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Let li = cl;(&) (U # 1 squarefree), K any possible cyclic quartic field containing 
li. A close relation is established between K and the genus group of li. In particular: 
(I ) Each K can be written uniquely as K = Q(G), where rI is fixed in k and 
satisfies t) 9 1, (q) = a*&. 1’2L2] = I(f (c, U) = 1, I’ E 1 is squarefree, ir 1 u, 
0 < ir < $. Thus if u # a’ + b’. there is no K 2 h-. If u = a’ + b’ then for each 
fixed I’ there are 2’-‘K 2 k. where g is the number of prime divisors of u. (2) K/k 
has a relative integral basis (RIB) (i.e., 0, is free over 0,) iff N(e,) = -I and 
IV = 1. where F~ is the fundamental unit of k. (or, equivalently, iff K = ~OI(JUE~,\/~~). 
(I’. U) = 1 ). (3) A RIB is constructed explicitly whenever it exists. (4) disc(K) is 
given. In particular, the following results are special cases of (2): (i) Narkiewicz 
showed in 1974 that K/k has a RIB if u is a prime: (ii) Edgar and Peterson (J. 
Number Theory 12 (1980). 77-83) showed that for u composite there is at least one 
K 2 /( having no RIB. Besides. it follows from (4) that the classification and 
integral basis of K given by Albert (AWL of Math. 3 I ( 1930). 38 l-4 18) are wrong. 

Let k = O.!(6) b e arbitrary quadratic field where u E L is squarefree. And 
let C, (CI, resp.) be the strict (wide, resp.) ideal class group of k. It is well 
known that Ci = C,/( 1, O}, where 0 = [ (&)I is the strict class represented 
by (&). (For this and genus theory see 141.) 

Consider the three sets: 

.fl = (K 1 k : K is a cyclic quartic field}, 

Z = (0 E k”/k *2 :N(B) E u . Q*2}, where N(B) = N,,,(8), 

7‘X.d where T‘=(uEZ:(t~,u)=l,vissquarefree}, 

d= (BECO,:B’=OinC,). 

If u < 0. then obviously all three sets are empty. So we assume u > 0 and 
let s0 be the fundamental unit of k throughout this paper. 
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We will show that for each 13 E 2, (0) can be written as 

(0) = tlb2fi, (1) 

where 1: E 7 ‘, sign(v) = sign(O), b is a fractional ideal of k, and 
[b ] = B E .A!?: and that the following maps are well defined: 

yl:x+c where u,-‘(8) = k(@). 

y:Z+T’X.!d where w(e) = (0. lbl). 
(2) 

The main results of this paper are the following 4 theorems. 

THEOREM 1. cp is a 1 : 1 map. v/ is a 2”“‘11’+“!’ : 1 map. 

THEOREM 2. Every K E 8 can be written uniquel~l as 

K = Q(G). (3) 

where rl * 0 is fixed in k = lO(du), (n) E (2l’\/;; : [YIU]’ = O}, (11, u) = 1, 
1’ E ,i is squarefree, w E (u’ > 0 : II’ / u, u’ E T 1 module the relation 
u’ - u/u’. 

Remark 1. We assume q = E,& whenever N(eo) = -1. In general if 
u=a’+b’,aisodd,wemaytake~=(b+\/i;)\/;;. 

By genus theory, 0 is a perfect square iff u = a’ + 4’. a, b E J. Thus we 
have 

COROLLARY. (i) If u f a’ + b’, a, b E Z (i.e., u < 0 or 3 prime 
p = 3(mod 4), p / u) then there is no c~~clic quarticfield containing k. 

(ii) If u = a’ + b2, a,bEh, (i.e., u = PI . . . pn > 0, prime 
pi f 3(mod4), 1 < i < g) then for each fixed v there are 2Kp ’ c.vclic quartic 
fields containing k. 

THEOREM 3. K E .8 has a relative integral basis (RIB) (i.e., 0, is flee 
over 0,) tjf one of the 3 equivalent conditions hold: 

(RIB 1) N(E,,) = -1 and MJ = 1, where K is as in (3). 

(RIB 2) K = loI for some v E H, (v, u) = 1. 

(RIB 3) B = 1, where (v, B) = y/y(K) as in (2). 

COROLLARY. (i) Zf N(e,,) = $1, then no cyclic quarticfield K containing k 
has a RIB. 

