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a b s t r a c t

In this paper we shall study a fractional integral equation in an arbitrary Banach space X .
We used the analytic semigroups theory of linear operators and the fixed point method to
establish the existence and uniqueness of solutions of the given problem.We also prove the
existence of global solution. The existence and convergence of the Faedo–Galerkin solution
to the given problem is also proved in a separable Hilbert space with some additional
assumptions on the operator A. Finally we give an example to illustrate the applications
of the abstract results.
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1. Introduction

We consider the following fractional integral equation in a Banach space (X, ‖.‖):

u(t) = u0 +
1

Γ (β)

∫ t

0
(t − θ)β−1(−Au(θ))dθ +

1
Γ (β)

∫ t

0
(t − θ)β−1f (θ, u(θ))dθ, (1.1)

where A is a closed linear operator defined on a dense set and 0 < β < 1, 0 < T <∞. We assume−A is the infinitesimal
generator of an analytic semigroup {S(t) : t ≥ 0} in X and the nonlinear map f is defined from [0, T ] × X into X satisfying
certain conditions to be specified later.
Regarding earlier works on the existence and uniqueness of different types of solutions to fractional integral and

differential equations, we refer to [1–6] and references cited in these papers.
Muslim [1] has considered the following fractional order integral equations in a Banach space X of the form

u(t) = u0 +
1

Γ (β)

∫ t

0
(t − θ)β−1(−Au(θ))dθ +

1
Γ (β)

∫ t

0
(t − θ)β−1f1(θ, u(θ))dθ, t ∈ (0, T ] (1.2)

and

u(t) = u0 +
1

Γ (β)

∫ t

0
(t − θ)β−1(−Au(θ))dθ +

1
Γ (β)

∫ t

0
(t − θ)β−1f2(θ, u(θ), u(a(θ)))dθ, t ∈ (0, T ], (1.3)

where−A is the infinitesimal generator of a compact analytic semigroup and proved the existence and uniqueness of local
solutions.
Initial studies concerning the existence, uniqueness and finite-time blow-up of solutions for the following equation

u′(t)+ Au(t) = g(u(t)), t ≥ 0, (1.4)
u(0) = φ,
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have been considered by Segal [7], Murakami [8] and Heinz and von Wahl [9]. Bazley [10,11] has considered the following
semilinear wave equation

u′′(t)+ Au(t) = g(u(t)), t ≥ 0, (1.5)
u(0) = φ, u′(0) = ψ,

and has established the uniform convergence of approximate solutions to Eq. (1.5) by using the existence results of Heinz
and von Wahl [9]. Goethel [12] has proved the convergence of approximate solutions to the problem (1.4), but assumed g
to be defined on the whole of H .
In this paper, we use the Banach fixed point theorem and analytic semigroup theory to prove the existence, uniqueness

and approximation of solutions of the given problem (1.1). Further, we also prove certain approximation results.
The plan of the paper is as follows. In Section 3, we prove the existence and uniqueness of local solutions and in Section 4,

the existence of global solution for the problem (1.1) is given. Section 5 deals with the approximation of solutions. In the
last section, we have given an example.

2. Preliminaries

We note that if −A is the infinitesimal generator of an analytic semigroup then for c > 0 large enough, −(A + cI)
is invertible and generates a bounded analytic semigroup. This allows us to reduce the general case in which −A is the
infinitesimal generator of an analytic semigroup to the case in which the semigroup is bounded and the generator is
invertible. Hence, without loss of generality we suppose that

‖S(t)‖ ≤ M for t ≥ 0

and

0 ∈ ρ(−A),

where ρ(−A) is the resolvent set of−A. It follows that for 0 ≤ α ≤ 1, Aα can be defined as a closed linear invertible operator
with domain D(Aα) being dense in X . We have Xκ ↪→ Xα for 0 < α < κ and the embedding is continuous. For more details
on the fractional powers of closed linear operators we refer to Pazy [13]. It can be proved easily that Xα := D(Aα) is a Banach
space with norm ‖x‖α = ‖Aαx‖ and it is equivalent to the graph norm of Aα .
We notice that CT = C([0, T ], X), the set of all continuous functions from [0, T ] into X is a Banach space under the

supremum norm given by

‖ψ‖T := sup
0≤η≤T

‖ψ(η)‖, ψ ∈ CT .

