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1 Introduction

N = 4 Yang-Mills theories in three dimensions admit infrared strongly coupled fixed points,

subject to the mirror symmetry duality [1]. Their moduli spaces split into a Coulomb

branch and a Higgs branch that are exchanged under this duality. A prominent feature of

these moduli spaces is that the Higgs branch does not receive quantum corrections and thus

captures the quantum corrections to the Coulomb branch of the mirror theory. The N = 4

theories can be deformed by mass and Fayet-Iliopoulos terms, whose parameters are also

exchanged under the duality. Mirror symmetry was extended to quiver theories in [2, 3],

using the brane realizations of the theories in type IIB string theory [4]. The fixed point

of a three-dimensional quiver theory was obtained as the low-energy theory of D3-branes

suspended between NS5-branes and D5-branes. Mirror symmetry was then identified with

the action of S-duality in IIB string theory, exchanging NS5-branes and D5-branes.

In [5] it was shown that the partition function of three-dimensional SCFTs deformed

by mass and FI terms and defined on the round 3-sphere S3 can be computed exactly using

localization techniques (see [6] for a review) and reduces to a simple matrix model. The

exact partition function on S3 was then used in [7] to test mirror symmetry for IR fixed

points of N = 4 circular Yang-Mills quiver theories with nodes of equal rank.

More tests of mirror symmetry by matching exact partition functions were given

in [8–10] for A- and D-type quiver SCFTs. Other remarkable tests have been performed

in [11–15], where the Hibert series of the Coulomb branch were shown to coincide with the

Hilbert series of the Higgs branch of the mirror dual theories. Several cases were investi-

gated there, involving mirror symmetry for A, D quivers and various star-shaped quivers.

One of the interesting ideas developed in [15] is the possibility to generate new mirror pairs

from the known dualities by gauging global symmetries.

Despite the significant advancements in testing mirror symmetry, very few results

are known for the cases of quiver theories with nodes of different ranks. This gave the

initial motivation for the present work, whose first ambition was to complete the tests

of mirror symmetry for quiver theories with nodes of arbitrary ranks. The second idea

was to understand the full SL(2,Z) duality group of the three-dimensional quiver theories,

inherited from type IIB string theory [16]. It was shown in [17] that these more general

dualities can map Yang-Mills fixed points to Chern-Simons theories coupled to matter.

These are very interesting dualities since the Chern-Simons theories are superconformal,

so that they would be indeed the infrared fixed point of the “dual” Yang-Mills theories.

Three-dimensional Chern-Simons couplings have a priori only up to N = 3 supersymmetry,

however with specific matter content and superpotentials the amount of supersymmetry

can be enhanced to N = 4 [18–20], and up to N = 8 [21, 22].

In this paper we investigate these dualities by comparing the exact partition functions

on S3 of the N = 4 Yang-Mills and Chern-Simons SCFTs deformed by mass and FI pa-

rameters, for linear and circular quivers with unitary nodes of arbitrary ranks. All the

theories we consider admit brane realizations in IIB string theory as arrays of D3-branes

suspended between two types of 5-branes. Yang-Mills quivers are realizated with NS5 and

D5-branes; Chern-Simons quivers are realized with NS5 and (1, k)-5branes. Other choices

of 5-branes lead to theories that were described in [23] as Chern-Simons theories with
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“interpolating T (U(N))” couplings. A web of dualities is generated by SL(2,Z) actions

combined with Hanany-Witten 5-brane moves (HW moves). The HW moves exchange two

5-branes of different type in the sequence of 5-branes realizing a quiver theory. Mirror

symmetry corresponds to the action of S-duality combined with HW moves transforming

the brane realization of a quiver theory into the brane realization of its mirror-dual. Other

interesting dualities are generated, one being a level-rank duality for N = 4 Chern-Simons

theories, corresponding to HW moves exchanging NS5 and (1, k)-5branes. Another dual-

ity relates Yang-Mills quivers to Chern-Simons quivers with Chern-Simons levels at each

node being ±1 or 0. A node with vanishing Chern-Simons level has an “auxiliary vector

multiplet” [18, 24]. A class of Yang-Mills fixed points admit Chern-Simons duals with non-

vanishing levels at all nodes, which correspond to microscopic descriptions of the infrared

fixed point. Each mass or FI deformation parameter is associated to a the position of a

5-brane in the brane realization and the map between parameters is obtained by following

the 5-branes through the duality transformations.

