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• Performance evaluation of subset-based local and finite element (FE)-based global digital image correlation (DIC) is performed.
• Theoretical analyses of the standard deviation errors of the two DIC approaches are given.
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Being the two primary approaches for full-field kinematicsmeasurements, both subset-based local digital
image correlation (DIC) and finite element-based global DIC have been extensively studied. Nowadays,
most commercial DIC systems employ local DIC algorithm because of its advantages of straight forward
principle and higher efficiency. However, several researchers argue that global DIC can provide better
displacement results due to the displacement continuity constraint among adjacent elements. As such,
thoroughly examining the performance of these two different DIC methods seems to be highly necessary.
Here, the random errors associated with local DIC and two global DIC methods are theoretically analyzed
at first. Subsequently, based on the same algorithmic details and parameters during analyses of numerical
and real experiments, the performance of the different DIC approaches is fairly compared. Theoretical
and experimental results reveal that local DIC outperforms its global counterpart in terms of both
displacement results and computational efficiency when element (subset) size is no less than 11 pixels.

© 2016 The Author(s). Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and
Applied Mechanics. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

Contents

1. Introduction.................................................................................................................................................................................................................... 201
2. Basic principles and algorithmic details ....................................................................................................................................................................... 201

2.1. Basic principles .................................................................................................................................................................................................. 201
2.2. Correlation criterion .......................................................................................................................................................................................... 202
2.3. Optimization algorithm..................................................................................................................................................................................... 202
2.4. Initial guess and convergence conditions ........................................................................................................................................................ 203

3. Theoretical analysis of random errors .......................................................................................................................................................................... 203
3.1. Subset-based local DIC ...................................................................................................................................................................................... 203
3.2. Global Q4-DIC..................................................................................................................................................................................................... 203
3.3. Global Q8-DIC..................................................................................................................................................................................................... 204

4. Experimental comparison by numerical tests.............................................................................................................................................................. 204
4.1. Numerical experiments ..................................................................................................................................................................................... 204

∗ Corresponding author at: Institute of Solid Mechanics, Beihang University, Beijing 100191, China.
E-mail address: panb@buaa.edu.cn (B. Pan).
http://dx.doi.org/10.1016/j.taml.2016.08.003
2095-0349/© 2016 The Author(s). Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.taml.2016.08.003
http://www.elsevier.com/locate/taml
http://www.elsevier.com/locate/taml
http://crossmark.crossref.org/dialog/?doi=10.1016/j.taml.2016.08.003&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:panb@buaa.edu.cn
http://dx.doi.org/10.1016/j.taml.2016.08.003
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


B. Wang, B. Pan / Theoretical & Applied Mechanics Letters 6 (2016) 200–208 201
4.2. Comparison using image sets at various noise levels...................................................................................................................................... 204
4.3. Comparison using various subset or element sizes ......................................................................................................................................... 205
4.4. Comparison of computational efficiency ......................................................................................................................................................... 206

5. Experimental comparison by real experiments ........................................................................................................................................................... 206
6. Concluding remarks ....................................................................................................................................................................................................... 206

Acknowledgments ......................................................................................................................................................................................................... 207
References....................................................................................................................................................................................................................... 207
1. Introduction

Benefiting from rapid development of industrial camera, mod-
ern computer, and image processing technique, digital image cor-
relation (DIC) [1–3], initially emerged in 1980s, has kept boom-
ing during last three decades due to its simplicity, practicality, and
wide application range. In DIC analysis, image displacements (in
pixels) are first determined by matching digital images of flat sur-
face (2D-DIC) or curved surface (stereo-DIC) using certain image
registration algorithm. Then, the physical displacement can be fur-
ther evaluated according to certain imagingmodel. Since strain es-
timation and identification of material parameters are generally
performed on the basis of displacement fields, accurate displace-
ment measurement is always a major focus in DIC algorithm.

Although plenty of DIC algorithms have been developed,
subset-based DIC (local DIC) [4–21] and finite element-based DIC
(FE-based global DIC) [22–35] are the two most commonly used
ones. Local DIC allocates separate reference subset centered at each
calculation point at first, then traces the corresponding deformed
subset in target images using a local shape function. As such,
local DIC processes a calculation point at a time independently
without displacement continuity enforcement applied to the
global displacement fields. Alternatively, global DIC usually
discretizes the specified region of interest (ROI) into elements
connected bynodes, and then traces all these elements in the target
image simultaneously to evaluate all the nodal displacements.
In this sense, displacement continuity can be explicitly ensured
between adjacent elements by the shared nodes.