It can also be proved easily that CαT = C([0, T ]; Xα), for all t ∈ [0, T ], is a Banach space endowed with the supremum norm

‖ψ‖T ,α := sup
0≤η≤T

‖ψ(η)‖α, ψ ∈ CαT .

We assume the following conditions:

(A1) −A is the infinitesimal generator of an analytic semigroup S(t).
(A2) The nonlinear map f : [0, T ] × Xα → X satisfies

‖f (t, x)− f (s, y)‖ ≤ L(r)[|t − s|ν + ‖x− y‖α],

for all t, s ∈ [0, T ], a fixed ν, 0 < ν ≤ 1 and x, y ∈ Br(Xα), where L : R+ → R+ is a nondecreasing function and for r > 0

Br(Z) = {z ∈ Z : ‖z‖Z ≤ r},

where (Z, ‖.‖Z ) is a Banach space.
We define the Riemann–Liouville integral of order β > 0 by

Iβg(t) =
1

Γ (β)

∫ t

0
(t − θ)β−1g(θ)dθ.

Definition 2.1. By a mild solution of the evolution problem (1.1), we mean a continuous solution u of the following integral
equation given below

u(t) =
∫
∞

0
ζβ(θ)S(tβθ)u0dθ + β

∫ t

0

∫
∞

0
θ(t − s)β−1ζβ(θ)S((t − s)βθ)f (s, u(s), u(a(θ)))dθds, (2.1)

where ζβ(θ) is the probability density function [14,15].

For further detail on the mild solution, we refer to [1,3–5].
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3. Existence of solutions

Throughout the paper we have assumed that 0 < T <∞, 0 < β < 1 and 0 ≤ α < 1.
We have the following theorem regarding the existence of a local solution.

Theorem 3.1. Suppose that −A is the infinitesimal generator of an analytic semigroup S(t) with ‖S(t)‖ ≤ M, t ≥ 0 and that
0 ∈ ρ(−A). If the function f satisfies the condition (A2) and u0 ∈ D(A), then the fractional integral equation (1.1) has a unique
local solution.

Proof. We will establish the existence of a solution u of Eq. (1.1) on [0, t0] for some t0 such that 0 < t0 ≤ T .
We take∫

∞

0
θ1−αζβ(θ)dθ = N1, (3.1)

where ζβ(θ) is the probability density function [4].
For any 0 < T̃ ≤ T , we define a mapping F from Cα

T̃
into Cα

T̃
given by,

(Fψ)(t) =
∫
∞

0
ζβ(θ)S(tβθ)u0dθ + β

∫ t

0

∫
∞

0
θ(t − s)β−1ζβ(θ)S((t − s)βθ)f (s, ψ(s))dθds. (3.2)

Clearly F is well defined. For R > 0, letM‖u0‖α ≤ R
2 and

S = {u : u ∈ Cαt0 , ‖u(t)‖α ≤ R}.

Choose t0, 0 < t0 ≤ T such that

t0 <
[
R
2
Cα−1N1−1(1− α){L(R)[T ν + R] + N2}−1

] 1
β(1−α)

, (3.3)

where Cα is a positive constant depending on α satisfying ‖AαS(t)‖ ≤ Cαt−α , for all t > 0 and ‖f (0, 0)‖ = N2.
To prove the theorem, first we need to show that F : S → S. For anyψ ∈ S, we have (Fψ)(0) = u0. If t ∈ [0, t0] then we

have

‖(Fψ)(t)‖α ≤
∫
∞

0
ζβ(θ)‖S(tβθ)‖‖Aαu0‖dθ + β

∫ t

0

∫
∞

0
θ(t − s)β−1ζβ(θ)‖AαS((t − s)βθ)‖

×‖f (s, ψ(s))− f (0, 0)‖dθds+ β
∫ t

0

∫
∞

0
θ(t − s)β−1ζβ(θ)‖AαS((t − s)βθ)‖‖f (0, 0)‖dθds.

≤ M‖u0‖α + N1Cα{L(R)[T ν + R] + N2}
tβ(1−α)0

(1− α)
≤ R. (3.4)

Hence F : S → S. Our next goal is to show that F is a strict contraction mapping on S.
For all t ∈ [0, t0] and ψ1, ψ2 ∈ S, we have

(Fψ1)(t)− (Fψ2)(t) = β
∫ t

0

∫
∞

0
θ(t − s)β−1ζβ(θ)S((t − s)βθ)[f (s, ψ1(s))− f (s, ψ2(s))]dθds.

