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1. Introduction

Recently, the following nonlocal diffusion system is widely discussed in population dynamics [5,8]:
aU(x,t)
= [ Ja=»[U.0 - Ue.n]dy + f(Ux.0), (11)

R

whereteR, x,yeR, U eR", f:R" — R" and J is a kernel function. As mentioned in Murray [10, pp. 408-413], nonlocal

diffusion systems of the form (1.1) are more accurate than reaction-diffusion systems in modeling the spatial diffusion of

the individuals in some biology areas, such as embryological development process. Moreover, the nonlocal diffusion systems

are also proposed in other practical fields, for example, phase transition model [2], material science [1], network model [6]

and lattice dynamical systems [3,4].

Similar to reaction-diffusion systems, time delay is inevitable in modeling nonlocal diffusion phenomena. Due to its
importance in determining the long time behavior of the corresponding initial value problem, many researchers have studied
the existence of traveling wave solutions for the delayed nonlocal diffusion systems. Particularly, Pan et al. [12] and Pan [11]
considered the traveling wavefronts of the following delayed nonlocal diffusion system

ouj(x,t )
%)zfji(x—y)[ui(y,o—ui(x, D]dy + fi(ue®), i=1,....n, (12)
R

where the nonlinear reaction terms f; (i=1,...,n) satisfy the quasimonotonicity (QM) condition or the exponential quasi-
monotonicity (EQM) condition. As stated in our paper [13], it is quite common that the reaction terms in a virtual model
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may not satisfy either the QM condition or the EQM condition, such as type-K Lotka-Volterra systems. For this reason,
we will consider the existence of traveling wave solutions of (1.2) with mixed quasimonotonicity reaction terms and this
constitutes the purpose of the current paper. That is, we will consider three-dimensional nonlocal diffusion systems of the
form

dup(x,t
% = | Jix=»[u1(y. ) —urx. 0] dy + fr(urx, t — 711), ua(x, t — T12), U3(X, t — T13)),
R
duy(x,t)
—r = [ 2= W[u2(y,0) —ua(x, 0] dy + fo(ur(x, t — 121), Uz (X, t — T22), U3(X, t — T23)), (13)
R
dus(x,t)
— = [ &= V[usy, t) —usx, H]dy + f3(ur(x.t — 731), uz (X, t — 732), u3 (X, t — 733)),
R

where t,x,y € R, 7j; (1 <i,j <3) denote time delays, J;(x) is even and f]R Ji(x)dx is finite, f; € C(R3,R) and satisfies
mixed quasimonotonicity condition which will be specified later, i =1, 2, 3. By using the operators H, F and a new cross-
iteration scheme, we will construct a subset in the Banach space C(R,R3) equipped with the exponential decay norm and
reduce the existence of traveling wave solutions to the existence of a new admissible pair of upper and lower solutions,
which are different from Pan [11] and Pan et al. [12].

The rest of this paper is organized as following. In Section 2, we reduce the existence of traveling wave solutions to the
existence of fixed point of the operator F. In Section 3, we obtain the existence of traveling wave solutions if the nonlinear
reaction term of the delayed nonlocal diffusion system satisfies the mixed-quasimonotonicity case 1 (MQM-1) condition. In
Section 4, we get similar results for the MQM-2 case. In the last section, we apply our main results to the three-dimensional
delayed K-type Lotka-Volterra nonlocal diffusion systems and prove the existence of traveling wave solutions.

2. Preliminaries

Throughout this paper, we employ the usual notations for the standard ordering in R3. That is, for u = (u1, u, u3) and
v=(v1,va2,v3),wedenote u<vifu;<v;,i=1,2,3;u<vifu<vbutu#v;andukvifugvbutu#v;i=1,23.
Let | - | denote the Euclidean norm in R3 and | - || denote the supremum norm in C([—7, 0], R3), where émax{t,-j [11<
i, j<3L

A traveling wave solution of (1.3) is a special translation invariant solution of the form uq(x,t) = @1(x + ct), ux(x,t) =
@2 (x +ct), us(x, t) = @3(x + ct), where @1, @2, 93 € CI(R,R) are the profiles of the wave that propagates through the one-
dimensional spatial domain at a constant speed ¢ > 0. Substituting uq(x,t) = @1(x + ct), uz(x,t) = @a(x + ct), uz(x,t) =
@3(x + ct) into (1.3) and denoting x + ct by t, we find that (1.3) has a traveling wave solution if and only if the following
wave equations