To test these dualities we decompose the matrix model which computes the partition

function into a sequence of elementary factors, that can be associated to the 5-branes in

the brane realization. This approach was already developed in [25] for quiver with nodes

of equal ranks and we generalize it to quivers of arbitrary ranks and including mass and FI

deformation terms. We then provide an action of SL(2,Z) dualities on the 5-brane factors,

based on the analysis of [23], again generalizing [25]. This action on the matrix factors can

be understood as a local SL(2,Z) duality on the brane configuration, introducing duality

walls, that are associated to their own factors in the matrix model. The SL(2,Z) action

on the 5-brane factors is used to prove the equality of the partition functions of any pair

of SL(2,Z)-dual theories, in a straightforward way. In practice, only two of the SL(2,Z)

dualities will be relevant for us: S duality which is related to mirror symmetry and the

duality changing Yang-Mills theories into Chern-Simons theories. To include HW move

dualities, we prove an identity for products of two 5-brane factors, mimicking the HW

5-brane exchange. Combining the SL(2,Z) action and this HW move-identity we are able

to match the partition functions of any pair of quiver SCFTs related by this web of dualities.

In particular we match the exact partition function of mirror dual YM quiver SCFTs with

nodes of arbitrary ranks, deformed by parameters.

The main technical challenge in our computations was to find a matrix factor for a

D5-brane with different numbers of D3-branes ending on its left and right sides. We found

that it must be defined in terms of an unusual distribution δ̂. Although they look very

exotic, these distributions proved very useful to derive the HW move identity. As a by-

product our analysis leads to a proof of the formula conjectured in [26] (NTY formula)

evaluating the matrix models of arbitrary deformed YM linear quiver SCFTs.

The map between partition functions that we found is only exact up to phases that de-

pends on the mass and FI parameters. We argue, following [27, 28], that these phases affect

contact terms in global current correlation functions and are unphysical in the sense that

they arise from different UV regularizations (they can be removed by local counter-terms).

One lesson we learned from our analysis is that there is a close link between the matrix

models and the brane realizations of the theories, and that what happens on the brane side
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always has a counterpart on the matrix model side, so that the brane picture is (as usual)

a powerful guide to understand the properties of the gauge theories.

We also point out that the AdS4 gravity duals of the N = 4 quiver SCFTs studied in

this paper (at vanishing deformation parameters) where constructed in [29, 30] in type IIB

ten-dimensional supergravity. The counterparts in supergravity of the dualities we study

are standard SL(2,Z) transformations of the gravity backgrounds.

The rest of the paper is organized as follows. In section 2 we give a brief description

of the N = 4 three-dimensional theories that admit brane realizations. In section 3 we

introduce the matrix models computing the partition functions on S3, we explain the

decomposition into 5-brane factors, we derive the SL(2,Z) action on the factors and prove

the equality of partition functions for SL(2,Z) dual theories. In section 4 we prove the

equality of the partition functions of theories related by HW move duality. We emphasize

the cases of mirror symmetry and Yang-Mills/Chern-Simons dualities. In section 5 we give

a proof of the NTY formula. Section 6 contains our conclusions and perspectives for future

work. We also included three appendices: appendix A provides more details about the δ̂

distributions, appendix B gathers a few useful formulas and appendix C contains details

of computations.

2 N = 4 theories with brane realizations

In this section we describe the N = 4 quiver theories and their type IIB brane realizations.

We explain how to summerize the brane configuration, and thus the content of the quiver

theory, in a graph with two types of nodes (or dots) and various labels.

