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A simple but powerful scheme exploiting the binning concept for asymmetric lossless distributed source coding is proposed. The
novelty in the proposed scheme is the introduction of a syndrome former (SF) in the source encoder and an inverse syndrome former
(ISF) in the source decoder to efficiently exploit an existing linear channel code without the need to modify the code structure or
the decoding strategy. For most channel codes, the construction of SF-ISF pairs is a light task. For parallelly and serially concate-
nated codes and particularly parallel and serial turbo codes where this appears less obvious, an efficient way for constructing linear
complexity SF-ISF pairs is demonstrated. It is shown that the proposed SF-ISF approach is simple, provenly optimal, and generally
applicable to any linear channel code. Simulation using conventional and asymmetric turbo codes demonstrates a compression
rate that is only 0.06 bit/symbol from the theoretical limit, which is among the best results reported so far.
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1. INTRODUCTION

The challenging nature of multiuser communication prob-
lems [1] has been recognized for decades and many of
these problems still remain unsolved. Among them is the
distributed source coding (DSC) problem, also known
as distributed compression or Slepian-Wolf source cod-
ing, where two or more statistically correlated information
sources are separately encoded/compressed and jointly de-
coded/decompressed. Having its root in network informa-
tion theory, distributed source coding is tightly related to
a wealth of information and communication problems and
applications including, for example, the dirty paper coding,
watermarking and data mining, multielement broadcasting
problem and multiple description coding. The recent heat
in sensor networks has further aroused a renewed interest
in DSC, since it allows the intersensor correlation to be ex-
ploited in compression without expensive intersensor com-
munication.

The theory and conceptual underpinnings of the noise-
less DSC problem started to appear back in the seventies
[2, 3, 4, 5]. Specifically, the seminal paper by Slepian and
Wolf [2] stated that (i) separate encoding (but joint decod-
ing) need not incur a loss in capacity compared to joint en-
coding and (ii) the key to DSC lies in channel coding. These
refreshing findings, as well as the underlying concept of code
binning (will be discussed in Section 2), lay the foundation
for practical code design for DSC using linear channel codes.

The random binning concept used in the proof of the
Slepian-Wolf theorem requires structured binning imple-
mentations in practice. The first practical algebraic bin-
ning scheme was proposed by Wyner in 1976 [1], where
the achievability of the Slepian-Wolf boundary was demon-
strated using coset codes and a generic syndrome decoder.
The approach was further extended to nonsyndrome de-
coders by Pradham and Ramchandram many years later
[6]. Since then, various practical coding schemes have been
proposed for lossless DSC with binary memoryless sources,
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including coset codes [6], lattice codes [7, 8], low density
parity check (LDPC) codes (e.g., [9, 10, 11, 12, 13, 14]) and
(convolutional) turbo codes (e.g., [15, 16, 17, 18, 19, 20]).
Most of these formulations are rooted back to the binning
idea, except for turbo codes where code binning has not been
explicitly exploited.

While LDPC codes are also capacity-approaching chan-
nel codes, turbo codes have certain advantages. First, a turbo
encoder is cheap to implement, thus appealing to applica-
tions like sensor networks where the computation on the
transmitter side (i.e., sensor nodes) needs to be minimized.
Second, turbo codes perform remarkably on a variety of
channel models. Since the key to efficient DSC is to find a
powerful channel code for the virtual transmission channel,
where the virtual channel is specified by the source corre-
lation (will be discussed in more detail in Section 2), turbo
codes are therefore a good choice for a number of sources
with different source correlations. An LDPC code, on the
other side, would require specific design or optimization of
the degree profile in order for it to match to the channel.
Third, the code rate and length of a turbo code can be easily
changed (e.g., through puncturing), making it possible for
adaptive DSC using rate compatible turbo codes. Such flex-
ibility is not readily available with random LDPC codes or
other linear block codes.

Among the existing turbo DSC formulations, Garcia-
Frias and Zhao were the first to propose an interesting turbo
scheme where two sources were separately encoded and
jointly decoded in an interwoven way akin to a four-branch
turbo code [15]. A similar scheme that works for asymmet-
ric compression was independently devised by Aaron and
Girod [16]. In [17], Bajcsy and Mitran proposed yet another
parallel turbo structure based on finite-state machine codes.
The scheme was later extended to a serial turbo structure in
[19]. Perhaps the only scheme that has implicitly explored
the binning concept is that proposed by Liveris, Xiong, and
Georghiades [18]. This also appears to be the only provenly
optimal DSC scheme based on turbo codes.

One major reason why the binning approach has not
been popular with turbo codes lies in the difficulty of con-
structing bins for turbo codes. While codewords are easily
“binned” for coset codes and block codes (e.g., via the par-
ity check matrix), the random interleaver in the turbo code
makes the code space intractable, precluding the possibility
to spell out its parity check matrix. Another reason that has
possibly prevented the full exploitation of the binning idea
is the lack of a general source decoding approach. In theory,
only a codebook that specifies the mapping (e.g., the bins)
is needed; in practice, a practically implementable source en-
coder and particularly a practically implementable source de-
coder are also needed. The latter, however, has not been well
studied except for LDPC codes.We note that for LDPC codes,
due to the unique characteristics in the code structure and
the decoding algorithm, a syndrome sequence (i.e., the com-
pressed sequence, see Section 2) can be easily incorporated
in the message-passing decoding, making source decoding
a natural extension of channel decoding [9, 10, 11, 12, 13].
However, for many other codes including turbo codes, it has

not been entirely clear how to optimally exploit a syndrome
sequence in the decoding approach.