Hence,

‖(Fψ1)(t)− (Fψ2)(t)‖α ≤ β
∫ t

0

∫
∞

0
θ(t − s)β−1ζβ(θ)‖AαS((t − s)βθ)‖‖f (s, ψ1(s))− f (s, ψ2(s))‖dθds.

From condition (A2) we have

‖(Fψ1)(t)− (Fψ2)(t)‖α ≤
1
R

Cα
(1− α)

N1[L(R)(T ν + R)+ N2]t
β(1−α)
0 ‖ψ1 − ψ2‖t0,α

≤
1
2
‖ψ1 − ψ2‖t0,α,

for all ψ1, ψ2 ∈ S. Hence F is a strict contraction mapping on S and therefore F has a unique fixed point in S.
Hence there exists u ∈ S, such that for all t ∈ [0, t0], we have

u(t) =
∫
∞

0
ζβ(θ)S(tβθ)u0dθ + β

∫ t

0

∫
∞

0
θ(t − s)β−1ζβ(θ)S((t − s)βθ)f (s, u(s))dθds, (3.5)
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where u(0) = u0. Now we will show that the function u is Hölder continuous on [0, t0]. For any t1, t2 ∈ [0, t0], where
t1 < t2, we have,

Aα[u(t2)− u(t1)] =
∫
∞

0
ζβ(θ)[S(t

β

2 θ)− S(t
β

1 θ)]A
αu0dθ

+β

∫ t2

t1

∫
∞

0
θ(t2 − s)β−1ζβ(θ)AαS((t2 − s)βθ)f (s, u(s))dθds

+ (−β)

∫ t1

0

∫
∞

0
θ [(t1 − s)β−1 − (t2 − s)β−1]ζβ(θ)AαS((t2 − s)βθ)f (s, u(s))dθds

+β

∫ t1

0

∫
∞

0
θ(t1 − s)β−1ζβ(θ)Aα[S((t2 − s)βθ)− S((t1 − s)βθ)]f (s, u(s))dθds

= I1 + I2 + I3 + I4. (3.6)

Hence,

‖u(t2)− u(t1)‖α ≤ ‖I1‖ + ‖I2‖ + ‖I3‖ + ‖I4‖. (3.7)

We have

I1 =
∫
∞

0
ζβ(θ)[S(t

β

2 θ)− S(t
β

1 θ)]A
αu0dθ

=

∫
∞

0
ζβ(θ)

[∫ t2

t1
βθ tβ−1AαS(tβθ)Au0dt

]
dθ.

Therefore

‖I1‖ ≤
∫
∞

0
ζβ(θ)

∫ t2

t1
βθ tβ−1‖AαS(tβθ)‖‖Au0‖dtdθ

≤ Cαβ
∫
∞

0
θ1−αζβ(θ)

∫ t2

t1
tβ(1−α)−1‖Au0‖dtdθ.

Hence

‖I1‖ ≤
N1

(1− α)
Cα‖Au0‖(t

β(1−α)
2 − tβ(1−α)1 )

≤ Cα‖Au0‖N1β(t1 + δ(t2 − t1))β(1−α)−1(t2 − t1)

≤ Cα‖Au0‖N1βδβ(1−α)−1(t2 − t1)β(1−α), (3.8)

where Cα is some positive constant satisfying ‖AαS(t)‖ ≤ Cαt−α for all t ≥ 0 and 0 < δ < 1.
Also, we have

‖I2‖ ≤
Lf (R)
(1− α)

CαN1(t2 − t1)β(1−α), (3.9)

and

‖I3‖ ≤ βN1Lf (R)Cα

∫ t1

0
(t1 − s)λ−1[(t1 − s)−λµ − (t2 − s)−λµ]ds, (3.10)

where Lf (R) = {L(R)[T ν + R] + N2}, λ = 1− βα and µ =
1−β
1−βα .

Hence, after some calculation [similar to Theorem 3.2 [4]] we get

‖I3‖ ≤ βN1Lf (R)Cαµδ1µ−1(1− c)−λ(1−µ)−1(t2 − t1)λ(1−µ), (3.11)

where c = (1− (µ
λ
)
1
λµ ) and 0 < δ1 ≤ 1.