C<P§(t)Z/Jl(y—t)[sﬂl(J/)—wl(t)]dy+f1c(§01t,<P2:,§03t),
R

cpy () = / J2(y = 0[@2(y) — p2(O]dy + f5(@1¢, @2, P30), 21)
R

@y (t) = f I3y = 0[@3(y) — 30 dy + £ @1e. Par. 930)
R

with asymptotic boundary conditions

lim ¢i(t) =¢ix, i=1,2,3 (2.2)
t—+o0

have a solution (p1(t), 2(t), ¢3()) on R, where f{(@1¢, @2, ¢3¢) : C([—cT, 0], R3) — R is given by
[ @1, @20, 030) = fi @5 056, 05:), @5 () = @ir(cs) =it +cs), se[-7,0],i=1,2,3,

where (¢1-, @2, ¢3-) and (@14, P2+, @3+) are two equilibria of (2.1). Without loss of generality, we let (¢1_, @2, @3-) =
(0,0,0) and (@14, @2+, @3+) = (k1, k2, k3). Then boundary conditions (2.2) become

t_l)ir_noo i(t) =0, t—l}Too pit)y=k;, i=1,2,3. (2.3)
Let
Coom (R R?) = {(¢1. 2. 03) e C(R,R?): 0< () <M, i=1,2,3, teR},
where k; < M;, i=1,2,3.
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For (@1, 2, ¢3) € Cjo.m) (R, R3) and constants g; >0 (i =1,2,3), define H = (Hy, Ha, H3) : Cjo.mj (R, R?) — C(R, R3) by

Hi(‘/)lvfpz’(/’B)(t):/]i(y_t)[¢i(Y)_‘Pi(t)]d.}""fic(¢1t7¢2ts¢3t)+,3ifpi(t)v i=1,2,3. (24)
R

Then (2.1) can be rewritten as

c@; (t) = —P191(t) + H1(91, 02, 93)(D),
c@h (t) = —B2g2(t) + Ha (@1, 2. 93) (D), (2.5)
c@s(t) = —B3@3(t) + H3 (@1, 92, 93)(8).

Define F = (F1, Fa, F3) : Cjo.m)(R, R?) — C(R,R3) by
t
1 _s, Bi .
Fi(§01,902,<ﬂ3)(t)=E€ c e< Hi(p1, 2, 3)(s)ds, i=1,2,3. (2.6)

—0o0

Then it is clear that the fixed point of F satisfies (2.5) is a traveling wave solution of (1.3) connecting 0 = (0, 0, 0) with
K = (kq, ko2, k3) if it satisfies (2.3).
For u € (0, min1<,<3{%}), define

BM(R’ R3) = {d) € C(Rv RB)Z Sup|<1>(t)|e"‘|t| < oo]
teR
and

|®|,, = sup|@(t)[e .
teR

Then it is easy to check that (B, (R, R, |- |) is a Banach space.
For convenience, we give the following assumptions about f; and J; of (1.3) and all of them will be imposed throughout
this paper.

(H1) f; (ﬁ) = fi (R) =0, where = denotes the constant value function in C([—t, 0], R3);

(H2) For any @, ¥ € C([—1, 0], R3) satisfying 0 < & (t), ¥ (t) < M := (M1, M2, M3) for each t € [—1, 0], there exist positive
constants L; > 0 such that

| fi(@) — fiW)| < Li|® —w;

(H3) Ji(x) is an even and non-negative function, fR Jitkx — Hu(x)dx > fR Jikx —t)v(x)dx for t € R if u > v satisfying that
the two integrals above are convergent, and jR Ji(x)e*X dx < oo for any 1 given above, i =1,2, 3.

3. Mixed quasimonotonicity case 1

In this section, we consider the nonlocal diffusion system (1.3) with the following mixed quasimonotonicity reaction
terms:

MQM-1: There exist three positive constants 81, B2 and B3 such that
f1(011, 021, 931) — f1(@12, @22, ¥31) + <f51 - / ]1(x)dx> [¢11(0) — 12(0)] >0,
R

f1(@11, @021, ¥31) — f1(@11. 921, 932) <0,
f2(@11, 21, 931) — f2 (P12, @22, 31) + (ﬂz - / Jz(X)dX> [¢21(0) — ¢22(0)] >0,
R

F2(@11, 021, 031) — f2(@11. 921, 932) <0,
f3(@11, 921, 931) — f3(P11, P21, ¥32) + <ﬂ3 - / Ja(X)dX> [¢31(0) — ¢32(0)] >0,
R

f3(@11, 21, ¥31) — f3(@12, Y21, ¥31)
f3(@11, 021, ¥31) — f3(@11, P22, ¥31)

’

<0
<0
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for @ = (p11, 21, ¥31), ¥ = (@12, 922, ¢32) € C([—7, 0], R?) with
{ A 0< @G <epn(G)<M;, se[-7,0],i=1,2,3;

8
(ii) e?ls[(pu (s) — ¢12(5)] is non-decreasing in s € [—7, 0] for | € ©,

where © 2 {i | 7; > 0, i=1,2,3}.
First, we give the new definition of a pair of upper and lower solutions of (2.1).