The purpose of this paper is to investigate asymmetric
DSC using the binning idea for binary linear channel codes
in general, and parallel and serial turbo codes in particular.
The focus is on the code design for practical DSC solutions
that are efficient, optimal, and general. Our contributions are
summarized as follows.

(1) We present the structure of a pair of universal source
encoder and source decoder that are generally applicable to
any linear channel code. While the idea is implicit in the bin-
ning concept [2, 8], we give an explicit presentation with a
rigorous proof of its validity for binary memoryless sources.
As will be discussed in Section 3, the proposed source en-
coder and source decoder explore the concept of syndrome
former (SF) and inverse syndrome former (ISF), and are ef-
ficient as well as provenly optimal for binary memoryless
sources. This thus represents a simple and universal frame-
work that allows an existing powerful linear channel code
to be readily exploited in DSC without the burden of re-
designing the code or finding a matching encoding/decoding
strategy. With this framework, the only task that is left to
implement the DSC solution is to construct a valid SF-ISF
pair, which, for many channel codes, are a pretty light and
straightforward task.

(2) For parallelly and serially concatenated codes
(PCC/SCC) where the SF-ISF construction appears tricky
due to the random interleaver, we demonstrate an efficient
and systematic way to handle it. Instead of deriving the SF-
ISF pair in an overall closed form (which seems to pose un-
solvable complexity problems), the proposed construction
cleverly exploits the sub-SFs and sub-ISFs of the compo-
nent codes in a way similar to the way concatenated code is
built from its component codes [20]. The SF-ISF pairs for
both parallelly and serially concatenated codes have a com-
plexity of the order of that of the component codes, and
can be conveniently implemented using linear sequential cir-
cuits. For illustrative purpose, the discussion will proceed
with parallelly and serially concatenated convolutional codes
(PCCC/SCCC), or parallel and serial turbo codes, as the il-
lustrating example. However, the applicability of the pro-
posed method goes beyond the context of concatenated con-
volutional codes. As addressed in Section 5, other concate-
nated structures, including block turbo codes (BTC) [21],
can readily adopt the same SF-ISF formulation.

(3) Through the proposition of the SF-ISF formulation
and the general source encoder/decoder structure, we have
demonstrated the first provenly optimal turbo-DSC formu-
lation that explicitly exploits the binning scheme. Compared
to the approach in [22], which is also provenly optimal but
which requires constructing a source encoding trellis with
parallel branches, a source decoding trellis with time-varying
stages, and a matching (time-varying) decoding algorithm,
the proposed one is simpler and more general.

(4) One goal of our work is to come close to the theo-
retical limit. We show, through simulations on conventional
turbo codes and asymmetric turbo codes [23], that the pro-
posed SF-ISF based scheme yields a compression rate as close
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Figure 1: Rate region for noiseless DSC.

as 0.06 bit/symbol from the theoretical limit for binary sym-
metric sources (BSS), which is among the best results re-
ported so far.

The remainder of the paper is organized as follows.
Section 2 formulates the DSC problem and introduces the
binning concept. Section 3 presents the structure of a uni-
versal source encoder and a source decoder with a rigorous
proof of its validity. Section 4 discusses in detail the construc-
tion for SF-ISF pairs for parallelly and serially concatenated
codes and in particular parallel and serial turbo codes. Sec-
tion 5 and 6 discuss the optimality and performance of the
proposed SF-ISF approach for binary symmetric sources. Fi-
nally, Section 7 provides the concluding remarks.

2. BACKGROUND

2.1. Achievable rate region for DSC

We first formulate the setting for discussion. Consider two
correlated binary memoryless sources X and Y encoded
by separate encoders and decoded by a joint decoder. The
achievable rate region is given by the Slepian-Wolf bound-
ary [2]:

R1 ≥ H
(
X|Y),

R2 ≥ H
(
Y |X),

R1 + R2 ≥ H
(
X ,Y

)
,

(1)

where R1 and R2 are the compression rates for sources X and
Y , respectively. A typical illustration is given in Figure 1.

For most cases of practical interest, zero-error DSC is
possible only asymptotically [24]. For discrete memory-
less sources of uniform distribution, corner points on the
Slepian-Wolf boundary can be achieved by considering one
source (e.g., Y) as the side information (SI) to the decoder
(e.g., available to the decoder via a conventional entropy
compression method) and compressing the other (i.e., X) to
its conditional entropy (H(X|Y)). This is known as asym-
metric compression (see Figure 2). The line connecting the
corner points can be achieved through time sharing or code
partitioning [12, 13]. (Unless otherwise stated, the discussion
in the sequel focuses on binary sources and all the arithmetics
are taken in GF(2).)

y

z

x Source
encoder

Source
decoder

x̂

Figure 2: Asymmetric DSC can be equivalently viewed as a channel
coding problem with side information at decoder.

