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1 Introduction

In general relativity, space-time diffeomorphism invariance is the local symmetry principle

underlying gravitational interactions. One of most profound physical implications is the

equivalence principle [1, 2]. However, on a specified space-time background, one or more

of the diffeomorphisms are generally broken by gauge fixing, and the pattern of symmetry

breaking constrains the low energy degrees of freedom and dynamics on that background.

For instance, our expanding universe can be considered as a temporal diffeomorphism

breaking system, because the future always looks different from the past. Theories of grav-

ity with temporal diffeomorphism breaking have been extensively studied in the literature,

e.g. k-essence [3], the effective field theory of inflation [4, 5], ghost condensation [6], Horava

gravity [7], generalized Horndeski theories [8–11] and so on.

Spatial diffeomorphism breaking is also important for the description of our universe:

an everyday example is the description of low energy excitations of solids (phonons), which
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can be derived as the theory of broken spatial diffeomorphism invariance in which the

phonons are the Goldstone bosons [12, 13]. With the addition of a U(1) symmetry to

conserve particle number, the theory of broken spatial diffeomorphisms describes “super-

fluid solids” (“supersolids”) [14]. In these systems, spatial diffeomorphism invariance is

a hidden symmetry that is evidenced by the constrained form of the Goldstone bosons’

interactions. At solar system and cosmological scales, spatial diffeomorphism invariance

is a relevant symmetry in that these systems are accurately described by general relativ-

ity. However, the unexplained origins of inflation, the end of inflation and the late time

accelerated expansion keep open the possibility that general relativity is modified at the

largest and smallest length scales. It is therefore interesting to ask how broken spatial

diffeomorphisms impact cosmological dynamics.

In this work, we develop the effective theory for the long-wavelength (k/a ∼ H the

Hubble constant) degrees of freedom in the presence of broken spatial diffeomorphisms.

As in the condensed matter examples, spatial diffeomorphism invariance can be broken by

non-gravitational interactions. Field theory provides a mechanism in the form of soliton

field configurations, such as the hedgehog solution

φa = f(r)
xa

r
, a = 1, 2, 3, (1.1)

which describes a monopole in an SU(2) gauge theory that is spontaneously broken down to

U(1). Here a is the internal index when it is written as the superscript of scalar fields and

is the spatial index when the superscript of coordinates. Taking into account gravity, this

configuration of the φa fields breaks spatial diffeomorphisms, and in this case, translation

and rotation symmetry are also broken to subgroups by fixing a preferred origin of the

monopole. This background field configuration has been implemented to produce an infla-

tionary phase in a model known as “topological inflation”, given that the size of monopole

is greater than the Hubble radius in the early universe [15, 16]. The field configuration

eq. (1.1) is not the unique way to break spatial diffeomorphisms, and we will consider a

more minimal way that preserves the translation and rotation symmetries.

The low energy description of broken spatial diffeomorphisms exhibits three Goldstone

bosons, scalar fields φa which physically can be thought of as measuring spatial position.

In unitary gauge, these “ruler fields” are identified with the coordinates,

φa = xa, a = 1, 2, 3. (1.2)

Translation and rotation invariance are preserved by implementing a shift symmetry φa →
φa+ca for constants ca and an SO(3) internal symmetry in the triplet φa. The scalars φa se-

lect a frame of reference, a background against which to measure perturbations. To restore

the Goldstone bosons as dynamical degrees of freedom, we add a fluctuating component to

the field

φa → xa + πa (1.3)

with πa transforming under spatial diffeomorphisms opposite to the spatial coordinates and

thus furnishing a nonlinear realization of the symmetry (known as the Stückelberg trick).
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To see how this describes a solid, think of the scalar functions φa(x) as locating each

volume element or lattice site in space. In the long-wavelength limit λ ≫ lattice spacing,

inhomogeneity at the sites is smoothed over, and fluctuations of the φa correspond to

fluctuations of the site locations, i.e. phonons [12, 13].

Broken spatial diffeomorphism invariance is interesting in the context of gravitational

theory, because it generates a mass for the graviton. This is easy to understand seeing that

the presence of a fixed frame (one may think of a lattice) admits the propagation of addi-

tional compressional and rotational modes, which are the longitudinal modes of the gravi-

ton. The structure of the broken spatial diffeomorphism theory thus helps understand how

to construct a general self-consistent theory of massive gravity. Indeed, it is a basic question

in classical field theory whether an analog of Higgs mechanism exists that can give gravi-

tons a small but non-vanishing mass. Experimentally, we do not know how gravity behaves

at distances longer than ∼ 1Gpc, and the extremely tiny energy-scale associated with the

cosmic acceleration [17, 18] hints that gravity might need to be modified at such large scale.

The theoretical and observational consistency of massive gravity has been a long-

standing problem. In the pioneering attempt in 1939 by Fierz and Pauli [19], the simplest

extension of GR with a linear mass term suffers from the van Dam-Veltman-Zakharov dis-

continuity [20, 21], giving rise to different predictions for the classical tests in the vanishing

mass limit. This problem can be alleviated by introducing nonlinear terms [22]. However,

in 1972, Boulware and Deser pointed out that a ghost generally reappears at the nonlinear

level, which spoils the stability of the theory [23]. Inspired by effective field theory in the

decoupling limit [24], people have learned that in principle the Boulware-Deser ghost can

be eliminated by construction [25, 26]. This theory is now dubbed dRGT gravity. When

we apply dRGT gravity to cosmology, a self-accelerating solution is found for the open

FRW universe [27]. However, follow-up cosmological perturbation analysis found a new

ghost instability among the 5 gravitational degrees of freedom [28–32], and further dRGT

gravity might suffer from acausality problems [33, 34]. The dRGT ghost instability can be

eliminated at the expense of introducing a new degree of freedom [35, 36]. In this context,

it is interesting to search for a simpler and self-consistent massive gravity theory, as an

alternative to the Fierz-Pauli family of theories.

An alternative way to realize a massive gravity theory is to break the Lorentz symme-

try of vacuum configuration, in addition to the space-time diffeomorphisms. A broad class

of Lorentz-symmetry breaking massive gravity theories have been discussed in refs. [37–41].

Among these theories, a simple example is the spatial condensation scenario eq. (1.2); the

non-vanishing spatial gradient breaks 3 spatial diffeomorphisms, while temporal diffeomor-

phism, translational and rotational invariance are preserved [42, 43]. Previous analyses

focused on linear theory in the decoupling limit. As we will see below, the theory becomes

degenerate in the Minkowski space time. On FRW backgrounds, there are exactly 5 degrees

of freedom in the theory. In the unitary gauge, the graviton eats the Goldstone excitations

πa in eq. (1.3) and becomes a massive spin-2 particle, with 5 massive modes in the spectrum.

The resulting theory has several interesting applications. For instance, the graviton

mass removes the IR divergence in graviton scattering [43], and leaves an interesting imprint

on CMB primordial tensor spectrum [44]. A viable massive gravity theory also provides
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the basis for holographic study of dissipative systems [45–47]. Several other gravitational

phenomena associated with broken spatial diffeomorphisms have also been discussed in the

literature [48–56], without relating them explicitly to the massive gravity aspect of the

theory. For example, by tuning the form of higher order interactions, ref. [50] builds a

model of inflation, calling it “solid inflation”, in which they calculate the two- and three-

point correlation of primordial perturbation. Our analysis helps understand why the sound

speeds of scalar and vector modes are related in such a theory.

In this paper, we study the general gravitational action for broken spatial diffeomor-

phisms by constructing the appropriate low energy effective field theory. The effective field

theory approach describes a system through the lowest dimension operators compatible

with the underlying symmetries. Usually, when we study a gravitational system, we first

write down a general covariant action, and space-time diffeomorphisms are broken “spon-

taneously” after solving the equation of motion. However, in this paper to learn more of

the structure of the theory and resulting character of massive gravity, we start by writ-

ing down the most general gravitational action compatible with spatial diffeomorphisms

breaking in the unitary gauge. We then recover general covariance by performing a change

of spatial coordinates xi → xi + ξi and promote the parameters ξi to Goldstone bosons

which transform opposite to the spatial coordinates πa → πa − ξa under spatial diffs.