Three-dimensional N = 4 gauge theories contain an N = 4 vector multiplet transform-

ing in the adjoint representation of a gauge group G and hypermultiplets transforming in

arbitrary representations R of G. The N = 4 vector multiplet is made out of an N = 2

vector multiplet V (in superfield notations) whose bosonic fields are a vector field Aµ, a real

scalar σ and a real auxiliary field D, and a chiral multiplet Φ containing a complex scalar

φ and a complex auxiliary field F . A hypermultiplet contains two chiral multiplets Q, Q̃

transforming in conjugate representations R and R̄ of the gauge group. The R-symmetry

group is SU(2)V × SU(2)H , with the real scalars in the vector multiplet forming a SU(2)V
triplet and the scalars in the hypermultiplet forming two SU(2)H doublets. N = 4 Yang-

Mills theories are naturally endowed with canonical vector- and hyper-multiplet actions,

given in terms of N = 2 superfields by:

SN=4
vec =

1

g2
YM

∫
d3xd2θd2θ̄ Tr

(
1

4
Σ2 + Φ†eV Φ

)
(2.1)

SN=4
hyper =

∫
d3xd2θd2θ̄

(
Q†eVQ+ Q̃e−V Q̃†

)
, (2.2)

with Σ = D̄αDαV (linear multiplet). In addition there is a superpotential coupling the

adjoint chiral Φ and the matter chirals Qi, Q̃i of the form:

Ssp =

∫
d3xd2θ

(∑
i

Q̃iΦQi

)
+ c.c. . (2.3)
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In 3d the Yang-Mills coupling is dimensionful, g2
YM has the dimension of a mass,

implying that the UV limit is free, while the IR limit is strongly interacting. For this

reason, the above microscopic Lagrangian description is reliable only at high energies.

The theories can be deformed by supersymmetric mass terms for the hypermultiplets,

obtained by coupling Q, Q̃ to a background abelian N = 4 vector multiplet (Vm,Φm), with

Vm = mθ̄θ and Φm = φmθ̄θ. (m,Re(φm), Im(φm)) form a triplet under SU(2)V .

Supersymmetric FI deformation terms can aslo be added through a BF coupling to a

background abelian N = 4 twisted vector multiplet (Vη,Φη):

Sη =

∫
d3xd2θd2θ̄ Tr (ΣVη + ΦΦη) (2.4)

with Vη = η θ̄θ and Φη = φη θ̄θ. (η,Re(φη), Im(φη)) form a triplet under SU(2)H .

In this paper we focus on N = 4 theories which can be engineered on type IIB brane

configurations involving D3-branes stretched between two types of 5-branes. The SCFTs

arise in the infrared limit and the superconformal algebra is OSp(4|4).

2.1 Yang-Mills quiver SCFTs

We consider infrared fixed points of three-dimensional N = 4 theories that admit a real-

ization as the low-energy limit of brane configurations in type-IIB string theory [4]. The

brane configuration realizing Yang-Mills quivers consists of an array of D3, D5 and NS5

branes oriented as shown in the table. The D3 branes span a finite interval along the x3

direction and terminate on the five-branes. In the low-energy limit the world-volume SCFT

on the D3-branes is effectively three-dimensionnal.

A stack of N coincident D3-branes stretched between two NS5-branes and intersecting

M D5-branes give rise to a U(N) gauge group with Yang-Mills N = 4 vector multiplet, plus

M hypermultiplets in the fundamental representation of U(N). Moreover each NS5-brane

introduces an additionnal hypermulitplet transforming in the bifundamental representation

of U(Ni)× U(Ni+1), where Ni and Ni+1 are the numbers of D3-branes ending on the left

and right of the NS5-brane respectively.

The brane configuration depicted in figure 1 is mapped to the linear quiver gauge theory

summarized in the quiver diagram shown in the same figure. It contains P̂ NS5-branes

with Nj coincident D3-branes stretched between the j-th and (j+1)-th NS5-brane and Mj

D5-branes intersecting the Nj D3-branes. In the quiver diagram a U(Nj) gauge node, with

Mj fundamental hypermultiplets, is indicated by a circle with Nj and an attached square

with Mj . Bifundamental hypermultiplets are symbolized by lines joining two nodes. In

total there are P̂ − 1 D3-segments (stacks of D3-branes), whose low energy dynamics is

the same as the infrared fixed point of the quiver theory with P̂ − 1 gauge nodes. We also

denote P ≡
∑P̂−1

j=1 Mj the total number of D5-branes.