2.2. The binning concept

First introduced in [2], code binning is one of the most im-
portant ideas in distributed source coding. A thorough dis-
cussion on the binning concept and related issues can be
found in [8]. Below, we provide a concise summary of this
useful concept.

As the name suggests, the fundamental idea about code
binning is to group sequences into bins subject to certain re-
quirements or constraints. The information-theoretical jus-
tification for the idea is to use 2nH(X ,Y) jointly typical se-
quences to describe sources (Xn,Yn), where the sequences
are placed in 2nH(X|Y) disjoint bins each containing 2nH(Y)

sequences. Clearly, nH(X|Y) bits are needed to specify a
bin and nH(Y) bits to specify a particular sequence in the
bin. From the practical point of view regarding algorith-
mic design, code binning consists essentially of dividing
the entire codeword space of a linear channel code into
disjoint subspaces (i.e., bins) such that the same distance
property is preserved in each bin. For an (n, k) binary lin-
ear channel code, source sequences of length n are viewed
as the virtual codewords (not necessarily the valid code-
words of the channel code). The entire codeword space,
Xn = {0, 1}n, can be evenly divided into 2n−k bins/cosets
with codewords having the same syndrome grouped in the
same bin. It can be easily verified that the distance require-
ment is satisfied due to the geometric uniformity of a lin-
ear channel code. Naturally, the 2n−k syndrome sequences
can be used to index the bins. Hence, by transmitting the
length n − k syndrome sequence Sn−k instead of the length
n source sequence Xn, a compression rate of n : (n − k) is
achieved. At the decoder, the syndrome sequence Sn−k and
the decoder side information Yn (i.e., the other source Yn

which is viewed as a noisy version of Xn due to its correla-
tion with Xn) will be used to identify the original data se-
quence. The binning concept as well as the practical bin-
ning approach using linear channel codes are illustrated in
Figure 3.

It should be noted that, in order for (near) lossless re-
covery of the original source Xn, the compression rate needs
to satisfy k/(n − k) ≥ H(X|Y). Further, to get close to the
theoretical limit, the (n, k) channel code needs to be a ca-
pacity approaching one for the virtual transmission channel,
where the virtual channel is specified by the source correla-
tion P(X ,Y).
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Figure 3: (a) Illustration of the binning concept. (b) Illustration of
the algebraic binning approach using linear channel codes.

3. A UNIVERSAL SOURCE ENCODER
AND SOURCE DECODER

The above binning concept has specified the codebook, that
is, the mapping between the source sequences to the com-
pressed sequences, but sheds little insight on the implemen-
tation of a source encoder and particularly a source decoder.
Below, we present the structure of a universal source en-
coder and source decoder that practically and optimally im-
plements the binning concept for memoryless binary sym-
metric sources [25].

Before we proceed, we first introduce the concept of syn-
drome former and inverse syndrome former, which are es-
sentially functions that map the codeword space {Xn} to
the syndrome space {Sn−k} and vice versa. Specifically, the
role of the syndrome former is, for a given source sequence
or a codeword in a bin, to find its associated syndrome se-
quence or bin index, and the role of the inverse syndrome
former is, for a given syndrome sequence or a bin index, to
find an arbitrary source sequence that belongs to that par-
ticular coset or bin (we term the output of the ISF as the
“auxiliary sequence”). It should be noted that the SF-ISF pair
is not unique for a given (n, k) linear channel code. For a
valid SF, that is, valid bin-index assignment, as long as the
all-zero syndrome sequence is assigned to the bin that con-
tains all the valid codewords, the rest of the assignment can
be arbitrary. Hence, there can be as many as (2n−k − 1)!
valid syndrome formers. For each syndrome former, there
can be up to 2k matching inverse syndrome formers, each
producing a different set of auxiliary sequences. We note that
any valid pair of SF and ISF can be used in the source en-

coder and the source decoder that we present below, but
the complexity for constructing different SF-ISF pairs may
vary.

(i) Source encoder: as illustrated in Figure 4, the source
encoder is simply a syndrome former that maps a
source sequence Xn to a syndrome sequence Sn−k .

(ii) Source decoder: the source decoder in Figure 4 con-
sists of a matching inverse syndrome former and the
original channel decoder. The auxiliary sequence at the
output of the ISF is first subtracted from the side infor-
mation Yn, whose result is then fed into the channel
decoder to perform the conventional channel decod-
ing. If the channel code is sufficiently powerful, then
the output of the channel decoder, when added back
to the auxiliary sequence, will almost surely recover the
original source sequence Xn.

Proof of the validity. The validity of the above source encoder
follows directly from the definition of the syndrome former.
The validity of the above source decoder is warranted by the
fact that the same distance property is preserved in all bins.
Let Xn and Yn denote two binary, memoryless sources with
correlation P(Yn|Xn) = (P(Y |X))n. The virtual transmis-
sion channel as specified by P(Yn|Xn) can be viewed as a dis-
crete memoryless channel: Y = X⊕Z, where Z is the additive
binary memoryless noise P(Z) = P(Y |X).

Let c(s) denote a codeword c with syndrome sequence s.
Assume that x = c1(s1) is the source sequence to be com-
pressed. The encoder will find s1 and sends it to the decoder.