In retrospect of the historical development of DIC technique,
it is seen that subset-based local DIC emerged first and has
been widely applied. Initially proposed to realize full-field dis-
placement measurement in 1982 [1], local DIC can only reach
integer-pixel accuracy. Motivated by improving both accuracy and
efficiency, various local optimization algorithms, such as gradient-
based method [4,5], correlation coefficient curve-fitting method
[6,7], Newton–Raphson (NR) algorithm [8–10], and quasi-Newton
algorithm [11,12], were successively developed during the follow-
ing 20 years. To unify the disagreement on algorithm selection, Pan
et al. [13] experimentally demonstrated that NR algorithm out-
performs other methods in terms of displacement accuracy and
precision, which makes it become the standard DIC algorithm.
Subsequently, to further satisfy the accuracy and efficiency re-
quirement in diverse time-critical applications, researchers grad-
ually focus on algorithm details and parameter selection, such as
shape function [14,15], correlation criterion [16,17], interpolation
scheme [18,19], and subset size [20]. Recently, inspired by the in-
verse compositional matching algorithm widely adopted in com-
puter vision, Pan et al. [21] proposed the inverse compositional
Gauss–Newton (IC-GN) algorithm, which offers higher accuracy
and efficiency than classic NR algorithm, and is highly recom-
mended as a new standard algorithm.

At the beginning of the 21st century, in the meantime of rapid
development of local DIC method, several researchers attempted
to combine DIC with the finite element method (FEM). Bspline-
based [22], four-node FE-based [23,24], and eight-node FE-based
global DIC approaches [25] were successively proposed to ensure
global continuity of displacement field. To allow more complex
cases during the analysis of fracture, bending and discrete geome-
try, various algorithm improvements, such as extendedDIC (X-DIC)
[26,27], non-uniform rational B-spline (NURBS) [28], quasi-3D
FE-DIC [29], and single-element X-DIC [30], were put forward.
However, the inherent drawback of global DIC is the compro-
mise between spatial resolution and displacement uncertainty.
Specifically, higher spatial resolution requires denser mesh, re-
sulting in larger displacement fluctuation (i.e., displacement un-
certainty or random error). As such, to enhance displacement
precision in the case of high spatial resolution, a series of regular-
ization strategies, such as temporal regularity [31], Tikhonov regu-
larization [32], and proper generalized decomposition [33], were
applied to global DIC. Alternatively, to balance the tradeoff be-
tween spatial resolution and displacement uncertainty, p-adaptive
global DIC [34] and h-adaptive global DIC [35] were developed by
adaptively selecting higher-order element and refining element,
respectively.

Due to its outstanding advantages such as easy implementation,
high accuracy, and high efficiency, local DIC has been applied in
most commercial systems and practical applications up to now.
Nevertheless, recent works [36] claim that global DIC may lead
to better displacement results due to the displacement continuity
constrain, thus posing an important issue of evaluating and
comparing the performance of local and global DIC algorithms.
Therefore, a detailed examination of their respective performances
becomes attractive and pressing. Here, we summarize our recent
research results on the performance evaluation of local and global
DIC. In the following, the fundamental principles of local and
global DIC are first briefly reviewed to ensure fair comparison.
Then, the governing formulas of random errors associated with
local DIC and two global DIC algorithms are derived. Finally, by
using both numerical and real experiments, the measurement
errors and computational efficiency of local DIC, four-node FE-
based DIC (Q4-DIC), and eight-node FE-based DIC (Q8-DIC) are
thoroughly compared. Experimental results demonstrate that
local DIC outperforms global DIC in the case of relatively large
element (subset) size and matched (or overmatched) shape
function.

2. Basic principles and algorithmic details

To make the performance comparison fair enough, the same
algorithm details including correlation criteria, subpixel regis-
tration algorithm, interpolation scheme, initial guess, and con-
vergence condition employed in local and global DIC should be
carefully defined. Though the basic principles of the two DIC
techniques have been fully characterized in the literature [8–10,
23–25], the algorithm details in the two DIC approaches are briefly
reviewed for clarity.

