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Abstract. The notion of iteratively defined functions from and to heterogeneous term algebras is 
introduced as the solution of a finite set of equations of a special shape. 

Such a notion has remarkable consequences: (1) Choosing the second-order typed lambda- 
calculus (A for short) as a programming language enables one to represent algebra elements and 
iterative functions by automatic uniform synthesis paradigms, using neither conditional nor 
recursive constructs. (2) A completeness theorem for A-terms with type of degree at most two 
and a companion corollary for A-programs have been proved. (3) A new congruence relation 
for the last-mentioned A-terms which is stronger than A-convertibility is introduced and proved 
to have the meaning of a A-program equivalence. Moreover, an extension of the paradigms to 
the synthesis of functions of higher complexity is considered and exemplified. All the concepts 
are explained and motivated by examples over integers, list- and tree-structures. 

Introduction and summary 

Automatic program synthesis will be considered in the following as a formal 
definition of a compiler translating from an algebraic specification language into a 
suitable high level language. 

The data structures considered belong to the class of heterogeneous term (or 
absolutely free) algebras and the specifications of the functions to be computed 
belong to the simplest kind of recursive definitions on such algebras, the so-called 
'iterative' definitions, thoroughly identified in the paper. 

The high level language used is the second-order or polymorphic typed lambda- 
calculus (A). More precisely, heterogeneous term algebras correspond, by a Com- 
pleteness Theorem (Theorem 6.3), to a natural restriction of the types of A, namely 
those of degree <~2. Every such type uniquely identifies the corresponding term 
algebra, together with its constructors or basic functions; moreover, it can be 
interpreted as an induction principle which may be used to systematically remove 
recursion from the iterative definitions of functions over the algebraic data structures. 
The two-way correspondence mentioned above induced a correspondence between 
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elements of an algebra and A-terms. The formal definition of the compiler assumes 

in this paper  the appearance of four paradigms the sufficiency of which is warranted 
again by the completeness Theorem. 

It may be useful, at this point, to give the reader a better understanding of the 
line of  research followed in this paper. 

A theory of  functionality is presently being developed, where traditional ideas of 
data structures are being reformulated in such a way that a structure is now seen 
as a functional operator missing some if its arguments (see [1]). For instance, an 
integer is akin to a for-loop missing its body, a boolean is akin to a conditional 
missing its pair of branches, etc. Such highly functional programming should be 
familiar to any programmer of  APL (reduce operator) or ML (itlist function) in the 
context of  list processing. But the ideas can be traced directly back to Church, since 
Church's numerals and booleans are the precursors of this very general view of 
data structures. Whatwas  missing was a proper view of types, since the Curry-Church 
types were too weak to support  this notion. And, thus, the theory of functional of 
finite types developed by G6del  [6] had to rely on a primitive type 0 for integers. 
We had to wait until Girard 's  [4] development of second-order types to have a 
typed lambda-calculus where the type structure was rich enough to express the 
notion of  a free algebra over a signature, permitting a uniform development of the 
standard data structures. Second-order types were invented independently by 
Reynolds [8] in 1974, and various typed lambda-calculi were experimented within 
De Bruijn's AUTOMATH project, but it was not until recently that the Curry-Howard  
isomorphism between types and propositions was understood in the computer 
science community as a fundamental  notion. Constable's [2] popularization of 
Martin-L/Sf's work was certainly a key influence, along with the works of  Fortune, 
Leivant and O'Donnell  [3], Goad  [5], and Takasu [9], among others. 

More recently, Leivant [7] has done some research on second-order types that is 
related, but not identical. For example, it appears that he independently formulated 
the data  synthesis paradigm. 

In Section 1, a data system is defined as a (heterogeneous) term-algebra satisfying 
some (very weak) properties, and a data structure is defined as a carder  set of some 
data system. 

In Section 2, the set of  the iterative functions on arbitrary data structures is defined 
as the least set containing the basic operations of the data systems and closed under 
both explicit definitions and what we have called "iterative definitions'. 

It turns out that every primitive recursive function on natural numbers is iterative 
according to our definition. 

By the way, we remark that the proposed definition is machine-independent and 
does not make use of any coding into natural numbers. 

In Sections 3, 4, and 5 we have several 'synthesis paradigms' to represent any 
data structure and any iterative function inside second-order typed A-calculus (A). 

It is important to underline that our approach is completely uniform and auto- 
matic. 
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Namely, considering A as a programming language for total functions, a computer 
may easily be programmed to translate specifications of  data structures and iterative 
functions into A-terms representing the data and functions respectively. 

We notice that the compiled A-programs for iteratively defined functions contain 
neither recursive nor conditional constructs. This is possible because, as already 
expressed in this Introduction, the computation of a program on a given input is 
driven by the input itself (which behaves like a functional). 

In Section 6, a Completeness Theorem is proved according to which, given a 
closed A-term t, a (necessary and) sufficient condition for t to represent an element 
belonging to some data structure D is that the type of t represents D in A. As a 
consequence of the Completeness Theorem we develop, in Section 7, a method for 
proving A-program equivalence without induction. This method often enables one 
to eliminate basic operations from A-programs. 

In Section 8 we illustrate by an example how to extend the 'A-program synthesis 
paradigm" to functions of higher complexity. 

Section 9 proposes further data  structures by merely specifying their A-types. 

1. Heterogeneous algebras 

1.1. Basic definitions 

An algebra is a pair A = (Ae, ~) in which 

(1) ~ =  {SK}K~r is a family of  nonempty sets each called a carrier set of the 
algebra A, 

(2) ~ =  {g~}~a is a set of finitary operations (called basic operations), where 
each g~ is a mapping 

g=: Sk(1,=) ×" " " XSk(n(o~),oL)---> Sr(a) (n(og)E N, k(1, a ) , . . . ,  k(n(a) ,  a ) ,  r(ot)~ K) .  

Here, n ( a )  is the arity of g= and k(K, a) is the index of the carder  set of the 
Kth argument of  g~. 