The decoder has side information y, where y = x ⊕ z.
Upon receiving s1, the ISF will find an arbitrary sequence,
say c2(s1) from the coset of s1. Notice that the subtraction of
the auxiliary sequence c2 from the side information y, that
is, y⊕ c2, forms a noisy codeword (with respect to the virtual
transmission channel), since

y ⊕ c2(s1) = x ⊕ z⊕ c2(s1)

= c1(s1)⊕ c2(s1)︸ ︷︷ ︸
some valid codeword c3(0)

⊕z. (2)

Hence, if the channel code is sufficiently powerful, that
is, capacity-approaching on the virtual channel, it can re-
cover the valid codeword c3(0) with a vanishing error prob-
ability ε. Since c3(0) = y ⊕ c2(s1) ⊕ z = x + c2, adding
back the auxiliary sequence c2 yields the original sequence x.
Clearly, the probability that the data sequence x is not loss-
lessly recovered is the probability that the channel decoder
fails to correctly decode c3(0), which equals ε → 0. It then
follows that data sequences can be decoded with a vanish-
ing distortion using the above source decoder (and source
encoder).

4. CONSTRUCTIONOF THE SYNDROME FORMER AND
THE INVERSE SYNDROME FORMER

With the above universal source encoder and source de-
coder, asymmetric DSC becomes a straightforward two-step
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Figure 4: The structure of the universal source encoder and source
decoder for asymmetric DSC.

process: (i) to choose a good channel code with the appropri-
ate code rate and sufficient error correction capability for the
virtual channel, and (ii) to construct a pair of valid SF and
ISF for this code. The former could certainly make use of the
rich results and findings developed in the channel coding re-
search. Here, we focus on the latter issue.

For linear block codes where the code structure is well
defined by the parity check matrices, SF-ISF construction
is a straightforward task. For example, the parity check
matrix and its left inverse can be used as a valid pair of
syndrome former and inverse syndrome former. For con-
volutional codes, this is as convenient, although the pro-
cess is less well known [26]. The real difficulty lies in the
class of concatenated codes which are formed from compo-
nent block/convolutional codes and random interleavers and
which happen to include many powerful channel codes, such
as convolutional turbo codes and block turbo codes. In the-
ory, a concatenated code can still be treated, in a loose sense,
as a linear block code and, hence, a closed-form parity check
matrix still exists and can be used as a syndrome former. In
practice, however, to derive such a parity checkmatrix is pro-
hibitively complex, if not impossible.

In searching for practical SF-ISF solutions for concate-
nated codes, we have found a clever way to get around the
random interleaver problem. The key idea is to adopt the
same/similar parallel or serial structure as a concatenated
code built from its component codes, and to construct the
SF-ISF pair from the sub-SF-ISF pairs accordingly. In addi-
tion, we have found that by exploiting a specific type of sub-
SF-ISF pair (with certain properties), the construction can be
further simplified.

Below, we take (convolutional) turbo codes as an illus-
trating example and discuss in detail the proposed construc-
tion method. To start, we first introduce the SF-ISF con-
struction for (component) convolutional codes, and then
proceed to parallel turbo codes [20] and lastly serial turbo
codes.

4.1. SF-ISF construction for convolutional codes

In his 1992 paper on trellis shaping [26], Forney described a
simple way to construct syndrome formers and inverse syn-
drome formers for convolutional codes. For a rate k/n binary
linear convolutional code with k × n generator matrix G, it
is shown that the SF can be implemented using an n/(n− k)
linear sequential circuit specified by an n × (n − k) transfer

matrix HT with rank (n− k) such that

GHT = 0k×(n−k), (3)

where 0k×(n−k) is the k × (n− k) all-zero matrix. Clearly, the
constraint in (3) makes sure that all valid codewords are as-
sociated with the all-zero syndrome 0n−k and that length-n
codewords/sequences have the same syndrome if and only if
they belong to the same coset. (It should be noted that the
generator matrix of a binary convolutional code considered
here is formed of generator polynomials in the D domain
and, hence, is different from the {0, 1} generator matrix of a
linear block code.)

Similar to the case of linear block codes, the inverse syn-
drome former, (H−1)T , can be obtained by taking the left in-
verse of the syndrome former, that is,

(H−1)THT = In−k, (4)

where In−k is an identity matrix with rank n− k.
As mentioned before, the SF-ISF pair is not unique for

a given code. In fact, any linear sequential circuit having the
required number of inputs and outputs andmeeting the con-
straints of (3) and (4) represents a valid construction for SF
and ISF, but the complexity varies.

As an example, consider a rate 1/2 recursive systematic
convolutional (RSC) code with generator matrixG = [1, (1+
D2)/(1+D+D2)]. A simple SF-ISF construction can take the
form of

SF : HT =
[

1 +D2

1 +D +D2

]
,

ISF :
(
H−1)T = [1 +D,D].

