1] C. B6hm and D. Kozen, Eliminating recursion over acyclic data structures in functional programs,
in: 4th Internat. Workshop on the Semantics of Programming Languages, Bad Honnef, 1983; Summary
in: Bull. EATCS 20 (1983) 205.

[2] R.L. Constable, Programs as proofs: A synopsis, Inform. Process. Lett. 16 (3) (1983) 105-112.
[3] S. Fortune, D. Leivant and M. O'Donnell, The expressiveness of simple and second-order type

structures, J. A C M 30(1) (1983)151-185.
[4] J.Y. Girard, Interpr6tation fonctionelle et 61imination des coupures dans l'arithm6tique d'ordre

sup6rieur, Th~se de Doctorat d'Etat, Univ. de Paris, 1972.
[5] C. Goad, Computational uses of the manipulation of formal proofs, Dissertation, Dept. of Computer

Science, Standford Univ. (1980) 122.
[6] K. G6del, Uber eine bisher noch nicht beniitzte Erweiterung des finites Standpunktes, Dialectica 12

(1958) 280-287.
[7] D. Leivant, Reasoning about functional programs and complexity classes associated with type

disciplines, 24th Ann. Symp. on Foundation of Computer Science (1983) 460-469.
[8] J.C. Reynolds, Toward a theory of type structure, Programming Symposium (Colloque sur la Pro-

grammation), Lecture Notes in Computer Science 19 (Springer, Berlin, 1974) 408-425.
[9] S. Takasu, Proofs and programs, in: Proc. 3rd IBM Syrup. on Mathematical Foundations of Computer

Science, Japan, 1978.