If  n ( a ) = 0  (i.e., if g~ is a nullary operation), we identify g~ with a selected 

element of S ~ ) .  
An algebra with only one carder  is called a 'homogeneous algebra', an algebra 

with more than one carder is called a 'heterogeneous algebra'. 

1.2. Term algebras 

A term algebra (or absolutely free algebra) in an algebra (6e, ~) such that, whenever 

g=~ c~, g e e  ~, and g ,~ (x l , . . . , x , (=) )=g~(y l , . . . , y , ( , ) ) ,  we have a = f l  and xK=yK 
for all K = 1 , 2 , . . . ,  n( a ) = n(fl ). 

Hence, in a term algebra equality means formal identity. 
Given a carder  S e 6e and an element x ~ S we say that x is a generator iff it is 

is not in the codomain of any basic operation g ~ ~;  in particular, a generator is 
not a nullary basic operation. 
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There are algebras with no generators at all; for example, the natural numbers 
with successor and zero as basic operations (see example (a) of Section 1.4). Different 
is the case of  the algebra of lists considered in example (b) of Section 1.4; here, 

the elements a h . .  •, an of the list 

c o n s ( a 1 , . . . ,  cons(a, ,  n i l ) . . . )  

are generators of  the algebra and not basic operations. 
Since, in our treatment, the generators play the role of arbitrary objects, we shall 

often call them 'parameters ' .  
The presence of  the parameters is quite irrelevant in the theory and in the proofs 

we shall give, so that it is possible to ignore them at first reading; nonetheless, we 
have included them in our discussion for their relevance in providing examples of 
familiar data structures and algorithms which do not depend on the particular nature 

of the parameters.  
For the notion of  'iterative definition' (see Section 2.1) to make sense it will be 

essential that the carders in which the parameters range are kept distinguished from 
the other carders.  

This motivates the following definition of data system (we owe the name 'data 

system' to Leivant [7]). 

1.3. Data systems and data structures 

From now on we shall only be interested in term algebras such that there is no 
carder which contains both parameteric and non parametric elements and in which, 
moreover, there are only finitely many carders and basic operations. Such an algebra 
will be called a data system and its carriers will be called data structures. A data 
structure will be called parametric if its elements are parametric, and proper 
otherwise. 

Given a data  system D = (,9 °, (g> we shall often denote by {A~}~j the family of 
its parametric data  structures and by {P,},~t the family of  its proper data structures. 

So, we write D = (Se, cg)= ({An}.Oe J k.){P,},~F{g~},,~o) and we assume that each 
basic operation g~ is a mapping 

ga : A j ( 1 , a )  X ' "  • x Aj<p(,,).~) x P,(a,~) x .  . • x Pi(m(a).a)-> P,(~) 

where a~g2 ,  p ( a ) ,  m ( a ) e N ,  j (1,  a ) , . . . , j ( p ( t ~ ) , a ) ~ J ,  i(1, a ) , . . . , i ( m ( a ) , a ) ,  
r ( a ) s I .  

For simplicity, we have placed all the parametric data structures A, 7 to the left 
of the nonparametr ic  ones; of  course, this restriction is inessential. I f  there are no 
parameters, i.e., if  p ( a ) = 0 ,  then all the A,~'s disappear. 

Remarks 1.1. Below we list some consequences of our definitions: 
(a) A data structure S ~ 5e is parametric iff it is not the codomain of any basic 

operation g~ ~ ~3. 
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(b) A data system is completely determined up to isomorphism by the cardinality 

of its parametric data structures and by its ' language',  that is, by the symbols by 
which we denote its data structures, its functions, and the respective domains and 
codomains of its functions. 

(c) If  in a data system D = (Se, ~) there are no parameters, i.e., if all the da ta  
structures S ~ Se are proper, then there must be some nullary operation g ~ ¢g. 

For example, there is no data system with language ({B}, {g: B--> B}). 
Here, we implicitly assume that infinitely long terms such as g(g(g( . . ,  are not 
allowed; therefore, it is possible to make definitions by induction on the complexity 
of the elements of a data structure. 

(d) Both the arguments and the values of  a basic operation are elements of some 
data structure and not functions themself; so, a function g: (B --> B) --> B with domain 
B--> B is not allowed as a basic operation. This restriction will be crucial in the 
proof  of the Completeness Theorem (Theorem 6.3). 

1.4. Examples: natural numbers, lists, trees and forests 

By Remark 1.1(c) we can give examples of data systems by just exhibiting their 
respective languages (we are not interested in the cardinality of the parameters). 

(a) Natural numbers: 

D = ({NI,  {s: N--> N, o: Nt) .  

(b) Lists: 

D = ({A, L}, {cons : A x L--> L, nil : L}), 

where A (a set of  atoms) is a parametric data structure (since it is not the codomain 
of 'cons', neither the codomain of 'nil '  ), and L (a list of  atoms) is a proper data  
structure. 

(c) Trees and forests: 

D = ( { A ,  T,  F } ,  { s p a n :  A x F--> T, join: T x F--> F, empty: F}), 

where A (a set of  atoms) is a parametric data structure, and T (finite nonempty 
trees with nodes labelled by atoms) and F (forests) are proper data structures. 

The intended meaning is 

a 

/ \ =span(a, join(t l , . . . , join(tn,  empty) . . . ) )  (n~>0). 
tl • • • tn 

So, we see that trees (which are obtained 'spanning' atoms to forests) and forests 
(i.e., finite sequences of  trees) are defined in terms of each other. 

In the following we shall sometimes write for short s, o, c, n, sp, j, e instead of  
s, o, cons, nil, span, join, empty, respectively. 
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2. Functions on data structures 

Since a data system D is a term algebra,  we can define functions on its data 

structures by some set of  recursive equat ions  and  prove terminat ion by induction 

on the length of  the inputs  (since a term is a finite object). 

Thus,  starting f rom the basic operat ions  we can define new (total) functions in 

terms of  already defined ones. 