Similarly we get,

‖I4‖ ≤ βN1Lf (R)
C1+α
α

∫ t1

0
(t1 − s)β−1[(t1 − s)−βα − (t2 − s)−βα]ds

≤ βN1Lf (R)
C1+α
α
δ2
α−1(1− c1)−β(1−α)−1(t2 − t1)β(1−α),

where c1 = (1− ( αβ )
1
αβ ), 0 < δ2 ≤ 1 and C1+α is some positive constant satisfying ‖Aα+1S(t)‖ ≤ C1+αt−1−α for all t ≥ 0.
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Thus the function u satisfies a Hölder condition on [0, t0]. With the help of the condition (A2), we can prove easily that
the map t 7−→ f (t, u(t)) is Hölder continuous on [0, t0]. This completes the proof of the theorem. �

4. Global existence

Theorem 4.1. Suppose that 0 ∈ ρ(−A) and−A generates the analytic semigroup S(t) with ‖S(t)‖ ≤ M, for t ≥ 0, u0 ∈ D(A)
and the function f : [0,∞) × Xα → X satisfies the condition (A2) . If there is a continuous nondecreasing real valued function
k(t) such that

‖f (t, x)‖ ≤ k(t)(1+ ‖x‖α) for t ≥ 0, x ∈ Xα, (4.1)

then the fractional integral equation (1.1) has a unique solution u which exists for all t ≥ 0.

Proof. By Theorem 3.1, we can continue the solution of Eq. (1.1) as long as ‖u(t)‖α stays bounded. It is therefore sufficient
to show that if u exists on [0, T ), then ‖u(t)‖α is bounded as t ↑ T .
For t ∈ [0, T ), we have

Aαu(t) =
∫
∞

0
ζβ(θ)AαS(tβθ)u0dθ + β

∫ t

0

∫
∞

0
θ(t − s)β−1ζβ(θ)AαS((t − s)βθ)f (s, u(s))dθds. (4.2)

From the above equation we get

‖u(t)‖α ≤ M‖u0‖α + β
∫ t

0

∫
∞

0
θ(t − s)β−1ζβ(θ)‖AαS((t − s)βθ)‖‖f (s, u(s))‖dθds.

Hence

‖u(t)‖α ≤ C1 + C2

∫ t

0
(t − s)β(1−α)−1‖u(s)‖αds, (4.3)

where C1 = M‖u0‖α +
k(T )N1CαTβ(1−α)

(1−α) and C2 = k(T )βN1Cα . Hence from Lemma 6.7 [Chapter 5 in Pazy [13]], u is a global
solution.
To complete the proof of the theorem, we only need to show that u is unique for the whole interval.
Let u1 and u2 be two solutions of the given fractional integral equation (1.1). Then for any t > 0, we have

‖u1(t)− u2(t)‖α ≤ β
∫ t

0

∫
∞

0
θ(t − s)β−1ζβ(θ)‖AαS((t − s)βθ)‖‖f (s, u1(s))− f (s, u2(s))‖dθds

≤ βN1Cα

∫ t

0
(t − s)β(1−α)−1‖f (s, u1(s))− f (s, u2(s))‖ds

≤ L(R)βN1Cα

∫ t

0
(t − s)β(1−α)−1‖u1(s)− u2(s)‖αds.

Hence from Lemma 6.7 [Chapter 5 in Pazy [13]], the solution u is unique. This completes the proof of the theorem. �

5. Approximate solutions

To prove the existence and convergence of approximate solutions to fractional integral equation we need additional
conditions on X and A.
We assume the following assumptions:

(A3) X is a separable Hilbert space.
(A4) The operator A is a closed, positive definite, self-adjoint linear operator from the domain D(A) ⊂ X into X such that

D(A) is dense in X . We assume A has the pure point spectrum

0 < λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λm ≤ · · · ,

where λm →∞ asm→∞ and a corresponding complete orthonormal system of eigenfunctions {φi}, i.e.,

Aφi = λiφi and
〈
φi, φj

〉
= δij,

where δij = 1 if i = j and zero otherwise.
If the conditions (A4) is satisfied then−A is the infinitesimal generator of an analytic semigroup {S(t) : t ≥ 0} in X .
Let Xn denote the subspace of X generated by {φ0, φ1, . . . , φn} and Pn : X → Xn be the associated projections operators.
For n = 0, 1, 2, . . . , we define the maps Fn on S as follows: for u ∈ S and t ∈ [0, T ]