(5)

Another equally simple construction is given by

SF : HT =
 1 +D2

1 +D +D2

1

 , (6)

ISF :
(
H−1)T = [0, 1]. (7)

While there are many other valid constructions and while
they all fulfill the roles of SF and ISF, we would like to bring
special attention to the one given in (6) and (7). As illus-
trated in Figure 5, an interesting property about this spe-
cific ISF is that, for any given syndrome sequence, it always
finds the codeword whose systematic bits are all zeros. For
ease of proposition, we define this feature “zero forcing.” We
note that for any systematic linear channel code, there ex-
ists a zero-forcing ISF (and its matching SF). This is eas-
ily verifiable since linearity in the code space ensures that
every coset/bin contains one (and only one) sequence with
the all-zero systematic part. As we will show later, exploiting
the zero-forcing feature can significantly simplify the SF-ISF
construction for concatenated codes.
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Figure 5: A rate 1/2 RSC code with generator matrix G = [1, (1 +
D2)/(1+D+D2)] and its SF and ISF. (a) The encoder. (b) The linear
sequential circuit implementation of a valid syndrome formerHT =
[(1 + D2)/(1 + D + D2), 1]T . (c) The matching inverse syndrome
former (H−1)T = [0, 1].

4.2. SF-ISF construction for parallel turbo codes

Consider a typical parallel turbo code formed from two com-
ponent RSC codes connected by a random interleaver. Let
R1 = k/n1, R2 = k/n2, G1 = [Ik,P1], and G2 = [Ik,P2]
denote the code rates and the generator matrices of the first
and the second component RSC code, respectively, where Ik
is the k × k identity matrix for generating k systematic bits,
and P1 and P2 are k × (n1 − k) and k × (n2 − k) matrices for
generating (n1 − k) and (n2 − k) parity check bits of the first
branch and second branch. Since the systematic bits from the
second branch are a scrambled version of those from the first
branch, they are not transmitted. Hence, the overall code rate
is given by R = k/(n1 + n2 − k) = R1R2/(R1 + R2 − R1R2).

Let x denote a source sequence to be compressed. Since
it is viewed as a virtual codeword of this parallel turbo code,
it consists of three parts: the systematic bits from the first
branch, xs, the parity bits from the first branch, x1, and the
parity bits from the second branch, x2. Clearly, these three
segments can form two virtual subcodewords, [xs, x1] for the
first component code and [π(xs), x2] for the second compo-
nent code, where π(·) denotes the interleaving operation. On
the other hand, the length (n1 +n2− 2k) syndrome sequence
of the turbo code can also be decomposed into two subsyn-
drome sequences: s1 (of length (n1 − k)) for the first compo-
nent code, and s2 (of length (n2 − k)) for the second com-
ponent code. This observation leads to the natural idea of
constructing the SF and the ISF of the turbo code by con-
catenating those of the component codes.

Following the discussion in the previous subsection, it
is easy to obtain a valid pair of SF and ISF for each of the
component RSC codes. Specifically, we limit the choice to the

x1
xs HT

1

s1

π

x2 HT
2

s2

s = [s1, s2]

(a)

s1

s2

(H−1
1 )T

(H−1
2 )T

0
x1

x2

0

[0, x1, x2]

(b)

Figure 6: (a) The proposed SF for a general parallel turbo code.
(b) The matching ISF. Note that both of the sub-ISFs, (H−1

1 )T and
(H−1

2 )T , need to be zero forcing, and the interleaver between the two
sub-SFs is the same interleaver that is used in the turbo code.

zero-forcing SF-ISF pair for both component codes:

SF 1 : HT
1 =

[
P1
I

]
n1×(n1−k)

,

ISF 1 :
(
H−1

1

)T = [0, I](n1−k)×n1 ,

SF 2 : HT
2 =

[
P2
I

]
n2×(n2−k)

,

ISF 2 :
(
H−1

2

)T = [0, I](n2−k)×n2 .

(8)

These sub-SFs and ISFs are then used to form the overall SF
and ISF for the parallel turbo code, whose structures is shown
in Figure 6.

It is easy to show that this construction is both valid and
efficient. For the syndrome former, with every (n1 + n2 − k)
data bits (a virtual turbo codeword) at the input, HT

1 pro-
duces (n1 − k) subsyndrome bits and HT

2 produces (n2 − k)
subsyndrome bits, which combined form a length (n1 + n2 −
2k) syndrome sequence at the output. Further, codewords in
the same coset are mapped to the same syndrome sequence
and a valid turbo codeword is always mapped to the all-zero
syndrome sequence. Hence, this represents a valid SF formu-
lation which can be efficiently implemented using linear se-
quential circuits.

For the inverse syndrome former, we wish to emphasize
that the simple formulation in Figure 6 is made possible by
the zero-forcing sub-ISFs. Recall that the role of the (sub-)
ISF is to find an arbitrary codeword associated to the given
syndrome sequence. However, in order for the two sub-ISFs
to jointly form an ISF for the turbo code, they need tomatch
each other. By match, we mean that the systematic bits pro-
duced by the second sub-ISF need to be a scrambled version
of those produced by the first sub-ISF. This seems to suggest
the following two subtasks. First, one needs to have control
over the exact codeword that each sub-ISF produces; in other
words, an arbitrary mapping or an arbitrary ISF does not
work. Second (and the more difficult one), since a matching
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pair of sub-ISFs will be interleaver dependent, one needs to
find a general rule to guide a possible “match.” At first sight,
these subtasks appear difficult to solve. However, a deeper in-
vestigation reveals that the zero-forcing sub-ISFs can fulfill
both requirements simultaneously. Since the all-zero system-
atic bits are invariant regardless of what interleaver is used,
zero-forcing sub-ISFs thus offer a simple solution to solve the
potential “mismatching” problem for all interleavers!