However,  since we deal in general with heterogeneous  algebras, it may happen 

that  we cannot  define only one funct ion at a t ime; we have rather  to define 

s imultaneously a whole  family of  functions {f~},~ ~ (one for each proper  data structure 

of  the system) in terms of  a family {h~}~n  of  a lready given functions (one for each 

basic operat ion of  the data  system). 

The following defini t ion should now be clear. 

2 . 1 .  I t e r a t i v e  d e f i n i t i o n s  

Given a data system 

D = ({A,7},7~ j u {P,},~,,{g~}~n} 

and  a family of  p roper  data structures { Q , } ~  (possibly belonging to some other 

data systems) we say that a family { f~} ,~  of  unary functions f~" P, --> Q~ is iteratively 
defined in terms of  a family {h~}~n of  funct ions  

ha" Aj(1 ,~)x-- .  x Aj(p(~).~)x Qi(L,~) x - . -  x Qi(,,(~),~)--> Q~(~) 

(the indexes are as in Section 1.3) if  for  each ~ I  and for each element 

g , ~ ( a l , . . .  , ap(a), x l , . . .  , Xm(~)) E P, we have 

f ~ ( g ~ ( a , , . . . ,  ap(,,), x , , . . . ,  Xm(,~)))  

= h , , ( a l , . . . ,  a p ( , ~ ) , f i o , , ~ ) ( x , ) , . . . ,  fi(m(~),~)(Xm(~))). (1) 

E x p l a n a t i o n  

Since P, i s -a  p rope r  data  structure, for  each x ~  P, there exist a ~ O, a~ 

A j ( L ~ ) ,  . . . , ap(~)  ~ A j ( p ( ~ ) , ~ ) ,  x l  ~ P i (L~) ,  . . . , Xm(~)  ~ Pi (m(~) ,~)  such that x = 
g ~ , ( a l ,  . . . , ap(=),  x l ,  . . . , xm( ,~)) .  

Thus, for every x ~ P ,  we can compute  the value o f f  (x) using the equat ion above 

and  the values of  the funct ions f (L~) , - - -  ,f(m(~).~) at arguments of less complexity. 
I f  m ( a ) = O ,  we have the induct ion  basis, that  is, f ( g ~ ( a l , . . . , a p ( ~ , ) ) ) =  

ha (a 1, • • •, ap(~)); in part icular ,  if  there are no parameters ,  f (g~) = ha. 

I t e r a t i o n  v e r s u s  r e c u r s i o n  

It is impor tant  to notice that  x l ,  . . . ,  Xm(,~) do not  appear  as arguments of ha in 

equat ion  (1) above. This is the reason for the name  'iterative definitions'  instead of  
'primitive recursive definit ions' .  
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Of course, an approach based on recursion rather than iteration is also possible, 
but the advantage of an iterative definition of a function is that it can be very simply 
translated into a A-term representing that function (see Section 5.2) once the data 
structures have been suitably represented (generalizing the representation of the 
natural numbers  due to Church). 

The well-known fact that primitive recursion on natural  numbers can be reduced 
to iteration by means of a pairing function can easily be generalized to arbitrary 
algebras. Hence, we do not lose expressive power by restricting ourselves to iteration. 

In particular,  the predecessor function and, more generally, the inverse functions 
of the basic operations of any algebra (which can obviously be defined by recursion) 

can also be defined by iteration. 

Remark 2.1 (the identity function iteratively defined). Let us notice that, if for all 
a ~ ~ we set (in equation (1)) ha = g~, then each of  the iteratively defined functions 
f~ turns out to be the identity function on P~. 

Nonunary functions 
Iterative definitions are extended to nonunary functions f replacing equation (1) 

by 

f ,  ()7, g,~( al, . . . , ap(,,), xl, . • •, Xm(~))) 

= h~0 7, al, • • •, ap(~,), fi(1,,,)(37, x 1 ) , . . . ,  f/(m(a),t~)(Y' Xm(a))), (2) 

where 37 is a sequence of  variables ranging over a sequence of data structures (the 
role of  )7 is not to be confused with the role of  the parameters a ~ , . . . ,  ap(~)). 

2.2. Examples: some iterative schemes 

In the following examples the functions f~ are iteratively defined in terms of the 
functions ha (the codomains are left unspecified). 

(a) Take D = ( { N } ,  {s:N-> N, o:N})  and define f l ( s ( x ) )=h l ( f~ ( x ) ) ,  f l (O)=h2 
(the usual scheme of iteration on natural numbers). 

(b) Take D = ( { A ,  L} ,{cons:A×L-->L,  nil:L}) and define f l ( c o n s ( a , y ) ) =  
hl(a,f~(y)) ,  f l (ni l )--hE (this scheme is also known as 'tail recursion') 

(c) Take D = ({A, T, F}, {span: A x F -> T, join:  T x F-> F, empty: F}) and define 

f~(span(a, y ) ) =  h~(a, f2(y)),  f2(join(x, y ) ) =  h2(f~(x),f2(y)), f2(empty) = h3. 

2.3. Iterative functions 

The following clauses inductively define what it means for a function f :  $1 x .  • • x 
Sm --> S (with $ 1 , . . . ,  Sin, S data structures) to be 'iterative'. 

(a) A basic operation g (of some data system D)  is an iterative function. 
(b) Constant  functions and projection functions U';(x~, . . . ,  xn)= xi are iterative 

functions. Iterative functions are closed under composition, that is, i f f ( x ~ , . . . ,  xn) = 
h ( h ~ ( x l , . . . , x , ) , . . . , h , , ( x h . . . , x ~ ) )  and h, h i , . . . ,  hm a r e  iterative, then f is 
iterative. 
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(c) Iterative functions are closed under  iterative definitions. We can consider 
iterative functions as a generalization of the primitive recursive functions (see Section 

2.1) to arbitrary data structures. 