601

Definition 1. A pair of continuous functions ® = (@1, @2, @3), ® = (@1, 2, @3) are called an upper solution and a lower
solution of (2.1), respectively, if there exist constants T;, i =1,...,m, such that @ and @ are continuously differentiable in

R\ {Tj: i=1,..., m} and satisfy

C@ﬁ(f)2/]1(}’—0[@1(31)—f_ﬂl(t)]d}’-l-ff(f_ﬁlt,@t,(gst),
R

y(0) > / J3(y = O[F30) — B3O ]dy + F£ @16, 920, P,
R
and

c’(t) < / J1y =D[e1(0) —e1®O]dy + f{ (@1c. 2r. §30).
R

c@3(t) < [ J3(y = 0[e3(y) — @3] dy + f5@1r, Par, 930),
R

We have some nice properties about operators H and F.

Lemma 3.1. Assume that MQM-1 holds. Then

Hi (@11, @21, 932) () 2 H1(@12, 922, 931)(0),
Ha(911, @21, 932) () 2 H2(@12, 922, 931)(0),
H3 (@11, 21, 932) (1) < H3(P12, 22, 931) ()
for @ = (@11, @21, 031), ¥ = (@12. 922, ¢32) € C(R, R?) with
{ ) 0<¢p@® <en()<M;, se[-7,0],i=1,23;

8
(ii) e?ls[<p,1(s) — @i(s)] is non-decreasing in s € [—7, 0] forl € ©.
Proof. By MQM-1 and the definition of operator H, we have

H1(11, @21, ¢32) (1) — H1(@12, @22, 931) ()

= H1(¢11, 921, 932) (1) — H1 (@11, @21, 931)(t) + H1 (@11, 921, 931) () — H1 (@12, @22, 31) (1)
> / J1y = D[e11(y) — 2] dy + f (@116, @216, ©310) — fi (@12t 226, P310)
R

+ (ﬂl - / J1() dX) (p11() — @12(1))
R

20,

C@’z(f)2/]2()’-0[@2()’)—<_P2(t)]d}’+fzc(<_/)1t,¢2r,<£3r), teR\(Tiii=1,...,m),
R

Cg/z(f)</]2(y—t)[<£2(J’)—@z(f)]d}"i‘ff(@lnﬁfzn@t% teR\ (T i=1,....m).
R

(31)

(3.2)
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Ha (@11, 921, 932)(t) — H2(@12, 22, @31)(t)
= Ha (@11, 021, 932) (1) — H2(@11, @21, 931)(t) + H2(@11, 021, ©31) (1) — H2(@12, @22, 31) (1)

> / 12y = O[@21(¥) — @22 ]dy + f5 (@116, @216, ©310) — f5 (@12t P22c, P310)
R

+ <ﬂ2 - / J2(%) dX) (p21(®) — @22(1))
R

>0,

H3(o11, @21, 932) () — H3(@12, 922, 31)(t)
= H3(@11, 021, ©32) () — H3(@12, 021, 931)(£) + H3(P12, 921, 931)(t) — H3 (P12, P22, ¥31)(t)
= H3(@11, 921, ©32)(t) — H3(@12, 021, 931) (1) + f5 (@12, @216, ©310) — f5 (@126, @220, ©310)
< H3(@11, 21, 932)(t) — H3(@11, @21, 931) () + H3(@11, 921, 931) (1) — H3(@12, 21, 931) (1)

= / J3(y = O[@32y) — @310 ] dy + f5(@116, @216, ©320) — f5(@11¢. 216, P310)
R

+ <ﬂ3 - / J3(®) dX) (@32(t) — @31 (O) + f5 @116, @216, 310) — f5 (@126, P211, P310)
R

<0.

The proof is complete. O
From the definition of F in (2.6), the following lemma is a direct consequence of Lemma 3.1.
Lemma 3.2. Assume that MQM-1 holds. Then

F1(@11, @21, 932) () = F1(@12, 22, 931) (D),
Fa(p11, 21, 932)(t) = F2(@12, 922, 931)(8),
F3(@11, @21, 932) () < F3(@12, 22, 931)(t)
for @ = (@11, 921, 931), ¥ = (012, P22, ¥32) € C(R, R?) with
@ O0<@gnpG) <) <M, se[-1,0],i=1,23;
(ii) e%s[go“(s) — @i(s)] is non-decreasing in s € [—7, 0] forl € ©.

In what follows, we assume that there exist an upper solution ® = (@1, @2, ®3) and a lower solution @ = (@1, ¢2, ¥3)
of (2.1) satisfying (P1)-(P3): o

(P1) 0 < (@1, 92, 93) < (@1, 92, 93) <M= (M1, M2, M3);
(P2) lime—, —oo (@1, @2, ¥3) = 0, limi o0 (@1, @2, ©3) = liMi oo (@1, P2, P3) = K= (k1, k2, k3);

(P3) e%t[@(t) —@i(t)], | € © are non-decreasing for t € R.