2.1. Basic principles

Both local and global DIC employ certainmatching algorithm to
obtain initial displacement with integer-pixel accuracy, and then
adopt specific subpixel registration algorithm (such as, nonlinear
optimization algorithm or curve fitting algorithm) to further im-
prove displacement accuracy. As illustrated in Fig. 1, however, the
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Fig. 1. Displacement tracking strategy of local DIC (top) and global DIC (bottom).
two algorithms are essentially different in terms of describing the
underlying deformation field. Based on the local approximation to
the kinematical fields (including displacement and strain field), lo-
cal DIC tracks the shape and position change of reference subset
centered at each calculation point. By introducing continuous de-
formation hypothesis in solid mechanics, local continuity of the
displacement field within each subset can be enforced, and hence
can be characterized by specific shape function. In local DIC, adja-
cent subsets are analyzed independently without imposed conti-
nuity conditions a prior, thus resulting in separate or overlapping
of deformed subsets. In contrast, global DIC is established on the
basis of global description of the kinematical field andwidely-used
FE framework. As such, global DIC tracks the position of all the
nodes (i.e., calculation points) simultaneously, thus being able to
evaluate the entire displacement field at a time with the explicitly
ensured displacement continuity among elements.

2.2. Correlation criterion

During practical experiments, the deformed images captured
from different perspectives or at different states may experience
unavoidable changes in brightness and image contrast. To accom-
modate these possible intensity changes, local DIC generally em-
ploys a zero-mean normalized sum-of-square difference (ZNSSD)
criterion [16,17] to assess intensity similarity
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where f and g , respectively, represent reference and deformed
subset; f (x) and g(x) the gray levels at point x; fm and gm the
mean intensity values; 1f and 1g the standard deviations of
grayscales.Ωl is the reference subset;u
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specifically a first-order shape function in this work.
Likewise, to make the comparison fair, global DIC should adopt
the ZNSSD criterion as similarity metric
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where f and g , respectively, denote reference and deformed
element; Ωg is the entire computational region including K
elements; Ωk the kth element; u


x, pΩk


, the shape function for

kth element. Similar to the definition in FEM, the displacement
of every pixel can be determined by the shape function and
the nodal displacement within the element. Based on detailed
literature survey, two primary global DIC approaches, i.e., Q4-
DIC [23,24] and Q8-DIC [25], are commonly employed. The former
can approximate bilinear displacement field, while the latter can
characterize quadratic displacement field due to its higher-order
shape function.

2.3. Optimization algorithm

To obtain deformation components with subpixel accuracy, the
above defined ZNSSD function can be iteratively optimized using
classic NR algorithm. For both local and global DIC approaches,
each iteration can be expressed as

pi+1
Ω = pi

Ω −
∇CZNSSD,Ω
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 , (3)

where i is the iteration number; Ω is Ωl for local DIC and Ωg
for global DIC. ∇CZNSSD,Ω and ∇∇CZNSSD,Ω are the first-order and
second-order gradients of the ZNSSD criterion, and the latter is
also defined as the Hessianmatrix. For amore detailed description,
interested reader can refer to Refs. [8–10].
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During the implementation of optimization algorithm, every
integer-pixel in reference image is updated to subpixel location in
target image after each iteration. Therefore, specific interpolation
method is required to offer the gray values and intensity gradients
to NR algorithm. In this work, a bicubic interpolation approach
combining with an interpolation coefficient look-up table [10,21]
is adopted. Meanwhile, before DIC analysis, all the images are
smoothed by Gaussian pre-filter technique with a 5 × 5-pixels
window for the purpose of bias error reduction [37]. Benefiting
from this technique, the bias errors of the two DIC approaches are
almost one order of magnitude less than standard deviation error
(SDE).