4.3. SF-ISF construction for serial turbo codes

Serial turbo codes, as an extension to parallel turbo codes,
have exhibited equally remarkable error correcting perfor-
mance. Before proceeding to discuss their SF-ISF construc-
tion, we note that a serial turbo code, or more generally a se-
rially concatenated code, needs to have a recursive inner code
in order to achieve interleaving gain1 [27]. Here we focus on
serial turbo codes whose inner codes are both recursive and
systematic. Again, the key is to exploit the sub-SF-ISF pairs
of the component codes.

While the general idea is the same, the case of serial turbo
codes is slightly more difficult, especially the construction
of the inverse syndrome former. We consider a serial turbo
code formed of an outer convolutional code (not necessar-
ily recursive nor systematic) with rate Ro = k/no and gen-
erator matrix Go, a random interleaver (denoted as π), and
an inner RSC code with rate Ri = no/n and generator ma-
trix Gi = [I ,P], where I is an identity matrix. The over-
all code rate is R = k/n = RoRi. For a block of k data
bits, this serial turbo code produces a codeword of n bits.
Hence, the corresponding syndrome sequence needs to con-
tain n − k = (n − no) + (no − k) bits. This suggests that
a syndrome sequence s may be formed from two disjoint
parts: a subsyndrome sequence of length (n−no) from the in-
ner code, denoted as si, and a complementary part of length
(no − k) from the outer code, denoted as so.

Consider a source sequence x of length n to be com-
pressed to its syndrome sequence s = [so, si]. For the (n,no)
inner recursive systematic convolutional code, the entire se-
quence x can be viewed as a codeword that is formed from a
length no “systematic” part, xs, and a length (n−no) “parity”
part, xp. According to what we have discussed about convo-
lutional codes, the entire sequence x can thus be fed into the
sub-SF of the inner code to generate si. For the outer code,
note that only the systematic part xs is relevant, that is, xs is
the codeword of the outer code. Hence, xs, after deinterleav-
ing, can be fed into the sub-SF of the outer code to generate
so. The combination of si and so thus completes the entire
syndrome sequence. The overall structure of the SF for the
serial turbo code is illustrated in Figure 7a.

The construction of a matching ISF is less obvious. We
first present the structure before explaining why it works. As
illustrated in Figure 7b, a valid ISF that matches to the above

1To be precise, a serially concatenated code needs to have an inner code
which is recursive, an outer code (not necessarily recursive) which has amin-
imum distance of at least three, and a random interleaver between them in
order to achieve interleaving gain on codeword error rate [27].

SF consists of four parts: the sub-ISFs of the outer and the
inner component code, (Ho

−1)T and (Hi
−1)T , the random

interleaver, π, and the (sub-) encoder of the inner code, Gi.
Similar to the case of parallel turbo codes, the interleaver is
the same interleaver that is used in the serial turbo code, and
the sub-ISF of the inner RSC code is a zero-forcing one: that
is, (Hi

−1)T = [0, J], where J is a square matrix.
Below, we prove its validity by showing that the output of

this ISF (i.e. the virtual codeword), when fed into the SF in
Figure 7a, will yield the original syndrome sequence. Math-
ematically, this is to show that, for a given sequence x in the
codeword space, where x = [xs, xp] = ISF([so, si]), we have

SF
([
xs, xp

]) =⇒ [sosi], (9)

where the notation SF (a) ⇒ b denotes that the SF will pro-
duce b at the output for a at the input. Similar notations will
also be used for ISF(·),H−1

i (·) and the like.
Notice that [xs, xp] = [x̂s, x̂p] ⊕ [xs, xp] (see Figure 7b).

By the linearity of the syndrome former, we have

SF
([
xs, xp

]) = SF
([
x̂s, x̂p

])⊕ SF
([
xs, xp

])
. (10)

Since [x̂sx̂p] is a valid codeword of the inner codeGi, the sub-
syndrome former (Hi)T will map it to the all-zero syndrome
sequence, that is,

HT
i

([
x̂s, x̂p

]) =⇒ 0. (11)

Since HT
i and (H−1

i )T are a valid SF-ISF pair, we have

HT
i

([
xs, xp

]) =HT
i

(
(H−1

i )T(si)
)
=⇒ si. (12)

Gathering (10), (11) and (12), we have

HT
i

([
xs, xp

]) =⇒ si. (13)

On the other side, since xs is an all-zero vector, xs is iden-
tical to x̂s. Since Gi is a systematic encoder, we can see from
Figure 7b that

xs = x̂s = w̃ = π(w) = π
((
H−1

o

)T(
so
))
, (14)

that is, xs is precisely the interleaved version of the output
from the sub-ISF (H−1

o )T for which the input is so. Hence,
passing xs into the deinterleaver and subsequently the sub-SF
HT

o will reproduce so. This is exactly what the upper branch
of the SF in Figure 7a performs:

HT
o

(
π−1

(
xs
)) =HT

o

(
π−1

(
π
((
H−1

o

)T(
so
)))) =⇒ so. (15)

Comparing (13) and (14) with the SF structure in
Figure 7a, it becomes clear that (10) is satisfied. Hence, the
proposed SF-ISF construction still holds for serial turbo
codes.
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xs

xp

π−1 HT
o

so

HT
i

si

(a)

so (H−1
o )T w π w̃ Gi

x̂s

x̂p
[xs, xp]

si (H−1
i )T

0

x̄p

(b)

Figure 7: (a) The proposed SF for a general serial turbo code with
an RSC inner code. (b) The matching ISF. Note that the inner sub-
ISF, (H−1

i )T , needs to be zero forcing.

5. COMMENTS ON THE PROPOSED SF-ISF APPROACH

The proposed SF-ISF approach provides a method for the di-
rect exploitation of the binning idea discussed in Section 2.
For memoryless binary symmetric sources, the approach is
clearly optimal, as is guaranteed by the intrinsic optimality
of the binning concept [2]. It is worth noting that this op-
timality holds for infinite block sizes as well as finite block
sizes. (A constructive example demonstrating the optimality
of the binning approach for finite block sizes can be found in
[6].)

The construction of the syndrome former and the inverse
syndrome former we demonstrated is simple and general. All
operations involved are linear and reside in the binary do-
main, thus allowing cheap and efficient implementation us-
ing linear sequential circuits.

Besides simplicity and optimality, a particularly nice fea-
ture about the proposed SF-ISF scheme is its direct use of an
existing (powerful) channel code. This allows the rich results
available in the literature on channel codes to serve immedi-
ately and directly the DSC problem at hand. For example, a
turbo code that is known to perform close to the capacity on
BSC channels will also perform close to the theoretical limit
for the DSC problem with binary “BSC-correlated” sources
(i.e., P(X �= Y) = p). Using a stronger component code
(one that has a longer memory size and/or a better generator
matrix) or simply increasing the codeword length (i.e., ex-
ploiting the interleaving gain of the turbo code) will achieve
a better compression rate. In addition to conventional binary
turbo codes, asymmetric turbo codes (which employ a dif-
ferent component code at each branch) (e.g., [23]) and non-
binary turbo codes, which are shown to yield better perfor-
mances, can also be exploited for capacity-approaching DSC.

The last comment is on the generality of the proposed
approach. Clearly, the proposed source encoder and source
decoder are applicable to any binary linear channel code.

The proposed SF-ISF formulation has further paved the way
for concatenated codes, breaking the tricky task of construct-
ing the overall SF and ISF to a much simpler one of find-
ing only the relevant sub-SFs and sub-ISFs of the compo-
nent codes. This allows many powerful serially and parallelly
concatenated codes to be readily exploited in DSC. In addi-
tion to the aforediscussed case of parallel and serial turbo
codes, block turbo codes, also known as turbo product codes
or, simply, product codes, are another good example. Prod-
uct codes are formed of arrays of codewords from linear
block codes (i.e. component codes) in a multidimensional
fashion [21]. Depending on whether there are “parity-on-
parity” bits, a 2-dimensional product code can be equiva-
lently viewed as a serial (i.e., with “parity-on-parity”) or a
parallel (i.e., without “parity-on-parity”) concatenation of
the row code and the column code. Since the component
codes of a product code are typically (simple) systematic lin-
ear block codes such as Reed-Solomon codes, BCH codes,
Hamming codes, and single-parity check codes, sub-SFs and
sub-ISFs are easy to construct. Further, since many product
codes can be efficiently decoded on binary symmetric chan-
nels (BSC), for example, using the majority logic algorithm
or the binary bit-flipping algorithm, they can potentially find
great application in distributed compression where sources
are binary and BSC correlated. To the best of the authors’
knowledge, this is the only work thus far that has provided a
DSC formulation for product codes.

6. SIMULATIONS

Despite the theoretical optimality of the proposed SF-ISF ap-
proach, computer simulations are needed to provide a true
evaluation of its performance. In this section, we present
the results of the proposed approach using rate-1/3 paral-
lel turbo codes and rate-1/4 serial turbo codes. Appropriate
clip-values are also used in the simulation to avoid numerical
overflows and/or downflows in decoding.

The 8-state parallel turbo code considered has the same
component codes as those in [15, 18]: G1 = G2 = [1, (1+D+
D2 +D3)/(1 +D2 +D3)]. A length 104 S-random interleaver
with a spreading factor 17 and a length 103 S-random inter-
leaver with a spreading factor 11 are used in the code, and 10
decoding iterations are performed before the turbo decoder
outputs its estimates.

Table 1 lists the simulation results where nπ denotes the
interleaver length. The interleaving gain can be easily seen
from the table. If a normalized distortion of 10−6 is con-
sidered near-lossless, then this parallel turbo coding scheme
with an interleaver length 104 can work for BSC-correlated
sources with a correlation of P(X �= Y) = p = 0.145. Since
the compression rate is 2/3, there is a gap of only 2/3 −
H(0.145) = 0.07 bit/symbol from the theoretical limit. This
gap is comparable to, in fact slightly better than, those re-
ported in [15, 18], which are about 0.09 and 0.15 bit/symbol,
respectively. It should be noted that in [15, 18], the same
turbo code with the same interleaver size is used, but the code
rate is different.
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Table 1: Performance of the proposed SF-ISF scheme using parallel
turbo codes.