This paper is organised as follows: in section 2, before constructing the specific effec-

tive theory, we discuss the general set of terms allowable in unitary gauge. Because the

unitary gauge action, in its initial background-independent form, does not make explicit

the dynamical degrees of freedom, we must carefully select the terms so as to preserve the 5

desired degrees. Then in section 3, we specify to the FRW background, discuss the physical

scales of interest, including different requirements during inflation and late-time and re-

quirements for the perturbativity of the theory. Restricting to SO(3) rotational symmetry

and shift symmetry, we determine the effective action in the FRW universe, and analyse

all scalar, vector, and tensor degrees of freedom. In section V, we present several examples

of the applications of our formalism. Conclusion and discussion will be in the final section

VI. In this paper we use the (−,+,+,+) convention in the space time metric.

2 Generic action in unitary gauge

To help show how a theory of broken spatial diffeomorphisms is a theory of massive gravity,

we first discuss constructing the Lagrangian in the unitary gauge, in which we only have

metric degrees of freedom. When we analyze perturbations, we identify which metric com-

ponents become dynamical, corresponding to the longitudinal polarizations of the graviton,

and thus in a given allowed operator we can track the real degrees of freedom. This is im-

portant because much previous study of modified gravity theories has shown that many

forms of higher derivative operators lead to new degrees of freedom. To preserve exactly 5

dynamical degrees of freedom (2 graviton polarizations + 3 goldstone bosons), the set of

operators must be additionally constrained. As these constraints apply to the construction

in any background, it is worth investigating allowable terms in a “generic” action in unitary
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gauge, before specifying the background solution (and with it the relevant scales). This

facilitates construction in other backgrounds.

In unitary gauge, the action is only invariant under the temporal diffeomorphisms.

There is a preferred spatial frame generated by the space like gradient of scalar fields,

gµν∂µφ
a∂νφ

bhab > 0, where φa(t,x) generally is a function of space and time, and hab is

the internal metric of scalar fields’ configuration. In the unitary gauge, the spatial frame

xa is chosen to coincide with φa,

〈φa〉 = xa, a = 1, 2, 3. (2.1)

They transform as the scalars under the residual diffeomorphisms, so that the additional

degrees of freedom are in the space-time metric.

Going systematically through the geometric objects, we have:

1. Terms that are invariant under all diffeomorphisms. These include polynomials of

the Riemann tensor Rµνκλ and its covariant derivatives contracted to give a scalar.

However, many such terms introduce additional unwanted degrees of freedom and/or

break temporal diffeomorphisms. For instance, by doing a conformal transformation,

R2 is equivalent to Einstein gravity plus a scalar field Ψ with non-trivial potential:

L =
1

2
M2

plR+
λ2

12
R2

→ 1

2
M2

plR− 1

2
∂µΨ∂µΨ− 1

2
λ−2M2

plΨ
2 + . . . (2.2)

The new scalar has a mass ∼ λ−1Mpl that for λ of O(1) is parametrically larger than

the momentum scale k ∼ H (Hubble constant) and the cutoff scale we establish in

the next section. This scalar is therefore nondynamical at the momentum scale of our

theory. Further, the leading order interaction would be a derivative coupling between

the three Goldstones φa and the R2-scalar

Lint = −
√

2

3

Ψ

Mpl
∂µφa∂µφa + . . . (2.3)

For Ψ =const, this amounts to a rescaling of the Goldstones’ kinetic term. This justi-

fies our focussing in this paper on the exactly 5 degrees of freedom, at least at leading

order in the derivative expansion, that complete the spectrum of a massive spin-2 par-

ticle. Therefore we need only the linear term in Ricci scalarR to the order considered.

2. Any scalar function of coordinates xa, as well as their covariant derivatives. In the

unitary gauge, ∇µx
a = δaµ. Higher than second order derivatives generally give rise to

extra modes and the classical Ostrogradski ghost instability. However, provided we

have a viable perturbative expansion, in which higher dimensioned operators includ-

ing higher derivative operators are supporessed by a high scale Λ, the typical mass

of the Ostrogradski ghost is at or above the cut-off scale of our effective field theory.

For this reason, the would-be ghosty modes are non-dynamical and can be integrated
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out at the low energy scale [5]. Consider for instance the scalar field theory with

higher order derivative terms

L = −1

2

[

∂µφ∂
µφ+ Λ−2 (�φ)2

]

, (2.4)

for which the propagator reads

∆(k) =
1

k2 + k4

Λ2

=
1

k2
− 1

k2 + Λ2
, (2.5)

with two propagating degrees. The second appears to have the wrong sign propaga-

tor, which is the possible ghosty mode. However, the pole is at k2 = −Λ2, which is

around the cutoff scale of our theory. For momenta in the domain of the effective

theory k ≪ Λ, this degree of freedom is supermassive and can be integrated out.

3. We can leave free the upper indices i in every tensor. For instance we can use gij , Rij

and Rijkl. However, we notice that Rij can be rewritten into higher order covariant

derivatives of xa by partial integration,

Raa = Rµν∂µx
a∂νx

a = (�xa)2 − (∇µ∇νx
a) (∇µ∇νxa) + total derivatives, (2.6)

so is Rijkl term. Thus Rij and Rijkl terms are irrelevant at low energy scale.

We conclude that the most generic Lagrangian in the unitary gauge is given by

S =

∫

d4x
√−gF

(

R, xa,∇µ, g
ij ,Rij ,Rijkl

)

, (2.7)

where all the free indices inside of the function F must be i’s. The construction so far

is general to the extent of a gravitational action respecting time diffeomorphism invari-

ance and excluding degrees of freedom additional to the broken spatial diffeomorphisms.

Additional symmetries must be respected when the theory is considered on a particular

background, and in the next section we will discuss the restriction.

3 Expanding around a FRW background

3.1 Scales, power counting and constraints

In the present work, we are primarily interested in cosmological phenomenology of the

broken spatial diff theory, and hence we are looking at wavelengths of the Hubble scale.

To be consistent with the high degree of spatial isotropy and homogeneity at cosmological

lengths, the effective scalars πa have an SO(3) internal symmetry and a shift symmetry

πa → πa + ca. The shift symmetry requires the Goldstones have only derivative couplings,

and consequently the effective theory is essentially an expansion in k/M where M is a

scale appearing in association with the higher dimensioned operators. For the theory to be

perturbative in that lower order (lower derivative) operators are more relevant than higher

orders, we should haveH ≪ Λ the breakdown momentum scale, which is approximately the

momentum scale at which ππ scattering violates unitarity. Λ is related to theMs appearing
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in various higher derivative operators and thus the condition H ≪ Λ yields constraints on

the sizes of the higher order operators. Conversely, we constrain M considering (lack of)

evidence for higher order operators. Satisfying these constraints, power counting derivatives

k/M yields a consistent theory because the breakdown scale is parametrically above the

dynamical range of the theory.

Note that the nontrivial background, the FRW spacetime, introduces an important

scale in the dynamics. H and Ḣ enter by determining the characteristic scale of the

background φa fields, and as a consequence their fluctuation components πa. As we will

show in the subsection 3.3, in the Ḣ → 0 limit, the theory becomes strongly coupled and

encounters some of the issues well-known to massive gravity on Minkowski backgrounds,

perhaps pointing to a deeper physics reason for these issues. On the other hand, it has been

previously proven that the present theory is continuous with GR in the limit M → 0, with

the Goldstones decoupling, becoming nondynamical and restoring the full diffeomorphism

symmetry [43].

Considering the early universe, the kinetic energy of a scalar field with k ∼ H is

∼
√
2ǫMplH where ǫ = −Ḣ/H2 is the slow roll parameter, meaning its change in amplitude

over a Hubble time H−1 is ∼
√
2ǫMpl. Since the triplet of dynamical scalars πa can at

most be responsible for inflation, the mass scale suppressing higher order terms must be

larger M &
√
2ǫMpl [5]. As we will show, achieving a self-accelerating cosmology with a

minimal form of this theory requires fine-tuning the parameters in such a way that the

theory becomes strongly-coupled and loses its meaning. We can consider instead inflation

by independent dynamics, with small πa fluctuations on top. In this case, the scale of

the πa must be smaller than the inflation energy scale, but still large enough to validate

an expansion in k/M ; this scenario is quite natural in the context of GUT-scale inflation

and the possibility of topological defects arising from breaking the GUT symmetry group.