2.4. Initial guess and convergence conditions

During practical implementation, NR algorithm necessities an
enough accuracy initial guess to ensure correct convergence and
an appropriate convergence condition to control convergence
precision and iterative number. Here, the spatial-domain integer-
pixel searching scheme is employed to seek initial displacement
for two DIC approaches, though more efficient strategies [38,39]
have been developed. Besides, to follow the suggestion reported
in Ref. [40], the convergence criterion defined in local DIC can be
written as

(1ui)2 + (1vi)2 ≤ 0.01 pixel or imax ≤ 50, (4)

where 1ui and 1vi denote the incremental displacement compo-
nents of the calculation point after ith iteration; imax represent the
maximum of iterative number. While for global DIC, an approxi-
mately equal convergence criterion is defined as

max


1ui
k

2
+


1vi

k

2
≤ 0.01 pixel (k = 1, 2, . . . ,N)

or imax ≤ 50, (5)

where1ui
k and1vi

k are the incremental displacement components
of the kth node after ith iteration; N represents the total number
of the nodes in the calculation region.

3. Theoretical analysis of random errors

Regarding three DIC methods, i.e., local DIC, Q4-DIC, and
Q8-DIC, mathematical derivation is carried out to uncover
the governing formula of random errors. Three reasonable
assumptions are made prior to the entire derivation.

(1) The bias errors induced by image noise and interpolation
are negligibly small, since all the images are smoothed
by a Gaussian pre-filter technique before DIC analysis, as
recommended in the existing literature [37].

(2) The bias errors arising from mismatched shape functions
are absent because the deformation model (i.e., translation)
employed in this work can be accurately characterized by the
shape functions in the three DIC methods.

(3) The random errors due to imperfect interpolation are ne-
glected, namely, the grayscales and intensity gradients at the
same point before and after deformation are ideally equal
[20,41].

Throughout the derivation, the random errors of the three DIC
methods are theoretically analyzed in one-dimensional translation
case. First, let f (x) and g(x) represent the gray levels at point x in
the images recorded before and after deformation, respectively.
Then, σ is the standard deviation of zero-mean white Gaussian
noise added to the images. Finally, suppose that the measured
displacement is u′

= (u′, v′) and can be divided into the actual
displacement u = (u, v) and the displacement error ue = (ue, ve).
The SDEs due to the three DIC approaches are briefly denoted as
follows. More details can be found in recent work [42].

3.1. Subset-based local DIC

As an objective function for similarity measure, the SSD
criterion used in subset-based local DIC is defined as
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In the above formula, Ω is a single subset with a size of (K +

1)2 pixels; fx and fy are the intensity gradients of the reference
image; nf and ng are the intensities of noise involved in reference
and deformed images. The standard deviation of the displacement
error ue in subset-based DIC can be derived by minimizing SSD
function [20]

std(ue) ∼=

√
2σ

Ω
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, (7)

where


(fx)2 is defined as the sum of square of subset intensity
gradients (SSSIG) [20], which is relevant to image contrast and
subset size.

3.2. Global Q4-DIC

In the similar manner, the SSD criterion employed in global
Q4-DIC is simplified as
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where ue,k and ve,k denote displacement errors at the kth node, Nk
is the related shape function determined by the employed element
type. Analogously, minimizing SSD criterion with respect to uke
yields the final SDEs induced by Q4-DIC without assembly

std(ue) ∼=
4
√
2σ

Ω

(fx)2
, (9)

whereΩ denotes a single Q4 elementwith a size of (K +1)2 pixels.
Similarwith the parameter SSSIG defined in local DIC,


(fx)2 in the

above equation is defined as sum of square of element intensity
gradients (SSEIG).

To establish FE framework, an assembly matrix is always
required to transform the nodal displacement of each Q4 element
into the global node displacementmatrix. Generally, supposed that
the ROI is meshed into N × N Q4 elements, the SDE induced by
global Q4-DIC can be denoted as

std(ue) ∼=

√
2σ

Ω

(fx)2
× P1, (10)
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Table 1
Theoretical and normalized SDEs of local and global DIC methods.

DIC methods Subset-based local DIC Global Q4-DIC Global Q8-DIC

Theoretical SDE
√
2σ√
Ω f 2x

P1 ·
√
2σ

√
Ω f 2x

P2 ·
√
2σ

√
Ω f 2x

Normalized SDE 1 1.8–2.2 1.2–1.6
Fig. 2. The diagram showing the parameter P1 in Q4-DIC and the parameter P2 in
Q8-DIC varying with the number of elements N .

where parameter P1 is a variable related to parameter N , and their
relationship can be established according to the global assembly
matrix as depicted in Fig. 2.