(ii) If N(E,,) = -1, then for each fuced v exact& one of the 2,4-’ fields 
K in (3) has a RIB. Thisfield is Q(dc&). 
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THEOREM 4. Whenever K E .K‘ has any RIB, { 1, a) is a RIB, where 

ol=~(l-t~~) ifv=~(u+ l)EL(mod4), 

= &iJL otherwise, 

and K = Cl(dG). 

We will use 

LEMMA 1. (i) Let 6’ E k*, then k(\/B) E Z ifA’ E u . Q*‘. 

(ii) Let 8,, O2 E k*, then k(A) = k(&) lfl0, - e2 E k*2. 

Proof (i) See [4, pp. 234, 244; or 21. (ii) is obvious. 

Proof of Theorem 1. By Lemma 1, q is a well-defined 1 : 1 map. As for 
v/, for any e E 2, we may put 

(4) 

in k, where pf = pi ] U, qiq; = qi splits in k, li is inertial in k, and 
ai,bi,b;,ciEZ. Then from N(B)Eu. Q*2, we have a,- 1, 6,-bfmod2. 
Thus we have (1) i.e., (O)= vb2\/u. Now changing 0 by A2 (1 E k*) 
corresponds to replacing b by (A) b, so r3 E Z corresponds actually to B = 
[b] E Cz. And B* = 0 since 1 = [(O)] = [vb’fi] = B*O in C,. Thus I// is 
well defined. To show w is surjective, for (v, B) E 7 X ,!8, we take arbitrary 
b E B. Then vb*\/El is a strict principal ideal since B2 = 0. Let it be (O), then 
BE Z and w(O) = (v, B). Finally, if w(O,) = v/(0,), then O2 = 0, or s,,Oi since 
sign(OJ = sign(v). If N(qJ = -1, co@, 65 Z. If N(q,) = $1, .s,,Oi E Z. Hence w 
is ~(N(E~)+I)/’ . 1 . . 

Proof of Theorem 2. Theorem 2 follows from Theorem 1 and the fact of 
genus theory that each of the 2”-’ ambiguous ideal classes C E C, (i.e.. 
C2 = 1) contains two ambiguous ideals and that the 2R ambiguous ideals are 
just 

where pi / p, u = p, ... pg. 
Suppose first N(E,,) = -1, then Ci = C,. O= 1. Each B E .9 is an ambig- 

uous class and contains ambiguous ideals b and &b (within a rational 
factor). Let b2 = (w) 1 U, then 19 = I+-‘(u, B) = VW&~ 4 E Z. 

Now suppose N(E,,) = + 1, then C, = Ci U OCE. If .9 # 0, then there is an 
AEC, such thatA2=0 and .5!?={AGmodO: G*=l in C,} (.Ld$:0 iff 
u = u2 + b2. a, b E Z. If a is odd, then (a, b + $)’ = (b + $) E 0.) Each 
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G contains ambiguous ideals g and llg (within a rational factor), where 
aO=$‘I’, N(;I)=u,]u. Note that I’=E,u,. Fix ‘UEA, then each BE9 
contains 4 ideals ‘ug, ‘ug1, ‘ug fi, ‘UgI 4. Let VI* = (a), g* = (w) (we may 
take a = b + 4 as, stated above). Then v-‘(v, B) = vwa $ and 
~~.uwa\liS=uwu~a\/;;E~,since~isof2: 1. 

To prove Theorem 3. we need Lemma 2. The proof is in the Appendix. 

LEMMA 2. All cyclic quartic fields K can be class@ed as follows, where 
K = (Q(e) as in (3), d = 2*v & = disc(K/k). 

class u(mod 2) v(mod 2) relations 6 

1 1 I u = {(u + 1) (4) 0 

2 1 I -u = $(u + 1) (4) 2 
3 1 0 2 
4 0 1 2 

Remark 2. Albert [3] classified K and gave an integral basis of K, 
which was used in [2] to compute (unexplicitly) the discriminant of K to 
prove the main theorem of [2]. But we have proved that the classification in 
[3] is wrong and the determinations of integral basis (and, hence, disc(K)) 
are wrong in 9 of the 16 cases. We have corrected the mistakes of ]3] and 
obtained the (correct) disc(K) and other results in another paper. Keqin has 
given disc(K) in [6]. To avoid the trouble of transforming different 
expressions of K, we prefer to give disc(K) in the Appendix by a quick local 
method. 

The following theorem is equivalent to a theorem of Hecke (19 12) and 
Speiser (1909) in [4, p. 2221. 