Define the following profile set:

D) (@1, 92, 93) < (@1, 02, 93) < (@1, P2, $3)

I=1 @199 €Com®R): (i) edtg(t) — gi(t)] and e L¥[gi(t) — @10)]
| € ® are non-decreasing for t € R

It is easy to see that I" is non-empty. In fact, by (P1), we know that (¢1, @2, ¢3) satisfies (i) of I". By (P3), we know that
8 8

eT‘t[@(t) —@i(t)], | € © are non-decreasing in t € R and e?lt[@(t) —@1(t)]1=0, l € ©. Thus, (@1, P2, P3) satisfies (ii) of I'.

By (P3), we further know that I" is a closed, bounded and convex subset of B (R, R3), see Huang and Zou [7]. Moreover,

the following result is obvious according to Pan et al. [12].
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Lemma 3.3. F = (F1, Fa, F3) : Clo.m (R, ]R3) — C(R, ]R3) is continuous with respect to the norm | - | ;.
Lemma 3.4. Assume that MQM-1 holds, then FI" C I'.

Proof. For any @ = (¢1, ¢2, ¢3) € I, we first prove that F(®) satisfies (i) of I".
By Lemma 3.2, we have that

F1(@1, 92, 93) < F1(@1, 92, 93) < F1(@1, 92, ¢3),
Fa(@1, 92, 93) < F2(@1, @2, 93) < F2(@1, 92, 93),
F3(@1, 92, ¢3) < F3(@1, @2, 93) < F3(@1, @2, 93).

Now, we only need to prove

1 < F1(1, 92, @3) < F1(@1, 92, 93) < 91,
2 < Fa(91, 92, 93) < F2(901, 92, ¢3) < 92, (3.3)
)SF )<

3< F3(91, 92, ¢3 3(@1, @2, 93 3.

<£
¥3

According to the definitions of F and the upper-lower solutions, we have

t

_ 1 _BLg _
F1(¢1,¢2,‘£3)(f)=2/€ o ¢ S H1 (@1, P2, 3)(s)ds

—00

{(Z fT]+/t> ) (5) + pr171(5)]d }

J 1"[] .
=¢1(0)
for t € (Tq—1,Tg) with g=1,...,m+ 1 by letting Tg = —00, Ty41 = +00. Thus the continuity of F1(@1, @2, 93)(0) and
®1(t) implies that @1(t) > F1(@1, @2, 3)(t) for t € R. In a similar way, we can prove that (3.3) holds for t € R. This prove

(i) of I'.
Next, we prove F (@) satisfies (ii) of I'. For t € (Tq_1, Tg) with g=1,...,m+ 1, we have

i -1 T ¢
L) — Filgr, 2, 93)(0)] = {( + / ) Il (s) + pidi(s)]d }
=, _
iz q-1 Tj ¢
- [( f+ /) I Hi(gr, o, ¢3)(s)ds}
=TI Te
Tj t

1 s B
:E<Z /"‘ /)eﬁ‘(C¢§(S)+,3i<ﬂi(5)—Hi(¢1,¢z,<ﬂ3)(s))ds

From Lemma 3.2 and Definition 1, we know that

cPi(s) + Bi@i(s) — Hi(p1, 92, 93)(s) =0, i=1,2,3.
Then the non-decreasing of e © t[(p;(t) — Fi(®)(t)], l € ® is clear. In a similar way, we can prove that e« t[F,(tD)(t) Qi®)] is
non-decreasing int € R, [ € ©.
Thus F (@) satisfies (ii) of I", and this completes the proof. O
Lemma 3.5. Assume MQM-1 hold. Then F : I’ — I is compact.

Remark 1. The proof of Lemma 3.5 is similar to those in Huang and Zou [7] and Pan et al. [12], so we omit it here.

Now, we are in a position to state and prove the following main theorem.
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Theorem 3.6. Assume that f satisfies MQM-1 condition and (2.1) has an upper and a lower solution ® = (91, P2, 93), ¥ =
(@1, 92, 93) € Com (R, R3) satisfying (P1)-(P3). Then (1.3) has a traveling wave solution satisfying (2.3).

Proof. From Lemmas 3.3-3.5, we know that FI" C I" and F is compact. By Schauder’s fixed point theorem there exists a
fixed point (¢, @5, @3) € I, which is a solution of (2.1), that is a traveling wave solution of (1.3).

Next, we verify the boundary conditions (2.3).

By (P2) and the inequality

0 < (@1, 92, ¢3) < (97, 93, ¢3) < (@1, P2, §3) < (M1, M, M3),

we see that
lim (@7 (), 93(0), p3(0)) =(0,0,0),  lim (¢ (1), p3 (1), p3()) = (k1, k2, k3).
t——o00 t—o00
Therefore, the fixed point (¢ (t), @3 (t), @3 (1)) satisfies the boundary conditions (2.3). The proof is complete. O

4. Mixed quasimonotonicity case 2 (type-K competition)

In this section, we propose another mixed quasimonotonicity condition.