3.3. Global Q8-DIC

Similar with global Q4-DIC, the final SDEs arising from Q8-DIC
without assembly is written as

std(ue) ∼=

√
70σ

2


Ω

(fx)2
, (11)

where Ω is a single Q8 element with a size of (2K + 1)2 pixels.
It is worth mentioning that the Q8 element is twice the size of Q4
element to ensure same calculation points. Assume that the ROI
is meshed by N × N Q8 elements, the general form of the SDEs
associated with global Q8-DIC can be expressed as

std(ue) ∼=

√
2σ

Ω

(fx)2
× P2, (12)

where P2 is a variable relevant to the number of elements N . As
depicted in Fig. 2, the relationship between the parameter P2 and
the number of elements N can be established.

According to formulas derived above, the theoretical and
normalized SDEs of the three DIC approaches are listed in Table 1.
An observation reveals that local DIC gives rise to the smallest SDEs
in theory, while the SDEs induced by the two global DIC are more
pronounced and their normalized SDEs with respect to local DIC
are 1.8–2.2 and 1.2–1.6, respectively.

4. Experimental comparison by numerical tests

4.1. Numerical experiments

A series of rigid-body translation tests using numerically
simulated speckle patterns were performed and analyzed by
the local and global DIC methods to quantify the computational
efficiency and measurement accuracy. During the experiments,
five sets of translated images includingGaussian noisewith diverse
levels were generated. The first noise-free image set contains one
reference and ten target images (800×800 pixels at 256 gray scale)
with the pre-applied motions along x-direction ranging from 0 to
1 pixel at an increment of 0.1 pixels [18]. Then, four sets of random
Gaussian noises with SDs ranging from 1 to 4 grayscales were
added to the noise-free image set to simulate another four noisy
counterparts. For a more detailed description, interested reader
can refer to Ref. [43].

Subsequently, above-mentioned three DIC techniques were
implemented to process all these images. Carefully selected
calculation parameters were exhibited in Fig. 3 to ensure the
same calculation points and fair comparison. The calculation points
(or element nodes) in reference image is defined as a uniformly
distributed N × N square grid. In local DIC, the subset size was set
as (K + 1)2 pixels and grid step was chosen as K pixels (K is even).
Equally, an element size of (K +1)2 pixels and (2K +1)2 pixels for
Q4-DIC and Q8-DIC were, respectively, applied as recommended
in Ref. [25]. The hardware configuration for the implementation
of three DIC codes programmed by C++ language were identical,
i.e., desktop computer with Pentium R⃝ dual-core CPU E6600 and
3.06 GHz main frequency.

To estimate the statistics of the displacement errors, the
measured displacements are compared with the actual ones.
Generally, the displacement errors arising from DIC algorithms
consist of systematic error (or mean bias error (MBE)) and random
error (or SDE). However, due to the pre-filtering technique as
mentioned above, theMBEs induced by all the threeDIC algorithms
can be neglected. Accordingly, the SDEs arising from these DIC
approaches almost equal total errors defined as root-mean-squares
error (RMSE), which can be expressed as

RMSE =

1
n

n
i=1

(ui − ua)
2

=


n − 1
n

SDE2
+ MBE2

≈ SDE, (13)

where ui represents the estimated displacement of the ith
calculation point, ua denotes the actual subpixel displacement.