(Fnu)(t) =
∫
∞

0
ζβ(θ)S(tβθ)Pnu0dθ + β

∫ t

0

∫
∞

0
θ(t − s)β−1ζβ(θ)S((t − s)βθ)Pnf (s, Pnu(s))dθds. (5.1)
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Theorem 5.1. Let n ≥ n0, where n0 is large enough and n, n0 ∈ N. If the conditions (A2)–(A4) are satisfied then there exists a
unique un ∈ S such that Fnun = un for each n = 0, 1, 2, 3, . . . , i.e. un satisfies the approximate integral equation

un(t) =
∫
∞

0
ζβ(θ)S(tβθ)Pnu0dθ + β

∫ t

0

∫
∞

0
θ(t − s)β−1ζβ(θ)S((t − s)βθ)Pnfn(s, Pnun(s))dθds. (5.2)

Moreover the solution un is uniformly Hölder continuous on [0, t0].

Proof. With the help of Theorem 3.1, we can show easily that the mapping Fn has a unique fixed point given by

un(t) =
∫
∞

0
ζβ(θ)S(tβθ)Pnu0dθ + β

∫ t

0

∫
∞

0
θ(t − s)β−1ζβ(θ)S((t − s)βθ)Pnf (s, Pnun(s))dθds (5.3)

which is uniformly Hölder continuous on [0, t0]. �

Corollary 5.2. If u0 ∈ D(A) then un(t) ∈ D(Aη) for all t ∈ [0, t0], where 0 ≤ η < 1.

Proof. As the function, un is Hölder continuous on [0, t0], hence with the help of Theorem 3.1, we can see that the map
t 7→ Pnf (t, Pnun(t)) is also Hölder continuous on [0, t0], hence un ∈ D(A). Since D(A) ⊂ D(Aη) and un ∈ D(A) hence our
Corollary is proved. �

Corollary 5.3. If u0 ∈ D(A) then there exists a constant M0 independent of n such that

‖Aηun‖ ≤ M0,

for all t ∈ [0, t0] and 0 ≤ η < 1.

Proof. From Eq. (5.3) we have,

un(t) =
∫
∞

0
ζβ(θ)S(tβθ)Pnu0dθ + β

∫ t

0

∫
∞

0
θ(t − s)β−1ζβ(θ)S((t − s)βθ)Pnf (s, Pnun(s))dθds. (5.4)

Hence

‖Aηun(t)‖ ≤ M‖u0‖η + β
∫ t

0

∫
∞

0
θ(t − s)β−1ζβ(θ)‖AηS((t − s)βθ)‖‖Pnf (s, Pnun(s))‖dθds.

≤ M‖u0‖η + N1Cη{L(R)[T ν + R] + N2}
tβ(1−η)0

(1− η)
≤ M0. (5.5)

This completes the proof of the Corollary. �

In order to prove the convergence, we need the following stronger assumption on the nonlinear map f than (A2).

(A2′) The map f is defined from [0,∞)× Xα into D(Aη) for 0 < α < η < 1 and there exist a nondecreasing function
L̃ from [0,∞) into [0,∞) such that

‖f (t, u)− f (s, v)‖η ≤ L̃(r){|t − s|ν + ‖u− v‖α},

for all t, s ∈ [0, T ], ν ∈ (0, 1] and u, v ∈ Br(Xα), where r > 0.

Theorem 5.4. We choose η such that 0 ≤ α+ η < 1. If u0 ∈ D(A) and the assumptions (A2)–(A4) and (A2′) are satisfied then
{un} ⊂ S is a Cauchy sequence and therefore converges to a unique function u ∈ S.