MQM-2: There exist three positive constants 81, 82 and B3 such that

fr(@11, 921, 931) — f1(@12, 921, 932) + <,31 - / Jl(X)dX> [011(0) — 12(0)] >0,
R

f1(@11, 21, 931) — f1(p11, @22, 931) <0,
fa(@11, 021, 931) — f2(P11, @22, ¥32) + <,32 - / ]z(x)dx> [¢21(0) — 922(0)] >0,
R

fa(@11, 921, 31) — fa(@12, 921, 931) <O,
f3(@11, 921, 931) — f3(@12, 922, 932) + (,33 - / Ja(X)dX> [©31(0) — 932(0)] >0
R

for @ = (p11, 921, ¥31), ¥ = (P12, P22, ¢32) € C([—7, 0], R?) with
) 0<@ps) <pin(s) <M, se[-7,0],i=1,2,3;

8
(ii) e?ls[(p“(s) — @(s)] is non-decreasing in s € [, 0] for [ € ©,

where © 2 (i | 7; > 0, i=1,2,3}.
We give another definition of a pair of upper and lower solutions of (2.1).

Definition 2. A pair of continuous functions @ = (@1, @2, ®3), @ = (@1, 92, ¢3) are called an upper solution and a lower

solution of (2.1), respectively, if there exist constants T;, i =1,...,m, such that @ and @ are continuously differentiable in
R\ {Tj: i=1,...,m} and satisfy

ACE / Iy =D[31) — F1O]dy + FE@re, @2, B30,
R

Caz(f)2/]20"0[@20’)—(zz(t)]d}’-i-fzc((£1t5¢2t’¢3t)’ teR\(Tj:i=1,...,m}, (4.1)
R

Cag(t)2/]3(}’_0[@3(3/)_(_/)3(t)]d.V+f;(@lt:@Zu@%)v
R

and
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e () < / Iy =01 — @1 ®]dy + FE @1, Poes 930),
R

C‘ﬁ/z(t)g/]z(y—t)[gz()’)—fz(t)]d}"i‘fzc(¢1t,<£2t,(£3t), teR\{Ti:i=1,...,m). (4.2)
R

c@3(t) < / J3(y = O[@3(y) — @3] dy + f5@1r, @2r, 930),
R

In what follows, we assume that there exist an upper solution @ = (@1, @2, @3) and a lower solution @ = (¢1, @2, ¢3)
of (2.1) satisfying (P1)-(P3), which are defined in Section 3. T

We choose the profile set as I”, which is defined in Section 3.

Next, we get the nice properties for H and F in the MQM-2 case, and thus prove the important statement: FI" C I".

Lemma 4.1. Assume that MQM-2 holds. Then

H1(p11, 922, ©31) (1) = H1(p12, @21, 932) (1), F1(p11, 922, p31)(t 1(@12, @21, ¥32) (1),

) = )= F
Ho (12, 921, ¢31)(t) = Ha(@11, @22, 932) (1), Fa (@12, 921, ¢31)(t) = F2 (@11, @22, 32) (1),
) = )= F

Hs (@11, 921, ©31)(t) = H3(p12, 22, 932) (1), F3(@11, 921, p31) (E 3(@12, Y22, P32)(t)

for @ = (@11, 921, 31), ¥ = (@12, ¢22, ¥32) € C(R, R3) with

® O0<¢gnp@G) <) <M, se[-1,0],i=1,23;

s
(ii) e?ls[(p“(s) — @io(s)] is non-decreasing in s € [—7,0] forl € O,
where ® 2 {i |1 >0, i=1,2,3).
Proof. By MQM-2 and the definition of operator H, we have
H1(@11, 922, 931)(t) — H1(@12, @21, 32)(0)
= H1(@11, 922, 931) () — H1(@11, @21, @31 (t) + H1 (@11, 021, ¢31) () — H1(@12, @21, 932) (D)
> fi (@11, @216, 310) — f1 (@126, Q216 P320) + (ﬂl - / J1() dX) (P11(0) — @12(D))
R
2 Oa

Ha (12, 921, ¢31) () — Ha(@11, @22, 932) ()
= Ha(¢12, ¥21, ¢31) () — H2(@11, @21, 931) (t) + H2(@11, 021, 31) () — H2(@011, @22, 32) (1)

> fS(@11e, P16 @311) — f5 (@118, P221, P320) + (ﬁz - / J2(x) dX) (@21(6) — p22(D))
R

20,

H3 (11, 921, ¢31) () — H3(@12, 922, 932) (1)

= f5(@11t, Y216, ©310) — f5(P12t, Y221, P320) + (ﬁ3 - / J3®) dx) (@31(t) — 32(D))
R

> 0.

From the definition of F in (2.6), we get the inequalities for F. The proof is complete. O
Lemma 4.2. Assume that MQM-2 holds, then FI" C I'.