4.2. Comparison using image sets at various noise levels

Prior to the DIC analysis, Gaussian per-filter was applied to all
the images to reduce noise with lower grayscale. The parameters
N and K , dominating the calculation point distribution and subset
(element) size, are selected as 16 and 40, respectively. Figure 4(a)
exhibits the relationship between the RMSEs resulting from the
three DIC methods and the applied subpixel motions with respect
to the fifth image set. It can be intuitively seen that (1) the RMSEs
are almost unchanged with the varying subpixel motions; (2)
the local DIC induces smaller RMSEs than the two global DICs,
while Q8-DIC generates less RMSEs thanQ4-DIC. Figure 3(b) shows
the average RMSEs in the calculated displacements at different
noise levels. An observation reveals that the RMSEs of all the
three DICs almost linearly increase with the noise level, and local
DIC offers smallest RMSEs in all cases, while Q8-DIC exhibits
better accuracy than Q4-DIC. Figure 3(c) indicates the normalized
experimental and theoretical RMSEs associated with two global
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Fig. 3. Algorithmic details employed in (a) local DIC; (b) Q4-DIC; (c) Q8-DIC.
Fig. 4. (a) The relationship between the RMSEs due to three DICmethods and subpixel displacements for the fifth image set (image noise with a SD of 4). (b) The relationship
between average RMSEs and the noise levels. (c) The normalized experimental and theoretical RMSEs induced by two global DICs with respect to local DIC in the case of
diverse noise levels.
Fig. 5. The RMSEs induced by three DICs using different element (subset) size: (a) smaller than 10 pixels; (b) larger than 10 pixels.
DICs with respect to that induced by local DIC at various noise
levels. The comparison uncovers that the normalized experimental
RMSEs arising from two global DICs almost remain unchanged
at diverse noise levels, and agree well with the theoretical ratios
predicted by the above governing formula.

4.3. Comparison using various subset or element sizes

To further investigate their accuracy andprecision, the third im-
age set (image noise with an SD of 2) were processed by the three
DIC methods with different subset (or element) sizes. Figure 5 de-
picts the average RMSEs due to the three DIC approaches with re-
spect to the employed subset (or element) size. It should be pointed
out that the total number of calculation points decreases with the
increase of element (subset) size, which indicates the compromise
between displacement uncertainly and spatial resolution. It can be
clearly seen from Fig. 5 that the average RMSEs decrease when ele-
ment (subset) size increases since more pixels are included in sin-
gle subset (element) and the effect of noise is suppressed. It can be
also noted from Fig. 5(b) that local DIC produces less RMSEs than
two global DICs when using element (subset) size larger than 10
pixels. On the contrary, an opposite phenomenon can be detected
as shown in Fig. 5(a) when smaller element (subset) is adopted. As
for two global DICs, Q8-DIC outperforms Q4-DIC in all cases. Al-
though only typical results are illustrated here, all these numerical
experiments indicate the advantages of local DIC over global DIC.
However, the latter still has its potential merit: global Q8-DIC may
be superior to local DIC when dealing with significantly heteroge-
neous deformation due to the data robustness in the case of using
small element.
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Table 2
The computational efficiency of three DIC methods when dealing with the third translated image set (noise with an SD of 2).

Noise levels Subset-based local DIC Global Q4-DIC Global Q8-DIC
Calculating speed (p/s) AIN Calculating speed (p/s) AIN Calculating speed (p/s) AIN

SD = 0 559.730 2.008 83.924 5.364 110.965 5.364
SD = 1 540.408 2.558 33.563 8.636 65.461 6.455
SD = 2 464.959 3.183 18.018 17.909 27.582 16.182
Fig. 6. Calculation parameters employed in (a) local DIC, (b) Q4-DIC, and (c) Q8-DIC during the deformation measurement of the uniaxial tension images.
4.4. Comparison of computational efficiency

The calculating speed and average iteration number (AIN) of
local and global DIC algorithms (subset or element size is selected
as 41 × 41 pixels) during analyzing the first three image sets are
exhibited in Table 2. It can be clearly seen that (1) as noise levels
increase, the calculating speed of three DIC techniques decreases,
and the corresponding average iteration number increases;
(2) local DIC results in less average iteration number than global
DIC due to better convergence performance, whereas Q8-DIC
requires more AIN than Q4-DIC; (3) local DIC has obvious speed
advantage over global DIC in all cases, and global Q8-DIC is superior
to global Q4-DIC in terms of computing speeds. The efficiency
advantage of local DIC over global DIC can be mainly attributed
to the following three aspects: (1) compared with local DIC,
global DIC requires more iteration number to satisfy the same
convergence condition; (2) global DIC requires the transformation
of displacement vector and ‘‘rigidity’’ matrix from the element
scale to global (mesh) scale; (3) during the evaluation global
displacement vector, a large sparse ‘‘rigidity’’ matrix should be
solved in global DIC.