2.4. Examples: list concatenation and preorder traversal of a tree 

In the following examples we refer to the data systems defined in Section 1.4. 
(a) We define the iterative function c a t : L x L ~ L  (list concatenation; usually 

called append)  as follows: first define f :  L x L ~  L iteratively by f(y,  cons(z, w)) = 

cons(z,f(y, w) ), f(y,  nil) = y. Then define cat(x, y) = f(y ,  x). 
(b) We give an iterative definition of  the function preorder:  T ~  L which, when 

applied to a tree x ~ T, gives the list preorder (x) consisting of all the nodes of the 
tree x ordered according to a 'preorder traversal'. First define fl  : T-> L, f2: F ~ L 

iteratively by f l ( span(a ,  y))=cons(a, f2(y)), f2(join(x, y))=cat(fl(x),f2(y)),  
f2(empty) = nil. Then define preorder ( x ) = f l ( x ) .  

3. Second-order A-calculus 

Our purpose is now to represent any data structure and any iterative function in 
second-order A-calculus (A for short). We refer to [8, 3] for a description of A. 

It is important  to underline that our approach is completely uniform and auto- 
matic: we can represent in A whatever data structure and, most importantly, given 
an iterative function f, we can define by a mere syntactical inspection of the definition 

of f, a typed A-term f which represents f in A. 
Of course, the iterative functions form a rather small subset of all the functions 

representable in A ; in Section 8 we shall consider the possibility of extending our 
automatic method to functions of higher complexity. 

3.1. Names 

In order to carry out our program, we first make an inessential enlargement of 
the language of  A by adding, for each parametric data structure A, a 'parametric '  
A-type A called the 'name'  of A and, for each parametric element a ~ A, a 
'parametric '  A-term a, of  A-type A, called the name of a. 

Parametric A-types A and parametric A-terms a must be considered as closed 
A-types and closed A-terms respectively, and it is not allowed to abstract with 
respect to them. We will instead abstract with respect to variables of parametric types. 

Note that  a parametric A-term a always behaves as an argument and never as a 
function (i.e., it cannot be applied to any A-term). For notational convenience, 
before defining A-representations, we first give 'names '  also to proper data structures 
P and proper  elements x ~ P. 

(a) For each proper data  structure P we choose a type variable P (in A) called 
the name of  P. 
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(b) For  each basic opera t ion  

g~ : Aj(,,~)×- • • × Aj(p(~,).~)X P i ( 1 , a ) x -  • • x Pi(m(~).~)~ Pr(a) 

(of some data  system) we choose a A-variable g~ of A- type  

called the name  of  g~. 
The name  of  a proper  element x ~ P is inductively defined as follows: 

(c) If  x = g ~ , ( a l , . . . ,  ap, x ~ , . . . , x m t ~ , ) ) ,  the name x of  x is the open A-term 

(g~al  • • • ap(,~)xl • • • x,,,(,~)). It can be checked that  x has type P. For example,  the 

name of the natural  number  s ( s ( o ) )  is the open A- term s ( s o )  where s, o are 

A-variables of  A-type N-~  N and N respectively. 

4. Representation of data structures in A 

Once we have defined names,  we can define representat ions.  More precisely, given 

a data system 

D = (Ae, ~ )=({A1,  . . . ,  A~, P I , . . . ,  P,,}, {g~, • • •, gk}), 

we shall define for each data structure S e Ae a closed A- type  _S, called the representa- 

tion of S, and,  for each element x s S, a closed A-term x of  A-type _S, called the 

representat ion of  x. We shall say that _S is defined by the type synthesis paradigm,  

and x by the data  synthesis  paradigm. We shall now expla in  how to define these 

representat ions.  

Definition 4.1 ( t y p e  s y n t h e s i s  p a r a d i g m ) .  T h e  representat ion of a parametr ic  data  

structure Aj is its own name, that is _Aj-= Aj. The representat ion of a proper  data 
structure Pi is given by 

_Pi =- A P I  "" • A P n (  O~--> " " - >  Ok --> P~),  

where 0 1 , . . . ,  Ok are the types of the A-variables g l , . . . , g k  as defined in (b) of  
Section 3.1. 

Examples 4.2. (a) If D = ({ N} ,  {s" N--> N, o: N}),  then _N --- A N ( ( N  --> N )  -> N --> N ~. 
(b) If D = ({A, L}, {cons" A x L-> L, nil" L}), then 

_A == A ,  _L =- A L ( ( A -> L --> L ) ~ L -> L ) . 

(c) D = ({A, T, F},  {span" {A x F--> T, jo in :  T x F--> F, empty :  F}), then 

_ A - - A ,  T - -  A T A F ( ( A --> F -> T ) --> ( T --> F -> F ) --> F -> T ) , 

F =-- A T A F ( ( A --> F --> T ) -+ ( T -> F -> T ) --> F --> F ) . 
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Definition 4.3 ( d a t a  s yn thes i s  p a r a d i g m ) .  T h e  representat ion of  a parametr ic  data 

element a ~ A is its own name, that  is, a = a. The representat ion of  a nonparametr ic  

element of a nonparamet r i c  e lement  x e Oi is given by 

_x - A P 1  " " " A P ,  Agl • • • Agk.  x, 

where x is induct ive ly  defined in (c) of  Section 3.1. 

On other words,  the A-representa t ion  _x on an element x of  a data  structure is 

the abstract ion closure of  its 'name '  x. It follows from the definition that 

_xP~ • • • P , , g l  " " " g k  : A  )6, where " =  " A means  A-convertibil i ty.  It can easily be 

checked that  if  x belongs to a data  structure S, then x has A- type  S. 

Examples 4.4. Wi th  reference to Section 1.4 we have, for example:  

(a) s ( s ( ° ) )  N s N - ~ N ° N  =A S(SO) 

( that  is, s ( s ( o ) ) =  A N A s N ~ N A O N . S ( S O ) ) .  Here s and o are var iables  of  A not to be 

confused with the successor and  the zero functions.  

(b) c ( a l ,  c (a2 ,  n ) ) L c a ~ L ' r n  L =A c a l ( c a 2 n ) .  