In fact, the energy density of the scalar kinetic term dilutes as gµν∂µπ
a∂νπ

a ∼ a−2 the

same as a network of topological defects [58, 59], making such an identification tempting.

Since the πa are small perturbations to dominant inflationary background, evidence of this

scenario must be sought in the gravitational wave signal from inflation, via the (effective)

mass for gravitational waves [44].

At late times z . a few, H is much smaller, and the mass scale of the spatial diff

breaking mechanism certain to be higher, in particular if it is related to any standard

model particle or astrophysics. Considering the present universe, we can constrain the

scales via the resulting mass and sound speed. For non-vanishing graviton mass, the

orbits of binary system will decay at a slightly faster rate than predicted by GR, due

to the additional energy loss from in the emission of massive gravitational waves. The

decay rate difference can be roughly estimated as δ ∼
(mg

ω

)2
, where ω is the frequency of

gravitational waves, which is identical to the inverse of orbital period of binary, and mg is

the graviton mass nowadays. Consider the Hulse-Taylor binary pulsar, PSR B 1913+16,

for which the observed orbital decay attributed to gravitational wave emission agrees with

the predictions of GR to 0.3%, δ < 0.3% requires that mg < 10−20eV ∼ 1012H0 [60].

Non-vanishing graviton mass also changes the propagating speed of gravitational waves,

which leads to the upper bound on the graviton mass of mg < 10−23eV [61]. The detection
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of gravitational waves in advanced LIGO could then bound the graviton mass potentially

all the way down to mg < 10−29eV [61–63]. See [64] for a recent review on the theoretical

and experimental aspects of massive gravity.

3.2 Construction of the action

For a given FRW, the enhanced symmetry reduces the set of allowed operators from those

discussed in the previous secion. In addition to preserving the unbroken temporal diffeo-

morphism invariance, we must preserve homogeneity (translation invariance) and isotropy.

Terms like xa without covariant derivative operators acting on them are not allowed, be-

cause they break homogeneity and isotropy. Instead, xa terms must appear in the action

with derivatives,

fµν ≡ ∂µx
a∂νx

bδab, (3.1)

and any pair of ∂µx
a should be contracted with internal metric δab to maintain the SO(3)

spatial rotation symmetry. Each ∂µx
a∂νx

bδab is contracted with the metric gµν and thus

gives rise to terms proportional to the trace of spatial metric gii and cross terms like gijgij

in the action. At linear perturbation level, the cross terms decompose into the trace sector,

which is a function of gii, plus the traceless sector which only appears at quadratic order

in the action for perturbations.

As for higher derivative terms, they are “less relevant” at low energy scale, as we

discussed in the section 2. Thus we only focus on lowest dimensional operators for the time

being. The higher order derivative terms will be informatively discussed in section 3.5.

We can now write down our most generic action in the unitary gauge as follows,

S =

∫

d4x
√−g

[

1

2
M2

pR+ Λ+ c
∑

i

gii + . . .

]

, (3.2)

where the dots stand for terms which are of at least quadratic order in the fluctuations.

The terms gii is responsible for the “spatial diffeomorphisms breaking”. Notice that the

above three terms contain linear perturbations around FRW background. Therefore, the

coefficients Λ and c will be fixed by requiring that all tadpole terms cancel around the given

FRW solution. The differences between models will be encoded into higher order terms.

To fix the coefficients Λ and c of linear terms, we insert the FRW ansatz for the

background space time metric,

ds2 = −dt2 + a2dx2. (3.3)

The Einstein equations read

3M2
pH

2 = −3
c

a2
− Λ,

M2
p Ḣ =

c

a2
. (3.4)

Solving these two equations for c and Λ, we have

Λ = −3M2
p

(

H2 + Ḣ
)

,

c = M2
pa

2Ḣ. (3.5)
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At the first glance, one may worry that temporal diffeomorphism invariance is broken since c

and Λ are time dependent. However, the time dependence of the coefficients is not sufficient

to break temporal diffs. One way to check is to perform a general coordinate transformation

xµ → xµ+ ξµ, and then promote all four parameters ξµ into fields, ξµ → πµ(x). These four

πµ are the would-be Goldstone bosons associated with broken diffeomorphisms. It is easy to

check that there is no dynamical Goldstone boson associated with temporal diffeomorphism

breaking, or in other words, temporal diffeomorphisms t → t+ ξ0 remain gauge redundant.

We turn now to the fluctuation operator. The simplest form of operator that starts

linear order in fluctuations is

δ̄gij ≡ gij − 3

∑

k g
ikgkj

∑

k g
kk

. (3.6)

To distinguish it from the metric fluctuation δgµν , we put a bar over δ. The trace vanishes

up to linear order in fluctuations,
∑

i δ̄1g
ii = 0, where the subscript 1 on δ̄ denotes linear

order in the expansion.

The term quadratic in fluctuations can be obtained equivalently as the second order of

the operator
∑

i δ̄2g
ii or the operator

∑

ij δ̄g
ij δ̄gij . The two differ only by a factor a which

can be absorbed by redefinition of the coefficient, and we do not need to write the
∑

i δ̄2g
ii

term.

The construction of the operator eq. (3.6) is not unique. For instance, we can equally

write

gij − 3

∑

k,l g
ikgklglj

∑

k,l g
klgkl

, gij − 3

∑

k,l,m gikgklglmgmj

∑

k,l,m gklglmgmk
,

3
∑

i,j,k

gijgjkgki + 2
∑

i,j,k

giigjkgjk −
(

∑

i

gii

)3

, . . . (3.7)

All of these operators as well as the products among them, give rise to exactly the same

quadratic action as δ̄gij δ̄gij , up to a prefactor of scale factor a, which can be absorbed

into the coefficient. The reason is quite simple. Suppose we have a general operator T ij

constructed out of only the spatial metric gij . Expand the spatial metric around the FRW

background and then decompose the linear perturbations into trace part and traceless part,

gij ≡ a−2δij +
1

3
δgkkδij + δ̄gij , (3.8)

where δ̄gij is traceless. The trace part of the perturbation can be absorbed by redefinition

of the scale factor a. Therefore, if we demand that the background part of operator T ij van-

ishes, the trace part of the perturbation must also vanish, and we have T ij = f(a)δ̄gij at lin-

ear level, where f(a) is a generic function of scale factor a. The quadratic order operator can

be constructed out of the product of two T ijs, i.e. δ̄gij δ̄gij . On the other hand, note that the

trace T ≡∑i T
ii vanishes at linear perturbation level and at non-linear level T ∼ δ̄gij δ̄gij

again. We have thus proven that δ̄gij δ̄gij is the only quadratic order operator needed.

Putting these elements together, we write the action eq. (3.2) as

S =

∫

d4x
√−g

[

1

2
M2

pR− 3M2
p

(

H2 + Ḣ
)

+M2
pa

2Ḣgii −M2
pM

2
2 δ̄g

ij δ̄gij + . . .

]

, (3.9)
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where the dots stand for the operators starting from cubic order in fluctuations. We shall

stress that this is the most generic effective action of the leading order in the derivative

expansion. It characterizes the theory with the generic action F
(

gij
)

at the level of linear

perturbations. For the simplicity of notation, we drop all summation symbols, all repeated

indices should be summed up by default. Noted that M2
2 could be a generic functions of

gii and thus time dependent.

3.3 Action for the Goldstone bosons

To exhibit the three Goldstone bosons that nonlinearly restore general covariance, we

can perform a broken spatial diffeomorphism (so called Stückelberg trick). These three

Goldstone bosons are decomposed into 1 scalar mode and 2 vector modes, in addition to

the 2 tensor modes in GR. In the unitary gauge, the graviton “eats” the three Goldstone

bosons and becomes a massive spin-2 particle with 5 polarizations: one helicity-0 mode

and two helicity-1 modes in addition to the helicity-2 tensor modes.