5. Experimental comparison by real experiments

To further examine their practical performance, real experi-
mental images captured during uniaxial tensile test of a standard
aluminum sample were analyzed. To eliminate the error induced
by imperfect imaging, a bilateral telecentric lens was used to cap-
ture the speckle patterns on the surface of the specimen at a ten-
sile load of 1.0 kN (reference image) and 8.5 kN (deformed image).
Meanwhile, to detect the transversal and axial strains of the sam-
ple during loading, two strain gageswere pasted beside the speckle
pattern. Figure 6 shows the reference image cropped from the orig-
inally captured image (1280 × 1024 pixels at 256 grayscales). The
red rectangles are the defined ROI including 17 × 17 calculation
points, and the distance between adjacent calculation points is se-
lected as 30 pixels. More details about element (subset) size can
be seen in Fig. 6. Then, global plane fitting was performed with re-
spect to the measured displacement fields to extract the normal
strains, which is subsequently compared with the average strain
results detected by the strain gages to quantify the strain errors of
the three DIC methods. For more details, one can refer to Ref. [43].

Figure 7 exhibits the u and v displacement fields evaluated by
local and two global DIC techniques, and the inserted table lists the
globally fitted value aswell as relative bias (the bias of fitted values
with respect to that detected by strain gages) of strain components
and Poisson ratio along with the correlation coefficient of the
global fitting. The displacement fields evaluated by local DIC are
much smoother compared with that measured by global DIC.
Moreover, two conclusions can be drawn with respect to global
DIC: (1) themeasured displacements along the boundary aremuch
fluctuating than that in the center region due to lack of continuity
constraints during displacement analysis; (2) the fluctuation
in displacement field detected by Q8-DIC is smaller compared
with Q4-DIC since larger element size efficiently suppresses the
detrimental effect of image noise. The inserted table reveals that
(1) compared with global DIC, local DIC provides displacement
fieldwith larger correlation coefficients, thus resulting in smoother
displacement field; (2) the strains and Poisson ratio evaluated by
local DIC are closer to the actual results detected by strain gauges.
Note that the correlation coefficient of εy is closer to 1 than that
of εx because the larger deformation makes the influence of noise
less along y direction than x direction. Although not described here,
the strain results of other tensile images captured in this test also
demonstrate that local DIC offers better displacement and strain
results.

6. Concluding remarks

In the development of DIC, both local and global DIC methods
have been proposed and advocated for full-field displacement
measurement. In this work, by carefully selecting the same
algorithm details, the measurement accuracy and computational
efficiency of local DIC and two global DICmethodswere thoroughly
compared through theoretical error derivation aswell as a series of
numerical and real experiments. Both the governing formulas and
experimental results indicate the following:

(1) The local DIC offers better displacement precision than the
two global DIC methods. However, it is worth mentioning that
the differences in displacement measured by these DIC methods
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Fig. 7. (Color online) The u (left) and v (right) displacement fields calculated by three DIC methods: local DIC (top), Q4-DIC (middle), and Q8-DIC (bottom).
are less than 0.02 pixels in numerical experiments; the average
normal strains evaluated by local DIC seem slightly better than that
by global DIC in real uniaxial tensile test. These minor differences
during deformation measurement should not be overemphasized.

(2) The local DIC exhibits higher efficiency than global DIC.
Besides, a more robust and efficient IC-GN algorithm combining a
reliability-guided displacement tracking (RGDT) strategy has been
applied to subset-based local DIC recently [21], which indicates
higher computational efficiency.

It should be mentioned here that local de-correlated regions
may appear due to loss of local speckle patterns in dynamic
experiments or significant fluctuation of local intensity during
high-temperature tests. Under such circumstance, local DIC can
robustly deal with the local de-correlated regions in the speckle
pattern by using a RGDT strategy to separate these uncorrelated
points and ensure the displacement tracking of other points
uninfluenced, while the practicality of global DIC is questionable.

Although global DIC is proven inferior to local DIC in this work,
the former indeed exhibits several irreplaceable merits in several
specific respects listed as follows:

(1) Global DIC can directly establish connections between
experimental results and numerical simulations by using the
same FE basis with FEM analysis. It contributes to minimize the
discretization error in DIC compared with simulated results and
conversely optimize the numerical model in FEM analysis.

(2) Global DIC can keep displacement robustness even using
element size with several pixels thanks to the global continuity
constraint, while the subset size used in local DIC should be large
enough to ensure accuratematching. As such, the potential of using
small element makes global DIC more competent in the case of
greatly heterogeneous deformation.
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