THEOREM (Mann [5]). Let E/F be a quadratic extension of the number 
field. Then E/F has a relative integral basis iff E = F(@), where (D) = 
disc(E/F). 

Proof of Theorem 3. By the theorem of Mann, K/k has a relative integral 
basis iff K = cCa(fi) = a($%) = Q(dq) for some unit c = *aj, of k 
(cf. Lemma 2). Thus sign(vwv) = sign(v \/;I&), N(vfis E u . a*>. That is 
E = &, N(E) = -1. Therefore, N(E~) = -1 and K = Q( ?- veO 4). 

Proof of Theorem 4. Obviously disc{ 1, a} = disc(K/k), so it is sufficient 
to show a E 0, when v 5 i(u + 1) E L mod 4. Let F: = s + t fi, s, t E Z. By 
S* - t2u = -1, we have t = s + 1 E 1 (2) and s* = f*u - 1 = u - 1 (S), so 
s = ;(u - 1) (4), s + 1 = ;(a + 1) = ZJ (4). Thus +(l - vtu) = f(1 - 11) = I 
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(2). This means Nl(,,Ja) = a(1 - u \/El&i) = $(l - vtu - vsfi) E 0, and 
aE 0,. 

Finally, it is easy to see that the following results about the relative 
integral basis (RIB) of K ~5.3’ are special cases of our Theorem 3. 

(i) Narkiewicz [ 1 ] proved that K/k has a RIB if u is a prime. 

(ii) Eedgar and Peterson [2] proved that for u composite there is at 
least one K 1 k having no RIB. 

In fact, if u is a prime, it is well known that N(E”) = -1. And for each 
fixed u. there is only 1 = 2 g-r field K, which certainly has a RIB. This 
proves (i). On the other hand, if u is not a prime, then for each fixed LJ there 
are 2R-’ > 2 fields K and at most one of them has a RIB. This proves (ii). 

APPENDIX: DISCRIMINANT (PROOF OF LEMMA 2) 

We fix a prime p E L, and let pz, p4 be its prime ideal factors in k and K. 
Let pc /I 8= WV, where q = cz& = (b + dL)$, u = a’ + b’, as in 
Remark 1. 

First, we determine whether pz divides (d) = disc(K/k). From a theorem of 
Hilbert [4, p. 21.51 we have 

(i) If p is odd, then pz 1 d iff c = 1 (mod 2). 

(ii) If (2, f?) = 1, then 2, / d iff 0 = ?c’ (mod 4) has no solution x E 0,. 

Thus if p is odd, then p2 1 d iff p / uv since (a) = U*. If 2 1 uv then certainly 
2,I d. If u = v = 1 (2). we assert that 2, I d iff --1: = +(u + 1) mod 4. In fact, 
from b = 0 (2), we have (2,0) = 1, b* E u -a’ = u - 1 (8), b = :(u - 1) (4). 
and b$ = b (4). Thus, q = b + 1 = !(u + 1) (4). The assertion follows from 
that 0 = wvv = -1 (4) iff q = --L’ (4). 

Now, let us determine d (cf. [4, p. 2131). Suppose pz I d, pz = pi. Let the 
local ring 02 = O,(O, -P,)-‘. and 7c be its Eisenstein generator (i.e., 
7~ = A/B, p4 ]I A). Then the local different CJJPKk = (z- urr), where (a) = 
Gal(K/k). If 7~’ ]) 5’2&, then the p,-component of d is dtp2’ = N,,, p;I = pi. 

Obviously, we can find a 0* = 8 mod k** such that either p? 11 B* or 
(p2, t9*)= 1. If p / ~2) then from CI = VIZ we evidently have C= 1 (2), so 
p2 I] 8”. Thus, we may take rc = fl. If pjuv (i.e., p = 2, u = v  E 1 (2)), 
then 0 = -1 (4) as stated above. And we may take 8* = 0 and 7~ = 1 + fl 
since 2 ]]8 - 1, 2,/] 1 + @. In both cases we have ti$k = (2 @). Thus ifp 
is odd, then dcPZ’ = pz. Ifp = 2, we have 

d’P2’ = 2; if u -0 (2) 

=2; if u = 2~ + 1 = 1 (2), 

= 2: if u = 2’ = 1 (2), -v = +(u + 1) (4). 
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Then Lemma 2 follows from the fact that 

d = n n d(P2). 
P P21 P 

p2ld 
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