Under the broken spatial diffeomorphism, xi → x̃i = xi + ξi and t → t̃ = t, the metric

gij transforms as

gij(x) → g̃ij (x̃(x)) =
∂x̃i(x)

∂xµ
∂x̃j(x)

∂xν
gµν(x), (3.10)

and d4x
√−g is invariant under all space time diffeomorphisms. Recalling the construction

of the action in the unitary gauge, Λ and c in eq. (3.2) are functions of gii, and their values

are fixed by the background Einstein equations to cancel out tadpole terms. This requires

that under the broken diffeomorphisms, Λ transforms as

Λ → Λ +
dΛ

dt

(

dgii

dt

)

−1

δξg +
1

2!

(

dgjj

dt

)

−1
d

dt

[

dΛ

dt

(

dgii

dt

)

−1
]

δξgδξg, (3.11)

where δξg is the variation of gii(x) under the broken diffeomorphisms, i.e. the trace of

eq. (3.10). Noted we have applied chain rule in the Taylor expansion. The coefficient

c transforms in the same way as Λ. After the spatial diffeomorphism transformation

eq. (3.10), the action eq. (3.9) reads

S = M
2
p

∫

d
4
x
√
−g

[

1

2
R− 3

(

H
2 + Ḣ

)

+ a
2
Ḣg

µν ∂
(

xi + ξi
)

∂xµ

∂
(

xi + ξi
)

∂xν
− 1

3

(

2Ḣ +
Ḧ

H

)

(

∂iξ
i
)2

+ . . .

]

.

(3.12)

Then we promote the nonlinear parameters ξi into scalar fields, ξi → πaδia, and assign to

πa the transformation rule

πa(x) → π̃a (x̃(x)) = πa(x)− δai ξ
i(x). (3.13)

With this definition, the Goldstone scalars non-linearly recover general covariance and

describe the fluctuation around the FRW background.

The resulting action for the Goldstones is

S=M
2
p

∫

d
4
x
√
−g

[

1

2
R−3

(

H
2+Ḣ

)

+a
2
Ḣ

(

g
ii+2δgaµ∂µπ

a+g
µν

∂µπ
a
∂νπ

a
)

− 1

3

(

2Ḣ+
Ḧ

H

)

(∂aπ
a)2

−2M2
2 ∂aπ

b
δ̄g

ab − 2M2
2

a4
·
(

∂iπ
a
∂iπ

a +
1

3
(∂aπ

a)2
)

+ . . .

]

, (3.14)
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One should keep in mind that the πs are the physical excitations over the 3 scalar fields’

vevs in eq. (2.1). Note that in the increased symmetry of the de Sitter limit Ḣ → 0, the

kinetic term (π̇a)2 vanishes and the expansion breaks down.

When the energy scale is much greater than the mass of gauge boson, the mixing be-

tween longitudinal and transverse components of the gauge field becomes irrelevant (helicity

is approximately conserved). The two sectors decouple and analysis is greatly simplified

in the Goldstone language, where there are only interacting scalars. As seen in eq. (3.14),

the leading order mixing is determined by Ḣ or M2
2 and this simplification is also achieved

when the wavelength is small enough. The leading order mixing terms between Goldstone

bosons and metric perturbations are

M2
p Ḣδgaj∂jπ

a , and M2
pM

2
2∂aπ

bδ̄gab. (3.15)

We canonically normalize the action for Goldstone pions and metric perturbations as πa
c ∼

MpaḢ
1/2πa and δgijc ∼ Mpδg

ij , after which the mixing terms read

Ḣ1/2δgajc ∂jπ
a
c , and a−1M2

2 Ḣ
−1/2∂aπ

b
c δ̄g

ab
c . (3.16)

Note that it is appropriate to compare 3-momentum scales here due to violation of Lorentz

invariance. We can see that mixing can be neglected for energies above both of Ḣ1/2 and

M2
2 Ḣ

−1/2. As expected, the mixing scale is essentially the mass of dynamical modes on the

metric perturbations derived below, as the co-factor ǫ1/2 is absorbed in canonical normaliza-

tion. After neglecting the mixing, the action of Goldstone Bosons dramatically simplifies to

S = M
2
p

∫

d
4
x
√
−g

[

a
2
Ḣg

µν
∂µπ

a
∂νπ

a − 1

3

(

2Ḣ +
Ḧ

H

)

(∂aπ
a)2 − 2M2

2

a4
·
(

∂iπ
a
∂iπ

a +
1

3
(∂aπ

a)2
)

+ . . .

]

.

(3.17)

Away from the short wavelength approximation, for Ḣ/H2 ∼ O(1) (also far away from

de Sitter), the first coupling term in eq. (3.16) is important, and to understand dynamics

of modes at the momentum scale of interest k2 ∼ a2Ḣ, a full perturbations analysis is

necessary, which will be presented in the next subsection. In the de Sitter limit Ḣ → 0, the

second mixing term diverges, another manifestation of the strong-coupling problem. We

shall see below in section 3.6 that strong-coupling is avoided with the inclusion of higher

derivative terms. If the coefficient M2 is independent of or only weakly dependent on the

scale factor, the mixing can become negligible at late time.

Before moving to the perturbations analysis, we take advantage of the ease with which

the breakdown scale can be estimated in the Goldstone language. Since Lorentz invariance

is broken, Λ can be written as a cutoff in 3-momentum or in energy, which are related

approximately by a factor of the sound speed at large k. Reading from eq. (3.14), the

interaction terms should be subdominant compared to the kinetic energy for the theory to

be perturbative. The most stringent constraint on the breakdown scale comes from looking

at the 3-π coupling inside the M2
2 δ̄g

ij δ̄gij term. The 1 → 2 amplitude becomes of order 1

at the 3-momentum scale

Λ ∼ a7/2Ḣ3/4M
1/2
p

M2
= a7/2ǫ3/4H

(HMp)
1/2

M2
. (3.18)
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where ǫ = −Ḣ/H2 is the usual slow roll parameter. Provided M2 is not too close to

Mpl, this is parametrically higher than the mixing scales given in eq. (3.16). On the other

hand, for the effective theory to be useful in the cosmological context, the breakdown scale

should be (much) larger thanH so that it effectively describes long wavelength near-horizon

dynamics. The requirement Λ ≫ H is equivalent to

M2 ≪ a7/2ǫ3/4(HMp)
1/2. (3.19)

Note that other operators, for example δ̄gij δ̄gjkδ̄gki at third order, also contribute to the

3-π coupling. A priori, the corresponding coefficient M2
3 (in obvious notation) is the same

order of magnitude as M2
2 . However, when expanding the operator to obtain the n-π

interaction terms, each power of δ̄g brings with it a factor a−2. Consequently, the effect

of operators that appear at higher order in unitary gauge is typically diluted faster in the

expansion of the universe. Only if the associated coefficients scale with a compensating

power of a can these higher orders be relevant or worse lead to strong coupling at late time.

As we do not observe a phase transition in the gravitational dynamics (except possibly the

end of inflation), we may exclude this possibility and consider that terms higher than the

M2
2 term are suppressed.

3.4 Full perturbations analysis

We have learned that away from short wave length limit, generally the coupling between

Goldstone bosons and gravity cannot be omitted. To perform the full perturbations analy-

sis, we first decompose the modes according to helicity and then identify and integrate out

non-dynamical metric degrees of freedom. This procedure results in the effective actions

for the 5 dynamical modes, though the calculations are somewhat tedious.