(c) s p ( a , , j ( s p ( a 2 ,  e) ,  e ) ) T F s p A ~ r ~ 7 ) r - ' F - ~ r e F =  A s p  a , ( j ( s p  a 2 e ) e ) .  

5. Representation of functions in A 

Once we have represented data,  we can represent  functions.  

Definition 5.1 ( r epre sen tab i l i t y  o f  f u n c t i o n s  in A ). Given a funct ion  f :  S~ x-  • • x S,, -> S 

(with S b . . . ,  Sin, S data structures) we say that  f is A-representable  if there exists 

a A-term _f of  A- type  S~ ->. • • -> _Sin --> _S such that,  for all x~ ~ S ~ , . . . ,  xm ~ Sm, 

f _xl " " " _Xm = f ( x l ,  . . . , Xm), 

where all the under l ined  A-terms,  except f, are defined by  the data  synthesis 
paradigm. 

For a given A-representable  funct ion f there are, in general ,  infinitely many  

nonconvert ible  A-terms which represent  f ;  however,  we shall  see that  not only is 

each iterative func t ion  f A-representable ,  but, once we are given a definition o f f ,  

we can effectively find one s tandard  representat ion f of fi 

Let us first cons ider  the case of  the basic operations.  

5.1. R e p r e s e n t a t i o n  o f  the bas ic  o p e r a t i o n s  

Let 

D = ( ~ f ,  ~)  = ({A1 . . . .  , A ~ , P 1 , . . . , P , } , { g l , . . . , g k } )  
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be a da t a  sys tem a n d  let  

g~" Ai(,,~) x -  • • × Aj(p(~).~) × P,(,,~) x .  • • x Pi(m(~),~)--> P r ( ~ )  ~ 

be a bas i c  o p e r a t i o n  ( a  ~ { 1 , . . . ,  k}). 

Def ine  a c losed  A - t e r m  g~ o f  A - t y p e  

• • er( ) 
as fo l lows.  

Definition 5.2 ( b a s i c  o p e r a t i o n  s y n t h e s i s  p a r a d i g m )  

( g ~  u ,  • • • u p ( ~ ) v l  • • • v,,(~))Pl " • • P ~ g ,  • • • g k  

= A  g ~ u ~  " • • u p ( ~ ) ( v , P ,  • • • P . g ,  • • • g k )  " " " ( V m ( , ~ ) e l  " " " P ~ g l  " " " g k ) ,  

where  u , , . . . ,  u p ( ~ ) ,  v , , . . . ,  V m ( ~ )  are  var iab les  o f  type  

A/ (1 .~ ) , . . . ,  Ai(p(,~),~ ), P i ( , , ~ ) , . . . ,  P i ( m ( ~ ) , ~ )  

respec t ive ly .  

Proposition 5.3. g ~  r e p r e s e n t s  g,~ i n  A ,  t h a t  i s ,  f o r  e v e r y  a , ,  . . . , an ,  x ~ ,  . . . , x , , ,  i n  t h e  

d o m a i n  o f  g ~ ,  

g ~  a ,  • • • a p  x l  • • • X m  = A  g , ~ ( a l ,  • • • , ap, x , , . . . ,  xm). 

( H e r e ,  p i s  p ( a )  a n d  m i s  m ( a ) . )  

Proof 

g~ al • • • ap xl • • • xm 

by Def in i t i on  5.2 

= A  A P 1  " " " A P ,  A P ,  A g l  • • .  g k . g ~ a ,  " " " a p ( X , P l  • • • P , g ,  • • • gk) 

• " " ( X m e l  " " " P , g ,  " " " g k )  

by Def in i t i on  4.3 

= A  A P 1  " " " A P n A g ,  • • • A g k . g ~ a ,  • • • a r t 1  • • • x m  

by Def in i t i on  4.3 a g a i n  

- g ~ ( a , , . .  . ,  a p ,  X l , . . . , X m ) .  

Examples  5.4. Wi th  r e f e r e n c e  to Sec t ion  1.4 a n d  Def in i t ion  5.2 we  have,  for  

e x a m p l e ,  

( s v  ~ ) N s N - ~ N o  N = A S ( v N s o ) ,  

- O N s N ~ N O N  = A  O, 

(-cu -A ~)-L ) L c A ~  L ~  L n L : A c u  ( v L c n  ) , 

n L c A "  L ~  L ll L 
- ~-A n ,  

(sp u - A v - ~ )  T F s p A - ~ - "  r j r - ~ F - ' F e  F = A s p  u (  v T F s p  j e ) .  
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5.2. Representation o f  iterative functions in A 

Let 

D = ({A~, . . . ,  A~, P ~ , . . . ,  P,},  { g b . . . ,  gk}) 

be a data system. 
Suppose that a family {f~lt = 1 , . . . ,  n} of unary functions f~ : P~ --> Q, is iteratively 

defined in terms of a family of already given functions {ha ]a = 1 , . . . ,  k} (as in 
equation (1)) and suppose that each ha is A-representable by a A-term _ha, say. 

Define f, as follows. 

Definition 5.5 (program synthesis paradigm ). For each ~ e { 1 , . . . ,  n} define a A-term 

f~ of A-type P~ ~ Q, by 

(a) f~ -- Ave,.vQ, • • . Q,h~ . • • hk. 

Similarly in case of nonunary functions (see equation (2)) define f~ by 

(b) £ a  = A  X v ' , . v Q ,  . . . Q , ( h , a )  . . . ( h k a ) ,  

where ~ is a sequence of A-variables. 

We claim that f represents f~ in A. Let us prove it only in case of unary functions 

f~:p~->Q,. 

Theorem 5.6. For each x ~ P, 

£x =A£(x) 

where x and f , ( x )  are given by the data synthesis paradigm (Definition 4.3) and f ,  

is given by Definition 5.5(a). 