Proof. Let n ≥ m ≥ n0, where n0 is large enough and n,m, n0 ∈ N. Hence from Theorem 5.1 we have

un(t) =
∫
∞

0
ζβ(θ)S(tβθ)Pnu0dθ + β

∫ t

0

∫
∞

0
θ(t − s)β−1ζβ(θ)S((t − s)βθ)Pnf (s, Pnun(s))dθds. (5.6)

For t ∈ [0, t0], we have

‖Aα(un(t)− um(t))‖ ≤ β
∫ t

0

∫
∞

0
θ(t − s)β−1ζβ(θ)‖AαS((t − s)βθ)‖‖Pnf (s, Pnun(s))− Pmf (s, Pmum(s))‖dθds.(5.7)
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We have

‖Pnf (s, Pnun(s))− Pmf (s, Pmum(s))‖ ≤ ‖Pn[f (s, Pnun(s))− Pnf (s, Pmum(s))]‖ + ‖(Pn − Pm)f (s, Pmum(s))‖
≤ ‖Pn[f (s, Pnun(s))− f (s, Pnum(s))]‖ + ‖Pn[f (s, Pnum(s))− f (s, Pmum(s))]‖
+ ‖(Pn − Pm)f (s, Pmum(s))‖

≤ L(R)‖un(s)− um(s)‖α + L(R)‖Aα−η(Pn − Pm)Aηum(s)‖

+‖A−η(Pn − Pm)Aηf (s, Pmum(s))‖. (5.8)

Letm < n then Xm ⊂ Xn. Let X⊥m be the orthogonal complement of Xm for allm = 0, 1, 2, . . . , then X
⊥
m ⊃ X

⊥
n . We can write

X = Xm ⊕ X⊥m = Xn ⊕ X
⊥
n .

Let z ∈ X be an arbitrary element. Then, we can write z = zm + ym, where zm ∈ Xm and ym ∈ X⊥m . Then, P
mz = zm ∈ Xm.

We can see easily that ym ∈ X⊥m ⇒ ym = 6
n
i=m+1aiφi + y

′
m, where y

′
m ∈ X

⊥
n . Let, z

′
m = 6

n
i=m+1aiφi.

Hence, z = zm + z ′m + y
′
m and P

nz = zm + z ′m.
Therefore,

Pnz − Pmz = z ′m = 6
n
i=m+1aiφi.

If, z = 6∞i=1aiφi then ‖z‖
2
= 6∞i=1|ai|

2.
Since, Aα−ηφi = λ

α−η

i φi [16]. Hence, we have

‖Aα−η(Pn − Pm)z‖2 = 〈Aα−η(Pn − Pm)z, Aα−η(Pn − Pm)z〉
= 〈6ni=m+1aiA

α−ηφi, 6
n
j=m+1ajA

α−ηφj〉

= 〈6ni=m+1aiλ
α−η

i φi, 6
n
j=m+1ajλ

α−η

j φj〉

= 6ni,j=m+1aiajλ
α−η

i λ
α−η

j 〈φi, φj〉

≤ λ
2(α−η)
m+1 (6ni=m+1|ai|

2)

≤
1

λ
2(η−α)
m

‖z‖2.

Therefore,

‖Aα−η(Pn − Pm)Aηum(s)‖ ≤
1

λ
(η−α)
m

‖Aηum(s)‖

≤
1

λ
(η−α)
m

M0, (5.9)

whereM0 is same as in Corollary 5.3.
Now we use the inequality (5.9) and assumption (A2′) in inequality (5.8) and get the following inequality

‖Pnf (s, Pnun(s))− Pmf (s, Pmum(s))‖ ≤ L(R)‖un(s)− um(s)‖α + L(R)
M0
λ
η−α
m
+
C1
λ
η
m
, (5.10)

where C1 = L̃(R){T ν + R} + ‖f (0, 0)‖η and α < η < 1.
From inequality (5.10) and inequality (5.7), we get the following inequality

‖Aα[un(t)− um(t)]‖ ≤ L(R)β
∫ t

0

∫
∞

0
θ(t − s)β−1ζβ(θ)‖AαS((t − s)βθ)‖‖un(s)− um(s)‖αdθds

+ L(R)
M0
λ
η−α
m

β

∫ t

0

∫
∞

0
θ(t − s)β−1ζβ(θ)‖AαS((t − s)βθ)‖dθds

+
C1
λ
η
m
β

∫ t

0

∫
∞

0
θ(t − s)β−1ζβ(θ)‖AαS((t − s)βθ)‖dθds. (5.11)

The first integral of the above inequality (5.11) can be estimated as follows

L(R)β
∫ t

0

∫
∞

0
θ(t − s)β−1ζβ(θ)‖AαS((t − s)βθ)‖‖un(s)− um(s)‖αdθds

≤ βCαL(R)N1

∫ t

0
(t − s)β(1−α)−1‖un(s)− um(s)‖αds. (5.12)
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Second integral of the above inequality (5.11) is estimated as follows