Due to the SO(3) rotational symmetry of our background space time, we can decompose

the metric perturbations into scalar modes, vector modes, and tensor modes. The helicities

completely decouple at linear perturbation level. We define the metric perturbations as

follows,

g00 = − (1 + 2φ) ,

g0i = a(t) (Si + ∂iβ) ,

gij = a2(t)

[

δij + 2ψδij + (∂i∂j −
1

3
∂2)E +

1

2
(∂iFj + ∂jFi) + γij

]

, (3.20)

where φ, β, ψ, E are scalar perturbations, Si, Fi are vector perturbations and γij is the

tensor perturbations. Vector modes satisfy the transverse condition,

∂iS
i = ∂iF

i = 0 . (3.21)

Tensor modes satisfy transverse and traceless condition,

γii = ∂iγ
ij = 0 . (3.22)

Under spatial diffeomorphisms, the vector field defined by [28]

Zi ≡ 1

2
δij(∂jE + Fj) (3.23)
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transforms as

Zi → Zi + ξi . (3.24)

Comparing to eq. (3.13), we see that the combination (Zi+πi) is a gauge invariant quantity.

In the unitary gauge, Zi eats πi, and survives in the linear perturbation theory. This is

in contrast to general relativity, where both of E and Fi are non-dynamical and can be

integrated out.

In this section, we analyse the metric perturbations in unitary gauge, in which we fix

πi = 0.

3.4.1 Scalar modes

In the scalar sector, φ, β and ψ are non-dynamical. After integrating them out, we obtain

the quadratic action for scalar modes,

S(2)
s = M2

p

∫

dtd3k
(

KsĖ
2 − ΩsE

2
)

, (3.25)

where

Ks =
−k4a5Ḣ

4
(

k2 − 3a2Ḣ
) ,

Ωs =
a3k4

[

k4Ḧ −HḢ
(

36a4Ḣ2 − 21a2k2Ḣ + k4
)]

12H
(

k2 − 3a2Ḣ
)2 +

2k4M2
2

3a
. (3.26)

The scalar mode is ghost free, as long as Ḣ is negative. On the other hand, the kinetic

term vanishes in the limit Ḣ → 0, which implies the strong coupling in this background, as

found in the previous subsection. The scalar action is canonically normalized by defining

the field as

E ≡
(

−M2
pk

4a2Ḣ

2k2 − 6a2Ḣ

)1/2

E, (3.27)

with the result that

S(2)
s =

1

2

∫

dtd3ka3
(

Ė2 − ω2
sE2
)

, (3.28)

where

ω2
s =

8M2
2

a4
+

8k2M2
2

3a6H2ǫ
+

36a4H6ǫ3

(k2 + 3a2H2ǫ)2
+
3a2H4k2ǫ

(

η2 + η − ηs+ 2ǫ2 − (η − 22)ǫ− 2
)

2 (k2 + 3a2H2ǫ)2

−H2k4
(

η2 + 2η(s+ 5)− (6η + 56)ǫ+ 16
)

4 (k2 + 3a2H2ǫ)2
+

k6(1 + 2ǫ− η)

3a2 (k2 + 3a2H2ǫ)2
, (3.29)

The “slow roll” parameters used here are defined by

ǫ ≡ − Ḣ

H2
, η ≡ ǫ̇

Hǫ
, s ≡ η̇

Hη
. (3.30)
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In the IR regime k2 ≪ a2H2ǫ, the dispersion relation of scalar modes can be perturbatively

expanded with respect to k, revealing a relativistic dispersion relation

ω2
s ≃ c2sk

2

a2
+m2

s, (3.31)

where

c2s ≡ 1 +
ǫ

3
− η

6
− 2− η2 − η + ηs

6ǫ
+

8M2
2

3a4H2ǫ
,

m2
s ≡ 4H2ǫ+

8M2
2

a4
. (3.32)

though the speed of sound at momenta k > ms differs from the speed of light. The mass

and sound speed receive both model independent and model dependent contributions. In

general M2
2 is a function of gii and thus scale factor and time dependent. If M2

2 ∝ a4, the

mass of scalar mode will approach to a constant value at late times.

At short distance, k2 ≫ a2H2, the dispersion relation simplifies to

ω2
s ≃ k2

a2
·
(

8M2
2

3a4H2ǫ
+
1+2ǫ−η

3

)

+
8M2

2

a4
− 1

4
H2
[

η2+2η(s+5)+16ǫ2−2(7η+24)ǫ+16
]

.

(3.33)

At short wavelength, the leading order of mass term in the dispersion relation can also

be neglected. After doing so, this result agrees with the one calculated in the Goldstone

gauge, i.e. eq. (3.17) under the helicity decomposition πi = ∂iϕ+Ai where ϕ is the scalar

mode considered just now in the unitary gauge.

3.4.2 Vector modes

In the vector sector, Si is non-dynamical. After integrating it out, the effective action for

the vector degrees of freedom reads

S(2)
v = M2

p

∫

KvḞiḞ
i − ΩvFiF

i, (3.34)

where

Kv =
−k2a5Ḣ

4
(

k2 − 4a2Ḣ
) ,

Ωv = −1

4
k2a3Ḣ +

M2
2k

2

2a
. (3.35)

Similar to the scalar modes, the vector modes are free from ghost instability when Ḣ < 0.

We define the canonical field variable,

Fi ≡
(

−M2
pk

2a2Ḣ

2k2 − 8a2Ḣ

)1/2

Fi . (3.36)

and the canonically normalized action is

S(2)
v =

1

2

∫

dtd3ka3
(

ḞiḞ i − ω2
vFiF i

)

(3.37)
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where

ω2
v =

8M2
2

a4
+
2k2M2

2

a6H2ǫ
+

64a4H6ǫ3

(4a2H2ǫ+ k2)2
+
2a2H4k2ǫ

(

η2 + η − ηs+ 2ǫ2 − (η − 24)ǫ− 2
)

(4a2H2ǫ+ k2)2

−H2k4
(

η2 + 2η(s+ 5) + 8ǫ2 − 2(5η + 36)ǫ+ 16
)

4 (4a2H2ǫ+ k2)2
+

k6

a2 (4a2H2ǫ+ k2)2
. (3.38)

In the IR regime k2 ≪ a2H2ǫ, the dispersion relation of vector modes is also approximated

by the relativistic form

ω2
v ≃ c2vk

2

a2
+m2

v, (3.39)

where

c2v ≡ 1 +
ǫ

4
− η

8
− 2− η − η2 + ηs

8ǫ
+

2M2
2

a4H2ǫ
,

m2
v ≡ 8M2

2

a4
+ 4H2ǫ. (3.40)

Comparing to eq. (3.32), we see that in the IR limit, the mass of vector modes is the same

as that of scalar modes.

At short distance k2 ≫ a2H2, the dispersion relation of vector modes is simplified as

ωv ≃ k2

a2

(

1 +
2M2

2

a4H2ǫ

)

+
8M2

2

a4
− 1

4
H2
[

η2 + 2η(s+ 5) + 8ǫ2 − 10(η + 4)ǫ+ 16
]

. (3.41)

Note that sound speeds of scalar modes and vector modes are not independent. In the

short distance k2 ≫ a2H2, they are related by c2v ≃ 3
4

(

1 + c2s
)

, under the approximation

that all slow roll parameters are much smaller than unity, and in this limit agrees with the

result of [50]. This is due to the uniqueness of the quadratic operator δ̄gij δ̄gij at linear

perturbation level.

3.4.3 Tensor modes

The quadratic action for tensor modes reads

S
(2)
T =

M2
p

8

∫

a3
[

γ̇ij γ̇
ij −

(

k2

a2
+

8M2
2

a4
+ 4H2ǫ

)

γijγ
ij

]

. (3.42)

The tensor modes also become massive, with the same mass as the scalar and vector modes

in the IR regime. In the observational aspect, the non-vanishing mass gap leads to a sharp

peak on the stochastic gravitational waves spectrum. The position and height of the peak

carry information on the present value of the mass term, as well as the duration of the

inflationary stage [57].