Proof. For any (@1, ¢2, ¢3) € I', by Lemma 4.1, we have that
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F1(@1, 92, ¢3) < F1(@1, 92, 93) < F1(®1, @2, 93),
F2(@1, 92, ¢3) < F2(@1, @2, 93) < Fa(@1, @2, 93),
F3(@1, 92, ¢3) < F3(@1, @2, 93) < F3(@1, 92, ¥3).

Now, we only need to prove

1 < F1(@1, 92, ¢3) < F1(@1, 92, 93) < 91,
2 < F2(91, 92, 93) < Fa(@1, @2, 93) < @2, (4.3)
< )< F )< @

¢
¥3 < F3(91, 92, 93 3(@1, @2, 93

3 3.

According to the definition of F and the upper-lower solution (4.1), (4.2), we have

t
Fi(g1, 92, 93)(8) = cler Hi(e1, 92, ¢3)(s)ds
—00

12
2?{(2 /+ /)e_ﬁ%(t_s)[aﬁﬁ(s)—I—ﬂm@(s)]ds

=¢1(t)

fort € (Tg—1,Tq) withq=1,...,m+1 by letting Tg = —00, Tipy1 = +00. Thus the continuity of Fq (@1, 92, 93)() and @1(t)
implies that F1(@1, @2, ¢3)(t) > ¢1(t) for t € R. In a similar way, we can prove that (4.3) holds for ¢ € R. This prove that (i)
of I" holds. The proof of (ii) of I" is similar to Lemma 3.4. Thus FI" C I'". This completes the proof. O

Similar to Lemmas 3.3 and 3.5, we have:
Lemma 4.3. Assume MQM-2 hold, then F : I' — I' is continuous with respect to the norm | - |, and compact.
Now, we state the main theorem in this section, and the proof is similar to Theorem 3.6.

Theorem 4.4. Assume that f satisfies MQM-2 condition and (2.1) has an upper and a lower solution @ = (¢1,¢2,03), ¥ =
(@1, 92, ¢3) € Com (R, R3) satisfying (4.1), (4.2) and (P1)-(P3). Then (1.3) has a traveling wave solution satisfying (2.3).

Remark 2. Our results in Sections 3 and 4 above include the delays “1;; =0,i=1,2,3 (® =¢)” and “1;; >0,i=1,2,3
(© =1{1,2,3})” as special cases. That is, we get the existence results not only for f with mixed quasimonotone condition or
exponential mixed quasimonotone condition, but also for f with the intermediate cases.

5. Applications

As mentioned in the introduction, in this section, we employ our conclusions in Sections 3 and 4 to establish the
existence of traveling wave solutions for three-dimensional delayed K-type Lotka-Volterra nonlocal diffusion systems.

Definition 3. (See [9].) Consider the system

X =Gi(x) =xgi(x), 1<i<n, x>0,

where x = (x,...,%;) e R}, Ry :=[0,400), G=(Gy,...,Gp) and g =(g1,..., &) :RL. > R"isa C! mapping. This system
is called type-K monotone if the Jacobian Dg(x) of g is type-K monotone, that is, if Dg(x) has the form

A1 —Ar
—As Ay )’

in which A is a k x k matrix, Ay is a k x (n — k) matrix, A3 is an (n — k) x k matrix and A4 is an (n — k) x (n — k) matrix;
Each off-diagonal element of A; and A4 is non-negative, and A, and A3 are non-negative matrices. This system is called a
type-K competitive if —Dg(x) is type-K monotone.

Example 5.1. We consider the existence of the traveling wave solution for the three-dimensional delayed type-K monotone
nonlocal diffusive Lotka-Volterra system (for simplicity, we let 711 = 722 = 733 = 0), that is,
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88%1 = / Jix=p[ui(y.0) —urx. 0] dy + riug[1 —ajqur (X, 0) + appuz (X, t — 1) — ag3uz(x, t — 12)],
R

auy

rral / J2(x = p[ua(y, ) — uz(x, )] dy + rauz[1 4 azui (X, t — 73) — Uz (X, 1) — az3uz (X, t — 74)], (51)
R

% = [ Jsx=y[us(y.t) —usx, 0)]dy + r3us[1 —azui(x, t — T5) — asuz(x, t — T6) — aszus(x, t)],
R

where J; satisfies (H3), r; >0, a;; >0,1i,j=1,2,3.