One can also compactify the x3 direction to a circle. The brane configuration is de-

picted in figure 2 and its low-energy theory corresponds to the low-energy limit of a circular

quiver. The difference with respect to the linear quiver case is that the bifundamentals

connecting the nodes form a closed loop.
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Figure 1. Brane realization of linear quivers. Nj refers to the number of coincident D3-branes

(parallel black lines) in a D3-segment and Mj to the number of D5-branes crossing it. The horizontal

direction can be thought as x3. The vertical direction can be x456 for the D5s and x789 for the NS5s.

Figure 2. Brane realization of circular quivers. The D3-segments on the left and on the right are

identified.

The deformations of the quiver SCFT by mass terms and FI terms can be associated to

displacements of the 5-branes in transverse space. For instance we can take the convention

that, if tj denotes the position of the jth NS5-brane along x9, then the FI parameter of

the jth node is ηj = tj − tj+1, and if mj denotes the position of the jth D5-brane along x6,

then the corresponding hypermultiplet aquires a real mass mj . Displacements of 5-branes

along the other directions can be similarly mapped to the other FI and mass deformation

parameters, but we will set them to zero in this work since they do not appear in the

partition function on S3 computed by supersymmetric localization.
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Figure 3. Graphs associated to linear and circular quivers.

Figure 4. T (SU(N)) quiver diagram.

Graphs. The brane pictures themselves can be recast into graphs, where a line labelled by

N denotes N coincident D3-branes extended between two consecutive 5-branes, a white dot

denotes a NS5-brane and a black dot denotes a D5-brane. This provides graphs associated

to the the linear and circular quivers of figures 1, 2 as shown in figure 3.

2.1.1 T (U(N)) theory

There is a Yang-Mills linear quiver SCFT that will play a distinguished role in our story: the

T (U(N)) theory. Let us first described the theory T (SU(N)). The UV quiver description

has U(1)×U(2)×. . .×U(N−1) gauge group, bifundamental hypermultiplets for each pair of

adjacent nodes U(p)×U(p+ 1), plus N hypermultiplets in the fundamental representation

of the U(N−1) node. T (SU(N)) is the IR fixed point SCFT of this linear quiver (figure 4).

The theory has a group of global symmetry SU(N)F × SU(N)J with SU(N)F rotat-

ing the N fundamental hypermultiplets and the SU(N)J arising as an enhancement of

the topological U(1)N−1 symmetry at the IR fixed point. The deformation parameters of

T (SU(N)), up to R-symmetry transformations, are N real masses mj for the N funda-

mental hypermultiplets and N − 1 real FI parameters ηj for the N − 1 nodes. T (SU(N))

is known to be invariant under mirror symmetry, which exchanges the two SU(N) global

symmetries and the mass and FI parameters: ηj ↔ mj −mj+1.

The diagonal U(1)F flavor symmetry, rotating the N fundamental hypermultiplets by

the same phase, is usually identified with the diagonal U(1) of the gauge group. In the

presence of generic supersymmetric FI deformations the diagonal U(1) is coupled to a back-

ground twisted vector multiplet through a BF term and the flavor U(1)F may be considered

formally as an independent symmetry, completing the flavor symmetry to U(N)F .

To define the theory T (U(N)) we add an extra BF coupling between the background

U(N)F and a new background (twisted) abelian vector multiplet, defining a new symmetry
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that we call U(1)J . This is the same as adding a FI term for the U(N)F flavor symmetry,

with a FI parameter tN . As we will see in section 3.1, the partition function of the

T (U(N)) theory deformed by masses and FI terms is invariant under the exchange of the 2N

parameters mj ↔ tj , with tj , for 1 ≤ j ≤ N−1 defined by ηj = tj− tj+1. It is then natural

to combine the topological symmetry U(1)J with SU(N)J into a U(N)J global symmetry.

A priori the T (U(N)) and T (SU(N)) theories have identical dynamical properties, but

it will be important for us to consider T (U(N)) to be able to gauge the U(N)F × U(N)J
global symmetries.

To conclude we notice that the T (U(1)) theory is rather trivial: it contains no dynam-

ical field, but only a BF coupling between two abelian background vector multiplets.