Proof. Let x ~ P,. The proof  follows by structural induction on x. 
Since P, is a proper data structure, there exists a basic operation ga" Aj(1,a) ×" • • × 

Aj(,,(a) a)x  P i o . a ) x - . .  XPi(m(a),a)->Pr(~) such that, for some a l , . . . ,  ap, X l , . . . ,  xm 
in the domain ofga, x =  g a ( a l , . . . ,  ap, X l , . . . ,  x,,,). (Here, p i s p ( a )  and m is m(a) . )  

Therefore, in A, by Proposition 5.3, 

f,_x =f ,(ga 1" ' "  ap x l ' ' "  xm) = 

by Definition 5.5(a) 

= ga al • • • a t, X 1 " " " X m  Q1 • • • Q , ,  h i  • • • h i  • " • h k  = 

by Definition 5.2 

= ha al"''a__pp(X_A Q I " ' "  Q,, h i " ' "  h k ) ' ' "  (x,,, Q l ' ' "  Q,, h l " " h k ) =  

by Definition 5.5(a) 

= h~, a l ""  " a p ( f / ( l , a )  x 1 ) "  " " ( f / ( m , a )  Xm) = 
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by induction hypothesis and since _he represents he in A 

= h ~ ( a l , . . . ,  ap, f i o , , ~ ) ( x l ) , . . . ,  fi<m,,~)(Xm))- 

by equation (1) 

" f ~ ( g a ( g h  . . . , a p ,  X l ,  . . . , X m ) )  

=-£(x). 

For m = 0 we have the induction basis. 
It can easily be checked that all the expressions above are well typed. [] 

Notice that the A-program f, (, = 1 , . . . ,  n) defined by the program synthesis 
paradigm (Definition 5.5) depends on t only in the type of its argument variable. 

Corollary 5.7 (fixed point equation). L e t  D = ( {AI , . . . ,  A~, P1 , . . - ,  Pn, { g l , . . . ,  gk}) 
be as  above .  Then ,  f o r  al l  x ~ P~, 

_X P l  " " " Pn gl " " " gk =A_X. 

(Do not confuse the last expression with _ x P ~ ' ' ' P ~ g ~ ' ' ' g ~ ' ' ' g k  = A X  which 
is nothing but the definition of x (Definition 4.3).) 

Proof. Let us put, in Section 5.2, hi = g l , . . . ,  h k  = g k .  

Then, by Remark 2.1, each iteratively defined function f," P~ --> Q, is the identity 
function on P~, that is, Q~ = P, and f ,(x) = x. 

Therefore, in A, 

x=A(x)=f,x= 

by definition o f f  (Definition 5.5) 

=_x P1 "" " Pn gl " " " gk. [] 

Corollary 5.8 (representability of iterative functions). E v e r y  i tera t ive  f u n c t i o n  is 

A - r e p r e s e n t a b l e  ( a n d  we  h a v e  a n  a u t o m a t i c  m e t h o d  to represent  i t) .  

Proof. In the definition of iterative functions (Section 2.3), point (a) is settled by 
the basic operation synthesis paradigm (Definition 5.2) point (c) by the program 
synthesis paradigm (Definition 5.5), and point (b) is trivial. [] 

5.3. E x a m p l e s :  s o m e  A - p r o g r a m s  

(a) With references to point (a) of Section 2.4 we have, by Definition 5.5(b), 

f v  -L = A AU ¢ . u L  cons v. 

It follows that 

cat u-Z v -L = A f v u  = A u L  cons v, 

hence 

cat--  Au-LAv-L.uL cons v. 
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(b) With reference to point (b) of  Section 2.4 we have, by Definition 5.5(a), 

preorder--  ArT.v I_, cons cat nil. 

6. Completeness 

We raise the following question: given a dosed A-type y, which is the set of all 
the closed A-terms in normal form having type y? 

Notice that, in general, this set is recursively enumerable. Using the Cur ry-Howard  
homomorphism between proofs and A-terms we could rephrase this question in the 
following equivalent way: given a sentence in second-order (intuitionistic) logic, 
which is the set of all its closed normal proofs? 

Of course, a false sentence has no proof  at all; therefore, the corresponding 
A-type is not the type of any closed A-term. This is the case, for example, of the 
A-type A/3((/3-> 13)->/3) (which corresponds to the false sentence (V/3)((/3->/3)--> 

/3)). 
Imposing suitable restrictions on the structure of y, the Completeness Theorem 

below settles our question. The result is that the class of all closed normal forms 
of type y consists exactly of all the A-representations of the elements of  a suitable 
data structure which is uniquely determined by the relation _S = y (_S is defined in 
Section 4). 

In particular, if y = _N = AN((N--> N)  -> N--> N) ,  our result says that the closed 
normal forms of type _N are the A-representations of the natural numbers and (most 
importantly) no other closed normal form has type y. 

Actually, the restrictions on y can be expressed simply by y = _S for some data 
structure S. 

For a more syntactical characterization of y we need a definition. For simplicity, 
in the following we work in A without parameters (the general case requires some 
minor changes). 

Definition 6.1 (degree o f  a type). For a A-free type a we define the degree d ( a )  of 
a as follows: 

d ( a )  = 0 if a is a type variable, 

d ( a  -->/3) = max{1 + d ( a ) ,  d(/3)}. 

Proposition 6.2 (on the restrictions), y = S for  some data structure S (without pa- 

rameters) i f f  y is a closed nonempty type (i.e., there is some closed A-term o f  type y) 
and y = AP1 • • • APn.O for  some n > 0, where 0 is A-free and d(O) <<- 2 (in the case 

with parameters we must further require that 0 does not contain any subtype ot-> fl, 
where fl is a parameter type). 
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Actually, the restriction that  3" be n o n e m t p y  is unnecessary if we enlarge the 

definition of  da ta  system to enclose empty data  structures (like ({B}, {g: B ~  B}), 

see Remark 1.1(c)). 
Since we do not  want  to prove the Proposi t ion stated above because it is quite 

tedious and  trivial,  we shall assume directly that  3' = _S for some data structure S. 