It is easy to show that system (5.1) has a trivial steady state Eg(0, 0,0) and a steady state E*(kq, ka2, k3), where

1 —app a3 an 1 a3 ann —app 1
1 axn ax —ax 1 axs —az axp 1
ky = 1 a3 as3 ’ ky = a1 as3 ’ ks = ay axp 1 .
ayr —apz di3 ayr —ai2 413 aj;  —ap a3

—az1 42 423
asi as2  ds33

—az1 42 423
asi a2 as3

—az1 42 0423
asi as2  ds3

We choose the coefficients a;j such that k; >0, i, j=1,2,3.
Assume that ¢ > 0. Letting uq(x,t) = @1(x + ct), ua(x,t) = @2(x + ct), us(x,t) = @3(x + ct), and denoting the traveling
wave coordinate x + ct still by t, then the corresponding wave system is

cpi(t) = / J1y =D[e1(y) — 1O ]dy + rie1(O[1 — a1191(8) + a1202(t — cT1) — a3@3(t — c12) ],
R

gy (t) = / 12y = )[@2(y) — 2] dy + 122 () [1 + az @1 (t — €T3) — an@a(t) — apes(t — cta)], (5.2)
R

cp3(t) = / J3(y = 0[@3(y) — @3(0) ] dy + r393(H)[1 — a31¢1(t — cTs) — az2@2(t — cT6) — azz@3(t)]
R

with the following asymptotic boundary conditions
lim (@1(6). 2(), ¢3() =(0,0,0),  lim (@1(6), 2(t), @3(1)) = (k1. k2. k).
t——00 t—+00
For ¢1, ¢2, 3 € C([—7, 0], R), where T = max{t;, i=1,..., 6}, denote
f1(@1. @2, ¢3) =1101(0)[1 — a1191(0) + a1202(—T1) — a13¢3(—712)].
f2(@1. 92, 93) =1202(0)[1 + a21901(—T3) — G22¢02(0) — a3¢3(—Ta) ],

f3(@1, 92, 93) =13903(0)[1 — a3191 (—T5) — a3202(—Tg) — a33¢3(0)].
Obviously, (H1) and (H2) are satisfied. We now verify that f = (f1, f2, f3) satisfies MQM-1.

Lemma 5.2. The function f satisfies MQM-1.

Proof. For any @ (s) = (¢11(5), ¥21(5), ¢31(5)), ¥ (5) = (¢12(5), 22(5), ¥32(5)) € C([—T, 0], R?), with 0 < @in(s) < @i (5) < M,
se[-1,0],i=1,2,3, we have
f1(@11, 021, 931) — f1(@12. 922, ©31) =r19011(0)[1 — a119011(0) + A120021 (—T1) — A13¢31(—T2) ]
—11912(0)[1 — a11912(0) + a12¢22(—T1) — a13¢31(—12) ]
>r1[1 —a11(¢11(0) + ¢12(0)) — a13¢31(—72) ] (¢11(0) — ¢12(0))
>r1(1 —2a11 M1 — a13M3)(¢11(0) — ¢12(0)).
Choosing appropriate constants and J1(x) such that gy :=r1(2a;1M1 —a;3M3 — 1) + fR J1(x)dx > 0, then

frler1, 921, ¢31) — f1(@12, 922, 31) + (/31 —/]1(X)dx>[<ﬂ11(0)—<ﬂ12(0)] = 0.
R
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Also

f1(@11, @21, 931) — f1(@11, 921, ©32) = 11911 (0)[1 — 119011 (0) + a12¢021 (—T1) — A13¢31(—T2) ]
—r1¢11(0)[1 —a11911(0) + a12¢21(—T1) — a13¢32(—T2)]

= —a13r1911(0)(¢31(—T2) — ¥32(—T2))

<0.

In a similar argument, we can prove that f, and f3 satisfy MQM-1. The proof is complete.

In order to apply Theorem 3.6, we need to construct an upper solution and a lower solution for (5.2).

For A >0, c > 0, define

A1(A,0) = / J1(e™ —1)dx — ca +r1(1 + a12Ma),
R

Az(A,0) = / J2(0)(e™ — 1) dx — cA +r2(1 + a1 My),
R

Asz(r, c) = / ]3(x)(e“ —1)dx —ch+r13.
R

O

Then Aj(A,c) (i=1,2,3) are well defined by (H3) and (H4). Further, we have the following lemma.

Lemma 5.3. There exist ¢; > 0 (i = 1, 2, 3) such that the following hold:

(i) If c > c¢1, A1 (A, ©) has two distinct positive roots A1(c) < Az(c), and

Ai(h,c) = {

if c < cq, then A1(X, ¢) has no real root;

>0, A€ (0,11(c)) U ry(c), 00),
<0, Xe(0),2200);

(ii) If c > c2, A2 (A, ©) has two distinct positive roots A3(c) < A4(c), and

Ary(A,c)= i

if c < cg, then Ay (X, ¢) has no real root;

>0, Ae(0,Xx3(c)) U (rs(c), 00),
<0, Ae@3(0), 24(c));

(iii) If c > c3, A3(A, ©) has two distinct positive roots As(c) < Ag(c), and

A3\, c) = {

if c < c3, then A3 (X, ¢) has no real root.