L(R)
M0
λ
η−α
m

β

∫ t

0

∫
∞

0
θ(t − s)β−1ζβ(θ)‖AαS((t − s)βθ)‖dθds ≤

CαL(R)M0N1
λ
η−α
m (1− α)

tβ(1−α)0 . (5.13)

Similarly third integral can be calculated as follows

C1
λ
η
m
β

∫ t

0

∫
∞

0
θ(t − s)β−1ζβ(θ)‖AαS((t − s)βθ)‖dθds ≤

CαC1N1
(1− α)ληm

tβ(1−α)0 . (5.14)

Finally, we deduce from the inequality (5.11) that

‖Aα[un(t)− um(t)]‖ ≤ βCαL(R)N1

∫ t

0
(t − s)β(1−α)−1‖un(s)− um(s)‖αds

+
CαL(R)M0N1
λ
η−α
m (1− α)

tβ(1−α)0 +
CαC1N1
λ
η
m(1− α)

tβ(1−α)0 . (5.15)

The application ofGronwall’s inequality and addingm→∞ to the above inequality gives the required result. This completes
the proof the theorem. �

With the help of the Theorems 5.1, 5.4 and 4.1 we can state the following existence, uniqueness and convergence result.

Theorem 5.5. Let n ≥ n0, where n0 is large enough and n, n0 ∈ N. If the conditions (A2)–(A4) and (A2′) are satisfying then
there exist a unique u ∈ S such that un → u in S and u is given by Eq. (3.5).

Proof. We only need to prove that the limit u obtained above satisfies the integral equation (3.5). We have

‖(Pn − I)u0‖ → 0, as n→∞. (5.16)

We also have

‖Pnf (t, Pnun)− f (t, u(t))‖ ≤ ‖(Pn − I)f (t, Pnun(t))‖ + ‖f (t, Pnun(t))− f (t, u(t))‖, (5.17)

where ‖(Pn − I)f (t, Pnun(t))‖ → 0 and ‖f (t, Pnun(t))− f (t, u(t))‖ → 0, as n→∞.
Therefore,∫

∞

0
ζβ(θ)S(tβθ)‖(Pn − I)u0‖dθ + β

∫ t

0

∫
∞

0
θ(t − s)β−1ζβ(θ)S((t − s)βθ)

×‖Pnf (s, Pnun(s))− f (s, u(s))‖dθds→ 0 when n→∞. (5.18)

Hence from inequalities (5.16)–(5.18) we can see that un converges to u where u is given by Eq. (3.5). This completes the
proof of the theorem. �

6. Example

Let X = L2((0, 1);R). We consider the following fractional order integral equation,

w(t, x) = w(0, x)+
1

Γ (β)

∫ t

0
(t − θ)β−1(∂2xw(θ, x))dθ +

1
Γ (β)

∫ t

0
(t − θ)β−1F(θ, ∂xw(θ, x))dθ,

w(t, 0) = w(t, 1) = 0, t ∈ [0, T ], 0 < T <∞, (6.1)

where F is a given sufficiently smooth function which satisfies the Hölder condition.
We define an operator A.

Au = −u′′ with u ∈ D(A) = H10 (0, 1). (6.2)

Here, clearly the operatorA is self-adjoint,with compact resolvent and is the infinitesimal generator of an analytic semigroup
S(t). We take α = 1/2, D(A1/2) is a Banach space with norm

‖x‖1/2 := ‖A1/2x‖, x ∈ D(A1/2),

and we denote this space by X1/2.
The Eq. (6.1) can be reformulated as the following abstract equation in X = L2((0, 1);R):

u(t) = u0 +
1

Γ (β)

∫ t

0
(t − θ)β−1(−Au(θ))dθ +

1
Γ (β)

∫ t

0
(t − θ)β−1f (θ, u(θ))dθ, (6.3)
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where u(t) = w(t, .) that is u(t)(x) = w(t, x), t ∈ [0, T ], x ∈ (0, 1) and the function f : [0, T ] × X1/2 → X is given by

f (t, u(t))(x) = F(t, ∂xw(t, x)). (6.4)

We can take f (t, u) = h(t)g(u′), where h is Hölder continuous and g : X → X is Lipschitz continuous on X . In particular we
can take g(u) = sinu, g(u) = ξu, g(u) = arctan(u), where ξ is constant.
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