Theorem 6.3 (Completeness  Theorem).  Le t  

D = (6e, ~ ) = ( { A 1 , . . . , A t ,  P 1 , . . . , P , } , { g l , . . . , g k } )  

be a data  sys tem.  I f  S • b" is a da ta  s t ructure  a n d  t is a closed A - t e r m  o f  A- type  3' = _S, 

then there exis ts  a (un ique)  e l emen t  x •  S such that  x_ =A t (where  x_ is given by 

Def ini t ion 4.3). 

Proof (without  parameters) .  Let so S be a p roper  data structure, say S = P,, and  let 

t be a closed A-term of  A-type PL -- AP1 • • • A P , ( O I  -->. • • --> Ok --> P,)  (see Defini t ion 

4.1). 
The p roo f  will make essential use o f  the fact that  01, . . . ,  Ok have degree 1 (check!) 

and PL has degree 0. 

We have to prove that,  for some x • Po 

t =A _x - -  A P 1  " " • A P , , A g l  • • • A g k . x  

(see Defini t ion 4.3), or equivalent ly tP~ • • " P i n g 1  " " " gk -~-A X. 

We are done  if  we have proved that  there exists an x • P~ such that  the normal  

f o r m  t' o f  t P 1  • • • P r i g 1  " " • g k  is ident ical  to x ( indeed x is a normal  form by poin t  

(c) of  Section 3.1). 
By Section 3.1 it follows t h a t t h e  requirement  that t' is identical to x for some 

x • P, amounts  to fulfill all of  the fol lowing points:  

(a) t' is a normal  form of  A-type P. 

(b) t' has at most  g l , . . . ,  gk as free variables. 

(c) t' is abstraction-free (i.e., ne i ther  "A"  nor  " A "  occur in t'). 

Since (a) is trivially satisfied and  (b) follows from the hypothesis  that  t is a closed 

A-term, the only  nontrivial  point  is (c). 

Suppose, by contradict ion,  that  t' is not  abstraction-free. Since t' has a type P~ 

of  degree 0, t' is not  an abstract ion term, that  is, t ' ~  h x . N  and t ' ~  A3".N. 

Since t' is normal ,  t ' has no subterms of  the form ( A x . N 1 ) N 2  or of the form 

(A3" .N)a .  

The only possibil i ty left is that  t '  has a subterm of  the form N I ( A x . N 2 )  (or o f  the 

form N1(A3".N2)) .  

If  we consider  the leftmost among  such subterms, we can assume that N1 is 
abstraction-free and that  it is bui l t  up  by appl icat ion from a subset of  the free 
variables g ~ , . . . ,  gk of  t' only. 

Since the types 01, • • . ,  Ok of  gl, . . . .  , gk have degree 1 and,  since this proper ty  is 
hereditary w.r.t, appl icat ion,  the type of  N1 has also degree 1. 
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Since any A-term whose type has degree 1 can only be applied to a A-term whose 

type has degree 0, it fo l lowsthat  N~(Ax.N2)(respect ive ly  N~(AT.N2))  has no type; 

a contradiction. Thus, t' is abstraction-free. [] 

Corollary 6.4. The Completeness Theorem extends to functional types; that is, i f  

$1,. • . ,  Sm, S are data structures and t is a closed A-term o f  A-type S1 -->" • • --> Sm --> _S, 

then there is a (unique) function f :  S1 x . • • x Sm --> S such that t A-represents f (see 

Definition 5.1). (In general, f may not be iterative.) 

Proof. Choose x ~ s S I , . . . , x m ~ S m  and apply Theorem 6.3 to the A-term 

( tXl  • • • X m ) .  [ ]  

7. An equivalence of programs in A 

G i v e n  a A-representable function f :  S 1 x . . - x S  m --> S (with S 1 , . . .  , Sin, S d a t a  

structures), there are, in general, several nonconvertible A-terms which represent f 

in A. We say that two A-terms, or 'A-programs',  are equivalent if they represent 

the same function. We shall give in Lemma 7.2 a sufficient condition for A-program 

equivalence, based on the fixed point equation (Corollary 5.7) and on the Complete- 
ness Theorem 6.3. 

More precisely, we shall define an equivalence relation " = "  between A-terms 

such that if a, b are A-programs and a = b, then a, b are equivalent A-programs. 

In this way we can prove equivalence of programs without using induction on the 
structure of the input. 

Definition 7.1 (the basic operations drop out). Let a, b be A-terms. Define "-~" as 

the least congruence extending =A and such that 

(*) if D = ({A~, . . . ,  A~, P ~ , . . . ,  Pn}, { g ~ , . . . ,  gk}) is a data system and v is a A- 
variable of  A-type Pi, then 

vP~ • • • Pn g~ " • • gk ~- v. 

The last equation is similar to the fixed point equation (Corollary 5.7) except that 

there is a free variable v instead of a closed A-term _x. Note that since = extends 

= A, the variable v may actually be replaced by any A-term t of A-type Pi. 

Lemma 7.2. Let P1 , . - . ,  Pm be proper data structures, and v b . . . ,  v,, be A-variables 
o f  A-type P 1 , . . . ,  Pm respectively. 

Let  a [ v l , . . . ,  Vm] and b [ v b . . . ,  Vm] be A-terms containing at most v ~ , . . . ,  Vm as 
free variables. We claim that i f  a [ v l , . . . ,  v ~ ] ' b [ V l , . . . ,  vm], then, for  all Xl~ 

P 1 , . . . ,  Xm ~ Pm, we have a[x_l , . . . ,Xm] =A b[_xb...,_xm]. 
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Proof. The proof  follows by induction on the derivation of a [ v b . . . ,  v , , ]= 

b [ V l , . . . ,  vm]; the only critical point is rule (*) of Definition 7.1, which is settled 

by the fixed point equation (Corollary 5.7). []  

Theorem 7.3 (A-program equivalence). I f  a, b are closed A- terms o f  A- type  PI -->" " ""-> 

p,,, --> _P (with P1, • • . ,  Pro, P proper data structures) and  a ~- b, then a, b are equivalent 

A-programs.  