3.5 Higher order derivatives

In this subsection, we expand up to second order derivatives. In general, we may ex-

pect higher-derivative operators to arise at least after calculating loop corrections to the

action [65]. To this order, a (over)complete set of operators is

A1 · R, A2 · Rii
, A3 · Rijij

, A4 · ∇µ∇ν
x
a∇µ∇νx

b
δab, A5 ·�x

a
�x

b
δab, A6 · ∇µ

A7∇µA8,
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A9fµν∇µ
A10∇ν

A11, A10 · ∇µ∇ν
x
a∇ρ∇σ

x
b
δab · fµνfρσ, A11 · ∇µ∇ν

x
a∇ρ∇σ

x
b
δab · fµρfνσ,

A12fµν(∇µ
fρσ)(∇ν

x
a)∇ρ∇σ

x
b
δab, A13(∇µ

fρσ)(∇ρ
fµν)(∇ν

x
a)(∇σ

x
b)δab, ∂µδ̄g

ij
∂
µ
δ̄g

ij
, (3.43)

where Ans are generic functions of gµν and fµν ≡ ∂µx
a∂νx

bδab. Compared to first order

derivative terms, these terms are suppressed by the UV scale Λ−2 and thus less relevant at

low energy.

By means of the following metric field redefinition, a generalised conformal transfor-

mation,

gµν → (1 +B) gµν ≡ g̃µν , (3.44)

a theory with second order derivatives is mapped to a theory with first order derivative

terms plus third and higher derivatives

∫

d4x
√−g

[

1

2
M2

pR+ F (gµν , fµν) +G (∇µ∇νxa, . . .)

]

→
∫

d4x
√

−g̃

[

1

2
M2

pR+ F̃ (g̃µν , fµν) +O(∇3x)

]

(3.45)

where B and G are the functions of higher order derivative terms and

B = A (gµν , fµν) ·G, (3.46)

where A (gµν , fµν) is a function of gµν and fµν , and its form is decided by the parameters in

F (gµν , fµν). This field redefinition works equally well if the next leading derivative terms

are third-order, with the resulting theory containing only first-order derivatives and fourth-

and higher-order derivatives. The procedure could be repeated to remove derivatives up

to a desired finite order: starting at n ≥ 2, n-order derivative operators can be removed in

favor of n+ 1-order derivative and higher terms.

As an example, consider an action with two second-derivative terms,
∫ √

−g

[

1

2
M

2
pR+M

2
pm

2 (
c0 + c1f + c2f

2 + c3f
3)+Mpm

(

∇µ∇ν
x
a∇µ∇νx

b
δab −�x

a
�x

b
δab

)

]

(3.47)

where f ≡ gµνfµν . It is equivalent to

∫

√

−g̃

[

1

2
M2

p R̃+M2
pm

2
(

c0 + c1f̃ + c2f̃
2 + c3f̃

3
)

]

(3.48)

with

g̃µν ≡
[

1 +

(

∇µ∇νxa∇µ∇νx
bδab −�xa�xbδab

)

Mpm (2c0 + c1f − c3f3)

]

gµν . (3.49)

We have used the approximation

√−g

[

1 +

(

∇µ∇νxa∇µ∇νx
bδab −�xa�xbδab

)

Mpm (2c0 + c1f − c3f3)

]

R ≃ √−gR, (3.50)

because terms like �xa�xbδab · R are third order derivative terms, so that they are addi-

tionally suppressed and we can neglect these terms when truncating at the second order
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derivatives. The effective action for Goldstone bosons is derived from eq. (3.9) with H2,

Ḣ and gij replaced by the ones induced by eq. (3.49), and then performing the spatial

diffeomorphism transformation shown in section 3.3.

Notably this field redefinition implies that the sound speeds of the scalar and vector

modes (at k2 ≫ a2H2, eqs. (3.33) and (3.41) respectively) are modified only by small

corrections to the cosmological parameters H, ǫ, η, s due to the change in metric. Since the

expressions eqs. (3.33) and (3.41) remain valid, the high energy relation

c2v ≃ 3

4

(

1 + c2s
)

(3.51)

is preserved even in the presence of second-order derivative terms. Repeating the metric

redefinition procedure to remove derivatives terms of any finite order, we find that the rela-

tion is a robust prediction of the effective theory, valid as long as the underlying derivative

expansion is valid.

3.6 De Sitter and Minkowski limits

The higher derivative terms become important in the de Sitter Ḣ → 0 and Minkowskian

Ḣ = H2 → 0 limit. In the limit, the kinetic term from the lowest dimensional operators

vanishes, and kinetic terms arising from higher derivative operators become leading order.

This eliminates the strong coupling problem in the de Sitter and Minkowski limits.

For instance, with higher order derivative term ∂µδ̄g
ij∂µδ̄gij taken into account, in

Minkowskian limit Ḣ = H2 → 0, we have

S =

∫

d4x
√−g

[

−M2
pM

2
2 δ̄g

ij δ̄gij − d2MpM2∂µδ̄g
ij∂µδ̄gij + . . .

]

=

∫

d4x
√−g

[

2d2MpM2

(

∂iπ̇
j∂iπ̇

j +
1

3

(

∂iπ̇
i
)2 − ∂2πi∂2πi − 1

3
∂i∂jπ

j∂i∂kπ
k

)

−2M2
pM

2
2 ·
(

∂iπ
a∂iπ

a +
1

3
(∂aπ

a)2
)

+ . . .

]

, (3.52)

where ∂2 ≡ ∂i∂jδij . d2 is an O(1) positive constant since a priori higher derivative terms

may be similar in size to the leading term and suppressed primarily by the additional

powers of k2/Λ2. The Goldstone action shows clearly how the goldstones obtain non-

vanishing kinetic terms directly related to the higher derivative terms. After canonical

normalization, we see that instead of strong coupling, the corresponding scalar and vector

modes become massive in the Minkowskian space-time, with masses m2 ∼ d2MpM2.

For the tensor modes, the situation is different: the quadratic term M2
2 δ̄g

ij δ̄gij still

provides a nonvanishing mass, as seen in the H → 0 limit of eq. (3.42). The higher

derivative terms only make a correction to the mass. For instance, if we include the higher

order term ∂µδ̄g
ij∂µδ̄gij in the Minkowskian space-time limit, the tensor action is

S ⊃
M2

p

8

∫
(

1 +
8d2M2

Mp

)

(

γ̇ij γ̇
ij − k2γijγ

ij
)

− 8M2
2γijγ

ij , (3.53)

Canonically normalizing γij , the graviton mass is

m2
T ≃ 8M2

2

(

1− 8d2M2

Mp

)

. (3.54)
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Consequently, the vector and scalar modes have masses mv,ms ∼
√

Mp/M2 ·mT . Consid-

ering horizon-scale perturbations k ∼ H, these modes are relatively heavy and could be

integrated out, having ∼ 1/M2
p impact on tensor-mode observables. On the other hand,

we would like to informatively mention that the sound speed of tensor mode will also be

modified, with more of higher derivative terms in eq. (3.43) included. In this case, the

sound speed of tensor mode deviates from unity by a factor of M2/Mp.

To conclude, in this section we have investigated perturbations on the FRW back-

ground. We first derived the Goldstone action up to quadratic order, which clearly isolated

the strong coupling problem as well as a possible resolution by the inclusion of higher

derivative terms. Seeing that mixing with the metric can not in general be neglected, we

then performed a full perturbation analysis in the unitary gauge. This analysis exhibited a

well-behaved massive spin two particle, with 5 polarizations: one scalar mode, two vector

modes, and two tensor modes. All helicity modes are massive, and the masses shown to be

identical in the low momentum regime. The dispersion relations of these 5 modes are fully

characterized by the parameter set {H, ǫ, η, s,M2
2 }.