Crossover prob. Distortion

p nπ = 103 nπ = 104

0.10 0 0

0.11 1.5× 10−6 0

0.14 8.0× 10−4 0

0.145 4.0× 10−3 6.7× 10−7

0.155 3.5× 10−2 4.2× 10−3

In addition to conventional binary turbo codes, asym-
metric turbo codes which employ a different component
code at each branch are also tested for capacity-approaching
DSC. Asymmetric turbo codes bear certain advantages in
joint optimizing the performance at both the water-fall re-
gion and the error floor region [23]. We simulated the NP16-
P16 (nonprimitive 16-state and primitive 16-state) turbo
code in [23], where G1 = [1, (1+D4)/(1+D+D2 +D3 +D4)]
and G2 = [1, (1 +D +D2 +D4)/(1 +D3 +D4)]. A length 104

S-random interleaver with a spreading factor 17 is applied
and 15 turbo decoding iterations are performed. Simulation
results show that the proposed scheme provides a distortion
of 3.4× 10−7 when p = 0.15. This translates to a gap of only
about 0.06 bit/symbol from the theoretical limit.

For the proposed SF-ISF scheme with serial turbo codes,
we simulated a rate 1/4 serial turbo code whose outer code
and inner code are given by generator matrices Go = [1, (1 +
D +D2 +D3)/(1 +D2 +D3)] and Gi = [1, 1/(1 +D)], respec-
tively. A length 2×103 S-random interleaver with a spreading
factor 15 and a length 2 × 104 S-random interleaver with a
spreading factor 40 are used, and 10 decoding iterations are
performed. The results are shown in Table 2. At a normalized
distortion of 10−6, we see that this serial turbo coding scheme
with an interleaver size 2× 104 can work for BSC-correlated
sources of p = 0.174. The gap from the theoretical limit is
only 1− R−H(p) = 1− 3/4−H(0.174) = 0.08 bit/symbol,
which is again among the best results reported so far. For ex-
ample, the DSC scheme using a rate 1/3 serial turbo code
proposed in [19] has a gap of around 0.12 bit/symbol to the
theoretical limit. The serial turbo code therein used specifi-
cally designed component codes, a length 105 S-random in-
terleaver with a spreading factor of 35, and 20 decoding iter-
ations [19].

7. CONCLUSION

This paper considers asymmetric compression for noise-
less distributed source coding. An efficient SF-ISF approach
is proposed to exploit the binning idea for linear channel
codes in general and concatenated codes in particular. For
binary symmetric sources, the proposed approach is shown
to be simple and optimal. Simulation using serial and paral-
lel turbo codes demonstrates compression rates that are very
close to the theoretical limit. In light of the large amount of
literature that exists on powerful linear channel codes and
particularly capacity-approaching concatenated codes, the

Table 2: Performance of the proposed SF-ISF scheme using serial
turbo codes.

nπ = 2×103

p Distortion

0.13 1.6× 10−5

0.15 3.3× 10−5

0.16 9.0× 10−5

0.165 5.0× 10−4

nπ = 2×104

p Distortion

0.17 7.6× 10−7

0.174 8.6× 10−7

0.176 1.6× 10−5

0.178 3.5× 10−4

proposed approach has provided a useful and general frame-
work that enables these channel codes to be optimally and
efficiently exploited in distributed source coding.

While the discussion in the paper has demonstrated the
efficiency of the proposed scheme, many interesting prob-
lems remain to be solved. For example, instead of revoking
to time sharing, is there an optimal way to perform sym-
metric DSC to achieve a rate-versus-load balance? The works
of [12, 13, 15] have certainly shed useful insight, but how
about a general linear channel code? Notice that most of
the works thus far have focused on uniform sources, but
nonuniform sources are not uncommon in reality. For exam-
ple, many binary images (e.g., facsimile images) may have a
source distribution as biased as p0 = 0.96 and p1 = 0.04 [28].
For most communication and signal processing problems,
nonuniform sources are not a concern since entropy com-
pression can be performed to balance the source distribu-
tion prior to the intended task. For distributed source coding,
however, such a preprocess will either ruin the intersource
correlation or make the correlation analytically intractable
and, hence, is not possible. It has been shown in [28] that for
nonuniform sources, the conventional algebraic binning ap-
proach that uses the fixed-length syndrome sequences as the
bin indexes is no longer optimal, and that a better approach
should use variable-length bin indexes. Are there other and
hopefully better approaches? Nonbinary sources are also in-
teresting [29]. Will we employ nonbinary codes like turbo
codes over GF(q) or over rings, or are binary codes suffi-
cient? How about adaptive DSC? Can we make use of punc-
tured turbo codes and/or rate-compatible turbo codes with
the proposed approach? How to construct IS-ISF pairs for
punctured codes? These are only a few of the many interest-
ing issues that need attention.
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