2.2 Chern-Simons SCFTs

Three-dimensional gauge theories admit supersymmetric Chern-Simons terms, with quan-

tized Chern-Simons level k ∈ Z,1 preserving N = 3 sypersymmetry [32]. The action reads:

SN=3
CS =

k

4π

∫
d3xTr

[
εµνρ

(
Aµ∂νAρ+

2

3
AµAνAρ

)
+σD−λ̄λ

]
− k

4π

∫
d3xd2θTr

[
Φ2+h.c.

]
.

(2.5)

The Chern-Simons couping introduces a mass ∼ kg2
YM for the fields in the vector multiplet

V as well as for the adjoint chiral multiplet Φ. In the infrared limit gYM becomes effec-

tively very large, the Yang-Mills kinetic term is irrelevant and the adjoint chiral can be

integrated out as an auxiliary field [21, 32], leading to a pure Chern-Simons theory with a

new superpotential:

W =
4π

k

(∑
i

Q̃i T
a
Ri Qi

)∑
j

Q̃j T
a
Rj Qj

 , (2.6)

with T aRi the generators of the gauge group in the representation Ri.

The N = 3 Chern-Simons theories are exactly conformal.2 For specific choices of

gauge group and matter content the Chern-Simons SCFTs can have enhanced N = 4

supersymmetry [18–20, 24], up to N = 8 supersymmetry corresponding to the ABJ(M)

theory at Chern-Simons level k = 1, 2 (N = 6 for k > 2) [21, 22].

The brane realization of N = 4 Chern-Simons SCFTs described in [21] involves D3-

branes, NS5-branes and (1, k)-5branes. The D3-branes are along the directions 0123, with

the direction 3 compact, they intersect NS5-branes spanning 012789 and (1, k)-5branes

spanning 012[4, 7]θ[5, 8]θ[6, 9]θ, with [a, b]θ meaning that the brane is along the direction

cos θ xa + sin θ xb in the (xa, xb) plane and the angle θ is fixed as a function of k so that

the brane configuration preserves N = 3 supersymmetry [33], with a vanishing axion field.

The low-energy theory living on the D3-branes has both Yang-Mills and Chern-Simons

couplings. The Chern-Simons coupling for a U(N) node corresponding to N D3-segments

1In principle, depending on the number of massive chirals and their charges, the Chern-Simons level

could be quantized to half-integer values [31]. However with the matter content of an N = 4 theory (only

hypermultiplets), the quantization condition is simply k ∈ Z.
2There is no relevant or marginal quantum correction to the classical action [32].
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stretched between a (1, k1)- and a (1, k2)-5brane has CS level k1−k2 ∈ {−k, 0, k} [20, 34]. In

the infrared limit, for nodes with non-zero Chern-Simons coupling ±k, massive fields in the

vector multiplet can be integrated out, as explained above, leading to a pure Chern-Simons

node with a specific superpotential.

However, as mentioned in section 3.5 of [21], there exist alternative (or simpler) brane

configurations realizing Chern-Simons-Matter SCFTs, that preserveN = 4 sypersymmetry.

These are the same brane configurations as presented in section 2.1 with D5-branes replaced

by (1, k)-5branes, namely the D3-branes are along 0123, the NS5-branes along 012789 and

the (1, k)-5branes along 012456. This corresponds to the previous brane configurations

with θ = π
2 , which preserves N = 4 (8 real supercharges) when allowing for non-vanishing

axion field ([21]). For our purposes it makes more sense to consider these brane realizations

that preserve the correct amount of supersymmetry and for which the SL(2,Z) action of

type IIB string theory will be easily understood.

The theory living on D3-branes intersecting alternating NS5-branes and (1, k)-5branes

involves U(N) Chern-Simons gauge nodes with alternating Chern-Simons levels ±k and

bifundamental hypermultiplets (twisted and untwisted alternatively) [19]. Moreover if the

sequence of 5-branes have two consecutive NS5-branes or (1, k)-5branes, the infrared theory

will have extra U(N) nodes without Chern-Simons term, nor Yang-Mills term, in which

case the vector multiplet fields are auxiliary [18, 24]. Integrating out these auxiliary fields

leads to a Chern-Simons gauge theory without these U(N) nodes, coupled to sigma models

with hyper-Kähler target space [18].3

For our purposes, it will be enough to describe the N = 4 infrared CFT living on a

brane configuration associated to a sequence along x3 of NS5-branes and (1, k)-5branes as

the infrared fixed point of a quiver theory with:

• U(Ni)±k Chern-Simons gauge node for Ni D3-segments extended between a NS5-

brane and a (1, k)-5brane, with Chern-Simons level +k if the NS5-brane is on the left

of the (1, k)-5brane along the x3 direction, and −k otherwise.;

• U(Ni)0 auxiliary gauge node for Ni D3-branes stretched between two NS5-branes or

two (1, k)-5branes, with N = 4 auxiliary vector multiplet;

• A bifundamental hypermultiplet (Xi, X̃i) in (Ni, N i+1)⊕ (N i, Ni+1) for each 5-brane

with Ni D3-branes on its left and Ni+1 D3-branes on its right.

This is summarized in figure 5, where we also introduce the corresponding graph with white

dots for NS5-branes and grey dots for (1, k)-5branes.

The superpotential for a U(Ni)k Chern-Simons node is given by:

Wi =
4π

k
Tr
(
X̃i−1Xi−1XiX̃i

)
. (2.7)

3For all we know, there is no difference between the infrared limit of a Yang-Mills node and an auxiliary

node. The matrix models computing their partition functions are identical, so that we are not able to

distinguish between the two cases.
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Figure 5. Chern-Simons quiver and its associated graph. The label below the nodes denotes the

Chern-Simons level, zero meaning a node with auxiliary vector multiplet. The elements of the graph

are white dots for NS5-branes and grey dots for (1, k)-5branes. Q is the total number of 5-branes,

or dots, in the brane picture, or graph.

0 1 2 3 4 5 6 7 8 9

D3 X X X X

D5 X X X X X X

NS5 X X X X X X

Table 1. Brane array for three-dimensional quiver gauge theories.

The Chern-Simons SCFTs admit deformations by FI terms associated to the positions

of the 5-branes in transverse space, namely if tj denotes the position of the jth 5-brane along

x9 (for NS5s) or x6 (for (1, k)5s), then the FI parameter of the jth node is ηj = tj − tj+1.

2.3 SCFTs realized with (p, q) 5-branes (GW quivers)

A natural extension of these brane constructions is to consider N = 4 SCFTs realized on

brane configurations where D3-segments are stretched between (p1, q1) and (p2, q2)-5branes

oriented as the D5s and NS5s in table 1, with p1∧q1 = 1, p2∧q2 = 1 (coprime integers) and

D = p1q2 − p2q1 6= 0. Acting with the appropriate SL(2,Z) symmetry of type IIB string

theory we can trade the (p1, q1) and (p2, q2)-5-branes for NS5-branes and (p, q)-5brane,

with p ∧ q = 1 and q 6= 0.

Even this simpler configurations with D3-segments stretched between NS5-branes and

(p, q)-5branes do not have a known Lagrangian description when p > 1. It was argued

in [23] (section 8) using the SL(2,Z) symmetry of IIB string theory, that such theories

have a dual description as the infrared fixed points of Chern-Simons quivers with T (U(N))

SCFTs “interpolating” between gauge nodes.

The precise gauge theory description demands to find the sequence of S and T trans-

formations that brings the (p, q)-5brane into a NS5-brane:
(
p
q

)
= T k1ST k2S · · ·ST kr

(
1
0

)
,

where S and T are the generators of the SL(2,Z) group (this will be reviewed in section 3.3).

The relation between p, q and the ki is

p

q
=

1

k1 − 1
k2− 1

···− 1
kr

. (2.8)
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Figure 6. Graph corresponding to a sequence NS-(p, q)-NS of 5branes and the corresponding CS

quiver theory with interpolating T (U(Ñ)) and T (U(N)) couplings. The central link of the quiver

is simply a bifundamental hypermultiplet.