Proof. Choose A-variables v l , . . . ,  Vm of A-type P ~ , . . . ,  P,, respectively. Since a -~ b, 
and " ' ' "  is a congruence, (av~ . . .  v,,,)= (bVl " • • Vm); thus, by Lemma 7.2, for all 

Xl  ~ P I ,  • • • , x , , ,  ~ P r o ,  

( a X l "  " " X m )  = A  ( b x , "  ' '  x , . ) ,  

since both members have type _P, by the Completeness Theorem there is an x c P 
such that both (a_x~ • - • _x,,,) and (b_Xl • • • _x,,,) reduce to x. Thus, a, b are equivalent 
A-programs.  [] 

7.1. Applications 

The following examples show how the equivalence "-~" can be used to transform 
A-programs,  obtained by the program synthesis paradigm, into equivalent A- 
programs which satisfy some extra properties. 

(a) With reference to example (a) of Section 5.3 we have 

cat--- Au-LAv-L.uL cons v 

= Au-LAv-~r.uL cons(vL cons nil) 

L L A ~ L ~ L  L =A AU- A v - . ( ( A L A c  An . u L c ( v L c n ) ) L  cons nil) 

Au-L Avb ALAcA-" L-* L AnL.uLc( vLcn ) 

d e f  cat*. 

We notice that the A-program cat* is associative with respect to every A-variables 
u, v, w of type _L (i.e., cat* u (cat* v w ) =  cat*(cat* uv )w) ,  while the A-program cat 
is associative with respect to closed A-terms of  A-type _L only. 

Moreover,  cat* does not use the 'subprograms'  cons, nil. 
(b) We give, without proof, two equivalent A-programs for multiplication of 

natural numbers: 

Mul t~  Au -N Av -N.uN ( v_Ns )o, 

N N N---~ N Mult* --= Au- Av- A N A s  . u N ( v N s ) .  

It can easily be checked that Mult* is associative with respect to free A-variables 
while Mult is associative with respect to closed A-terms only. 
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Open problem 
The congruence relation "-- introduced above proved itself stronger than A- 

convertibility. It seems doubtful that a corresponding notion of normal form, stronger 
than/3- r /  normal form may easily be developed: for example (see example (a) of 
Section 7.1), if we think cat* to be the normal form of cat, then the reduction cannot 
be defined, as usual, asymmetrizing the congruence since cat* is obtained using the 

relation on both sides. 
It is an open problem (as suggested to us by M. O'Donnell)  to characterize the 

congruence = inside a precise and natural context. 

8. Extension to higher functional types 

We have given in Definition 5.5 a program synthesis paradigm for the A- 
representation of any iterative function. 

We shall illustrate by an example how the paradigm could be extended to functions 
of higher type which we call 'iterative functionals'.  

The definition of iterative functionals parallels the definition of iterative functions 
(Section 2.3), except that their 'types' are arbitrary high finite types based on the 
types of the data structures. The only proviso is obviously that the domain of a 
functional given by iterative definition (parallel to Section 2.1) is a data structure. 

Iterative functionals may be thought of as a generalization of the G6del recursive 
functionals to any data structure (i.e., not necessarily natural numbers). 

In the following example we assume any question of convergence to be settled. 

Example 8.1. We define a functional ack: N--> N--> N and we use the (extended) 
program synthesis paradigm to represent ack in A. 

For each f :  N--> N define o-y: N--> N iteratively as follows: 

crf(o)=f(1), trf(s(m))=f(trf(m)). 

Define or: (N--> N)  --> N --> N explicitly by or(f)  = try. 
Notice that  the previous definition transforms the iterative definition of the unary 

function try into an iterative definition of the binary (curried) functional tr. 

Define ack : N--> N --> N iteratively by 

ack(o)  = s, ack(s(m))  = o-(ack(m)). 

Notice that, by definition, ack becomes an iterative functional. 

It can easily be proved that ack(m)(n)  = Ack(m, n) where Ack: N x N-> N is the 
Ackermann function usually defined as follows: 

Ack(o, n) = s(n), 
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A c k ( s ( m ) ,  o ) =  Ack(m, 1), 

A c k ( s ( m ) ,  s ( n ) )  = Ack(m, Ack( s (m) ,  n)).  

By the (extended)  p rogram synthesis parad igm we have, in A, 

q-=_ A f  -N-~-N A v - N . v _ N f ( f l  ), 

a c k -  A v -N . v ( _N --> _N ) _o_s, 

that is, a c k ( m ) ( n ) =  _m( _N--> _N)_o-_s_n. 
This representa t ion of  the Ackermann  function is almost  the same as the one in 

[8]. 

9. A-types as notations for data structures 

We notice that  any da ta  structure S is completely determined by the A-type S 
representing S. (This is evident if we look at Examples  4.2.) 

Thus, we can use A-types as a system of notat ion to describe data  structures. 
Below we give a list of  (A-types for) several interesting data  structures (in addit ion 

to those we have already considered):  

(a) h e r e t o g e n o u s  pa i r s :  Afl( (a i  -> a2 -> fl) -> fl) ( a l ,  a2 are parametric  types). 
(b) n - e l e m e n t s  se ts :  A f l ( f l  ->. • • --> f l  -> f l ) .  

n t i m e s  

(c) b i n a r y  s t r i n g s :  Afl((fl  --> fl) -> (fl --> fl) ~ fl -> fl). 
(d) b i n a r y  l a b e l l e d  t rees:  A/3((a --> fl --> fl -->/3) -->/3 ->/3) ( a  is a parametr ic  type).  

Remark 9.1. It can easily be proved that if a A- type  y is equal to _S for some data  

structure S, then 3/is a closed A-type of  the shape Afl~ - • • Afl , (O~-->.  • •--> Ok--> fli), 
where 0 ~ , . . . ,  Ok have degree 1. The converse is not true in general;  for exampie,  

the A-type Afl((fl-> fl)--> fl) has no corresponding data  structure (this is related to 
Remark 1.1(c)). 
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