4 Several examples

4.1 The minimal model and next-to-minimal model

The simplest example is obtained by setting M2
2 = 0 in the general action eq. (3.9), and

only keeping the first three terms. In the φa language, this theory corresponds to Einstein

gravity and three canonical massless scalar fields with space like VEV eq. (2.1) [43],

S = M2
p

∫

d4x
√−g

(R
2

− 1

2
m2gµν∂µφ

a∂νφ
bδab − Λ

)

, (4.1)

where Λ is the bare cosmological constant. The energy density of the spatial condensate

scales as ρ ∝ a−2 and its equation of state equals to −1/3. In the linear perturbation

theory, after canonical normalization, scalar, vector, and tensor polarizations of graviton

have the same dispersion relations

ω2
s = ω2

v = ω2
t =

k2

a2
+

2m2

a2
, (4.2)

with the same non-vanishing mass. These dispersion relations are identical due to the SO(3)

internal symmetry of the scalar fields, which has been imposed to ensure the rotational

symmetry of the vev configuration. For the same reason, the scalars can be re-decomposed

into 3 polarizations: two transverse modes and one longitudinal mode,

πa = δai (∂iϕ+Ai) , (4.3)

where ∂iA
i = 0. Due to the SO(3) symmetry, we could rotate longitudinal mode a bit

“into” transverse modes, and on the other hand transverse modes are rotated a bit “into”

longitudinal mode, and leave the action invariant. In the unitary gauge, these transverse

and longitudinal modes are eaten by graviton, It implies the masses of scalar modes and

vector modes of graviton should be the same.
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To see how the effective theory operator δ̄gij δ̄gij in eq. (3.14) is related to a specific

model, we consider as an example a general polynomial of the tensor defined in eq. (3.1),

i.e. fµν ≡ ∂µx
a∂νx

bδab, f ≡ gµνfµν . For instance, starting from the theory truncated at

cubic order,

S = M
2
p

∫

d
4
x
√
−g

[

R
2

−m
2 (

c0 + c1f + c2f
2 + d2f

µ
νf

ν
µ + c3f

3 + d3f
µ
ρf

ρ
σf

σ
µ + g3f · fµ

νf
ν
µ

)

]

, (4.4)

where c0 is the bare cosmological constant. In this case, the coefficient M2
2 equals to

M2
2 = m2

(

d2 +
3d3
a2

+
3g3
a2

)

. (4.5)

The dispersion relations of the 5 polarizations of graviton can then be read from eq. (3.26),

(3.32), eq. (3.35), (3.40) and eq. (3.42) directly.

Generally, given a Lagrangian with the function of −
∫ √−gF (gµν , fµν), we can cal-

culate M2
2 in this way: we first Taylor expand the Lagrangian around background,

F (gµν , fµν) = F0 +
δF

δgµν
δgµν +

1

2!

δ2F

δgµνδgρσ
δgµνδgρσ + . . . . (4.6)

Then note that at linear perturbation level, δ̄gij equals the trace-less part of metric fluc-

tuation δgij . Finally, we decompose the metric fluctuation into trace part and trace-less

part, δgij = δ̄gij + 1
3δg

kkδij . M2
2 is identified as the coefficient in front of the sum of the

trace-less terms (see the appendix A for more details).

4.2 Generalization to spatially non-flat universe

Up to now, we have analysed the gravity theory with broken spatial diffeomorphisms in

a flat FRW universe. It is straightforward to generalize it to a non-flat FRW universe.

In this case, the internal metric of scalar fields configuration is replaced by one which is

compatible with the metric on the non-flat spatial slice.

For a spatially non-flat FRW universe, the space time metric can be written as

ds2 = −dt2 + a(t)2Ωijdx
idxj , (4.7)

where Ωijdx
idxj is the metric on a 3-sphere

Ωij ≡ δij +
Kδilδjmxlxm

1−Kδlmxlxm
, (4.8)

where K = 1 for a closed universe and K = −1 for an open universe. In the unitary gauge,

the tensor fµν takes the form which compatible with 3-sphere metric,

fµν ≡ ∂µφ
a∂νφ

bGab(φ
a) = (0,Ωij). (4.9)

A possible vacuum configuration for scalar fields is

φa = xa, Gab(φ) = δab +
Kδacδbdφ

cφd

1−Kδcdφcφd
. (4.10)
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It is easy to check that the above vacuum configuration are indeed on shell and satisfy the

equations of motion,

gµν∇µ∇νφ
a + gµν∂µφ

b∂νφ
cΓa

bc = 0, (4.11)

where Γa
bc is the affine connection which derived from the inner metric Gab(φ). The gen-

eralization of our effective field theory approach to a spatially non-flat universe is quite

straight forward. Including spatial curvature, the effective action can be written as

S = M2
p

∫

d4x
√−g

[

1

2
R− 3

(

H2 + Ḣ
)

+
(

a2Ḣ −K
)

Ωijg
ij −M2

2 δ̄g
ij δ̄gij + . . .

]

,

(4.12)

where the quadratic order operator is defined by

δ̄gij ≡ gikΩkj − 3
gikglmΩklΩmj

gijΩij
. (4.13)

Non-zero spatial curvature is sufficient to ensure the kinetic term is non-degenerate. This

suggests that another way to cure the strong coupling problem of massive gravity in

Minkowski space is to perturb in the direction of non-vanishing spatial curvature.

4.3 A self-accelerating universe

When we apply our massive gravity theory to cosmology, one of most interesting questions

is whether or not a graviton mass term can accelerate the cosmic expansion. A similar

question was studied in ref. [50], in which they proposed an inflationary model “solid

inflation”, with de Sitter-like expansion driven by the vacuum energy of the “solid”, that is

the spatial condensate vacuum configuration eq. (2.1). In this section, we provide another

way to realize a de Sitter phase.

We work on the static chart of the de Sitter phase, where the metric takes the form

ds2 = −(1−H2r2)dt2 +
1

1−H2r2
dr2 + r2dθ2 + r2 sin θ2dφ2 , (4.14)

and H is the Hubble constant of de-sitter space-time. The Einstein tensor reads,

Gµ
ν = −3H2δµν . (4.15)

In terms of spherical coordinate, the 3 scalars can be written as

φa = xa , xa = r(sin θ cosφ, sin θ sinφ, cos θ) , (4.16)

and the tensor

fµν ≡ ∂µφ
a∂νφ

bδab = (0, 1, r2, r2 sin θ2) . (4.17)

Normally, such a field configuration is not compatible with the space time metric eq. (4.14),

since the scalars do not satisfy their equation of motion. For instance, if we consider a

canonical Lagrangian,

M2
p

∫

d4x
√−g

{R
2

− 1

2
m2gµν∂µφ

a∂νφ
bδab

}

, (4.18)
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the energy momentum tensor reads,

T 0
0 =

1

2
H2r2 − 3

2
,

T 1
1 = −1

2
H2r2 − 1

2
,

T 2
2 =

1

2
H2r2 − 1

2
,

T 3
3 = T 2

2. (4.19)

Comparing to eq. (4.15), we can see Einstein equations are not satisfied. On the other hand,

the vacuum configuration does not satisfy the equations of motion for scalar fields φa either,

gµν∇µ∇νφ
a ∝ H2r 6= 0. (4.20)

The SO(3) scalar fields’ configuration in the static chart of de Sitter phase implies that

there are large shears and energy momentum flows in the non-static coordinates. Never-

theless, if we include the higher order kinetic interaction terms, by tuning the parameters

we may be able to cancel out the shears and flows and realize a self-consistent de Sitter

solution. We found this solution at least contains 4th order kinetic interactions,

M2
pm

2

∫

d4x
√−g

[

c1f + c21f
2 + c22f

µ
ν f

ν
µ + c31f

3 + c32f
µ
ν f

ν
ρ f

ρ
µ + c33f · fµ

ν f
ν
µ

c41f
4 + c42f

µ
ν f

ν
ρ f

ρ
λf

λ
µ + c43f · fµ

ν f
ν
ρ f

ρ
µ + c44(f

µ
ν f

ν
µ )

2 + c45f
2 · fµ

ν f
ν
µ ] , (4.21)

where all coefficients c1, c21, c22 . . . are coordinate independent constants. As a self-

consistent solution, it must satisfy Einstein equations, Tµ
ν = Gµ

ν = −3H2δµν , and the

equation of motion for scalar fields as well. These conditions lead to a set of nontrivial

constraints on the coefficients,

c21 =
1

8
(−3c1 − 2c33) ,

c22 =
3

8
(c1 − 2c33) ,

c41 =
1

48
c1 −

1

24
(c33 + 4c45) ,

c42 =
3c1
16

+ c45 −
c33
8
,

c43 =
1

6
(c33 − 8c45)−

1

12
c1,

c44 =
1

8
(−c1 − 4c45) ,

c32 = −c33,

c31 = 0 , (4.22)

and the energy momentum tensor can be calculated as

Tµ
ν =

3

8
(3c1 − 2c33)M

2
pm

2δµν . (4.23)
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Indeed with this choice of parameters, the vacuum energy behaves as an effective cosmo-

logical constant.