>0, 2€(0,45(c)) U (xe(c), 00),
<0, 2 es(c),26(0));

Let ¢* = max{cy,cz,c3}. For ¢ > ¢*, we define the continuous function @(t) = (@1(t), P2(t), @3(t)) and @(t) =

(P1(6), 2(t), @3(D)) as follows

_ eM Ot t<ty,
o1(t) = it
ki +ee7, t>tq;
and
0, t<t,
1(0) =
¢ { ki — ez, t>ty;
0, t<te,
3(t) =
#3( {k3 —gge ™™, t>tg,

where ¢; >0 (i=1,...,6) satisfy

A3(0)t
_ e , t<ts,
¥2(t) = [ i =
ko +ese™t, t>ts;
0, t <y,
20) =
g ) [kz — 846_M, t>ty;

@3(t) = {

ehs (O

k3 + e5e™

t<ts,
t>ts,

(5.3)

(5.4)
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aj181 — a1263 — a1386 > 0,
(283 — (2161 — a2386 > 0,
(3385 —A3162 — a3284 > 0,
a1182 — 1264 — a1365 > 0,

(284 — (2182 — A385 > 0,

(3386 —a3181 —a3283 > 0,

Ai(c) (i=1,...,6) are given above, and A > 0 is a constant to be chosen appropriately, such that t; (i=1, ..., 6) satisfy the
formula (to be given in the proof).

It is easy to know that Mq = sup;cg @1 > k1, M2 = sup;cg @2 > k2, M3 = sup;cg @3 > k3, @(t) and @ (¢) satisfy (P1)-(P3).
We now prove that @(t) and @(t) are an upper solution and a lower solution of (5.2), respectively.

Lemma 5.4. @ (t) = (@1 (t), P2 (t), @3(t)) is an upper solution of (5.2).

Proof. If t < t1, @1(t) =eM©f we have

/ J1y =0[@1(3) — @1 (O] dy — @) (t) +r1@1(O[1 — a1 @1(t) + a12@2(t — cT1) — a1393(t — cT2) |
R

< / 1y = 0[F1 ) — §1©]dy — @y ©) + 111 +a1M2)1 (6)
R

= [ / J1) (€M O — 1) dx — cA1(0) +r1(1 +¢112M2)]¢1 () =0.
R

Ift >t1, P1(t) =k +e1e7, let t; —cty > tg, then

Dot — 1) ka4 £3e T @3t —cTp) =k3 — gee T,
and
/ J1y =D[@1(y) —P1 (O] dy — c@) (t) +r1@1(O[1 — a1 @1(t) + a12@a(t — cT1) — a1393(t — c12) |
R
< |:81 / Ji(e™ - l)dx+csl)\]e‘“
R
+r1¢1 (l’)[] —an (k1 + 8167M) + (hz(kz + 8367)‘“7”1)) — a3 (k3 - 8667)"“7“2))]
—e M |:81 / J1(%) (e_“ — 1) dx +ceih +11 (k] + 81€_M) ((11283€AC1'1 + a13856)””2 — a1181)i| .
R
Let

I1(A) = &1 / J1(x) (e_’\" - l) dx +ce1h +r11 (k] + 81€_M) ((112(9‘3€)LC1:1 + (113866)LC1:2 - a]181).
R

Then, a11€1 — a2¢€3 — a13&6 > 0 implies that 11(0) =rq(ky + &1)(a12¢3 +a1366 — a11€1) <0, and there exists a A] > 0, such
that I1(A) <0 for A € (0, A]). Thus, we have

cpy(t) = / J1y = 0[@1(y) — @1 (®) ] dy +11@1(O[1 — a11@1(t) + a1292(t — cT1) — a3@3(t — c12)].
R
Similarly, there exist a A5 > 0 such that for A € (0, 15) we have

cPy(t) = / 12y = 0)[@2(y) — P2(0) ] dy + 1292 (O)[1 + a2101(t — €T3) — a2P2(t) — ax393(t — CT4) |
R
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and a A3 > 0 such that for A € (0, A3) we have

cps(t) > / J3(y —0[@3(y) — @3(8) | dy 4+ r393(0)[1 — 3191 (t — cTs) — az2(t — cTg) — az3@3(1)].
R

Taking A € (0, min(A], A3, 1)), we see that & (t) is an upper solution of (5.2). O

Similar to Lemma 5.4 in [13], we have the following lemma by repeating the above procedure.
Lemma 5.5. @ (t) = (¢1(£), p2(t), p3(t)) is a lower solution of (5.2).

By Theorem 3.6 and Remark 2, we have the following result.

Theorem 5.6. For every ¢ > c*, system (5.1) always has a traveling wave solution with speed c connecting the trivial steady state Eg
and the positive steady state E*.

Remark 3. For the delayed type-K competitive nonlocal diffusive Lotka-Volterra system, we can easily verify that the re-
action term satisfies the MQM-2 condition. By constructing similar upper solution and lower solution as (5.3) and (5.4),
respectively, we can also get the existence result of the traveling wave solution.
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