However, as we mentioned in the section III. B, in the de Sitter limit, Goldstone bosons

become strongly coupled, and the theory breaks down. To show how it occurs in this model,

we perturb the scalar fields’ configuration by introducing the (Goldstone) excitations

φa = xa + πa . (4.24)

Then we take the decoupling limit to decouple Goldstone bosons and gravity,

m → 0, Mp → ∞, Λ2 ≡ Mpm = const. (4.25)

In momentum space, the quadratic action for Goldstone bosons reads

L(2)
π =

∫

Kδabπ̇
aπ̇b − c2diagk

2πaπbδab − c2mix(kaπ
a)2 , (4.26)

where

K = − (c1 + 6c21 + 2c22 + 27c31 + 3c32 + 9c33 + 108c41 + 4c42 + 12c43 + 12c44 + 36c45) ,

c2diag = − (c1 + 6c21 + 4c22 + 27c31 + 9c32 + 15c33 + 108c41 + 16c42 + 30c43 + 24c44 + 54c45) ,

c2mix = 2 (2c21 + c22 + 18c31 + 3c32 + 7c33 + 108c41 + 6c42 + 15c43 + 14c44 + 39c45) . (4.27)

After inputting the constraints on these coefficients, i.e. eq. (4.22), we find that K = c2diag =

c2mix = 0 and the quadratic action vanishes identically.

As we saw above in the effective theory analysis, this degeneracy arises in the exact

Ḣ = 0 limit, and one of possible solutions to the strong coupling problem is to introduce

a small deviation from de Sitter space time. Another possible solution is to include higher

order derivative terms. As discussed in section 3.6, the higher order derivative terms give

rise to a non-vanishing kinetic term for Goldstone bosons even in de Sitter spacetime and

thus heals the strong coupling problem.

5 Conclusion and discussion

In this paper, we characterize the most general theory of spatial diffeomorphisms break-

ing. By means of effective field theory approach, after writing down all possible operators

compatible with underlying symmetries, we are able to describe the effective theory of fluc-

tuations around the FRW background with spatial diffeomorphisms breaking. We showed

that the most generic action on a FRW background can be written in the form

S =

∫

d4x
√−g

[

1

2
M2

pR− 3M2
p

(

H2 + Ḣ
)

+M2
pa

2Ḣgii −M2
pM

2
2 δ̄g

ij δ̄gij + . . .

]

, (5.1)

where δ̄gij is the covariant operator constructed out of gij and starts from linear order

in fluctuations. Differences among models (UV completions of the theory) are encoded in

this operator as well as higher order operators. The three broken spatial diffeomorphisms
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acquire three Goldstone bosons. The couplings between different helicity modes are char-

acterised by the scales Ḣ and M4
2 /Ḣ. Above the mixing scale, we can neglect the couplings

between different helicity modes, and the action of Goldstone bosons dramatically simplifies

to

S = M
2
p

∫

d
4
x
√
−g

[

a
2
Ḣg

µν
∂µπ

a
∂νπ

a − 1

3

(

2Ḣ +
Ḧ

H

)

(∂aπ
a)2 − 2M2

2

a4
·
(

∂iπ
a
∂iπ

a +
1

3
(∂aπ

a)2
)

+ . . .

]

.

(5.2)

In the unitary gauge, the 3 Goldstone bosons are eaten by graviton, and the graviton

becomes a massive spin-2 particle with 5 well-behaved degrees of freedom that are de-

composed into 1 scalar mode, 2 vector modes, and 2 tensor modes. We performed the

cosmological perturbation calculation, derived the effective quadratic action for each of

the 5 polarizations, and found that at linear perturbation level, all 5 polarisations have

non-vanishing masses. The dynamical properties of these 5 polarisations are characterised

by the parameter set {H, ǫ, η, s,M2
2 }, where ǫ, η, s are “slow roll” parameters.

With only first-order derivative operators, the kinetic terms of these three Goldstone

bosons vanish in the de Sitter, as well as Minkowski limit, where Ḣ → 0. In this limit, the

kinetic terms arising from higher derivative operators become leading order. In this case,

the three Goldstone bosons appear to be supermassive at the low energy scale, and thus

can be integrated out, leaving two massive tensor modes as the only propagating degrees

of freedom.

Away from de Sitter and Minkowski limit, in the IR regime where k2 ≪ a2H2ǫ, the

quadratic action of the 5 polarisations in the unitary gauge reads

S
(2) =

1

2

∫

dtd
3
ka

3

[

Ė2 −
(

c2sk
2

a2
+m

2
g

)

E2 + ḞiḞ i −
(

c2vk
2

a2
+m

2
g

)

FiF i + γ̇ij γ̇
ij −

(

k2

a2
+m

2
g

)

γijγ
ij

]

,

(5.3)

where E is the scalar mode, Fi is the vector mode, γij is the tensor mode. The graviton

mass m2
g = 4H2ǫ+

8M2
2

a4
takes the same value for all 5 polarisations in the long wavelength

limit. The sound speeds of scalar and vector modes are functions of “slow roll” parameters.

Several examples on the applications of our formalism to cosmology are also presented.

We started from the example of a flat FRW universe and a generic polynomial of derivative

couplings and showed how to determine the dispersion relations of the 5 graviton polar-

izations. We also generalized to a spatially non-flat FRW universe and a static chart of de

Sitter space time.

Along this line, there are several possible extensions of our formalism. For instance, it

would be necessary and more realistic to consider the matter distribution in the universe

and develop a new effective theory with the coupling to mattertaken into account. On the

other hand, if we go beyond linear perturbation theory, the interactions among three pions

can be characterized by introducing the higher order operators like δ̄gij δ̄gjkδ̄gki. This type

of non-trivial interaction leads to non-Gaussianity in the metric fluctuations. It would be

very interesting to study its possible imprint on CMB and large scale structure.
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A Calculating M
2

2
for a given Lagrangian

In the section 4.1, we pointed out that for a generic Lagrangian with spatial diffeomor-

phisms breaking in the unitary gauge,

S ⊃ −M2
p

∫ √−gF
(

gµν , ∂µφ
a∂νφ

bδab

)

= −M2
p

∫ √−gF
(

gij
)

, (A.1)

the associated quadratic operator in the effective field theory can be calculated by tracking

the traceless part of metric perturbation. To do so, we decompose the metric as in eq. (3.8),

gij ≡ a−2δij +
1

3
δgkkδij + δ̄gij , (A.2)

where δ̄gij is the traceless part of metric perturbations. We expand the action eq. (A.1)

perturbatively in terms of the above metric decomposition,

S ⊃ −M2
p

∫ √−g

(

F (0) +
δF

δgij
δgij +

1

2!

δ2F

δgijδgkl
δgijδgkl + . . .

)

⊃ M2
p

∫

−1

2
a7F (0)δ̄gij δ̄gij − 1

2
a3

δ2F

δgijδgkl
δ̄gij δ̄gkl + . . .

= M2
p

∫

−3

2
a7H2δ̄gij δ̄gij − 1

2
a3

δ2F

δgijδgkl
δ̄gij δ̄gkl + . . . (A.3)

where we have used the 0− 0 component of Einstein equation 3H2 = F (0) in the last line

of the above formula.

On the other hand, the effective action for the traceless metric perturbation in terms

of our effective field approach reads

S ⊃ M2
p

∫ √−g
[

−3
(

H2 + Ḣ
)

+ a2Ḣgii −M2
2 δ̄g

ij δ̄gij + . . .
]

⊃ M2
p

∫

−3

2
a7H2δ̄gij δ̄gij − a3M2

2 δ̄g
ij δ̄gij + . . . (A.4)

By comparing eq. (A.3), (A.4), we find

M2
2 δ̄g

ij δ̄gij =
1

2

δ2F

δgijδgkl
δ̄gij δ̄gkl. (A.5)
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