Then the SCFT corresponding to a sequence of 5-branes NS-(p, q)-NS, with N D3-branes

in the first segment and Ñ D3-branes in the second, can be described as the infrared

fixed point of a Chern-Simons quiver theory with r − 1 “interpolating” T (U(Ñ)) CFTs

and r − 1 “interpolating” T (U(N)) as shown in figure 6. In this picture a link labelled

with T (U(N)) denotes a coupling between a T (U(N)) SCFT and the two adjacent U(N)

nodes by gauging the diagonal combination of the left U(N)L node with the U(N)F flavor

symmetry of T (U(N)): U(N)L×U(N)F → U(N)L′ , and gauging the diagonal combination

of the right U(N)R node with the U(N)J “topological” symmetry of T (U(N)): U(N)R ×
U(N)J → U(N)R′ . The coupling between T (U(N)) and the left node U(N)L results

in having a bifundamental hypermultiplet transforming in the (N − 1, N) ⊕ (N − 1, N)

representation of U(N − 1) × U(N)L′ , with U(N − 1) the highest rank gauge node of

T (U(N)), while the coupling between T (U(N)) and the right node U(N)R does not have

a known microscopic description.

A link labelled with T (U(N)) denotes a similar coupling between two adjacent U(N)

gauge nodes of the quiver theory and the T (U(N)) SCFT by the diagonal gaugings U(N)L×
[U(N)F ]† → U(N)L′ ,

4 and U(N)R × U(N)J → U(N)R′ . This coupling between T (U(N))

and the left node U(N)L results in having a bifundamental hypermultiplet that transforms

in the (N − 1, N)⊕ (N − 1, N) representation of U(N − 1)×U(N)L′ .
5

A succession of n (p, q)-5branes between two NS5-branes is associated to the same

quiver theory as in figure 6, except that the central bifundamental hypermultiplet of

U(N)×U(Ñ) is replaced by a sequence of n Yang-Mills nodes connected by bifundamental

hypermultiplets.

We will refer to these SCFTs realized with (p, q)-5branes as Gaiotto-Witten quiver the-

ories (GW quivers). In general GW quiver theories do not admit a Lagrangian description,

because of the interpolating T (U(N)) couplings, however this is not true for purely abelian

theories. Abelian GW quivers involve interpolating T (U(1)) and T (U(1)), that have a very

simple Lagrangian description as BF couplings between adjacent U(1) gauge nodes.

4The diagonal gauging U(N)L×U(N)F → U(N)L′ means that we gauge the transformation acting with

the same matrix M ∈ U(N)L and M ∈ U(N)F . The diagonal gauging U(N)L× [U(N)F ]† → U(N)L′ means

that we gauge the transformation acting with the matrix M ∈ U(N)L and M† ∈ U(N)F .
5In [23] the (subtle) difference between T (U(N)) and T (U(N)) couplings was ignored.
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3 SL(2,Z) dualities

In this section we introduce the matrix model computing the partition function on S3. We

explain how to organize it into a sequence of 5-brane factors reproducing the sequence of

the brane construction. Then we propose, following [25], an action of SL(2,Z) duality on

the 5-brane factors and show the equality of partition functions of SL(2,Z)-dual theories.

3.1 Partition function on S3

In [5] it was shown that the partition function of three-dimensional SCFTs deformed by

real mass and FI terms and defined on the round 3-sphere S3 can be computed exactly and

reduces to a simple matrix model. We summarize here the building blocks of the partition

function matrix model on S3 for N = 4 theories.

Through this paper we use the following short-hand notations

sh(x) = 2 sinh(πx) , ch(x) = 2 cosh(πx) , th(x) = tanh(πx)

xij = xi − xj ,
N∏
j

. . . =

N∏
j=1

. . . ,

N∏
j<k

. . . =
∏

1≤j<k≤N
. . . ,

N,M∏
j,k

. . . =

N∏
j=1

M∏
k=1

. . .

and similar notations for the sums ΣN
j = ΣN

j=1, · · · .
The localisation on S3 of the partition function ZS3 reduces the whole path integral

to an integration over the Cartan subalgebra of the gauge group, divided by the order of

the Weyl group |W|. We give here explicit formulas for a U(N) gauge group.

ZS3 =
1

|W|

∫
Cartan

dσ Zclassic Zvector Zhyper =
1

N !

∫ N∏
j

dσj Zclassic Zvector Zhyper . (3.1)

The integrand receives contributions Zvector, Zhyper from the vector and hyper-multiplets of

the theory, while Zclassic contains the contributions from Chern-Simons and FI terms. The

σj are called eigenvalues. For a U(N) group, the σj are the diagonal components of the

hermitians matrices in the algebra u(N). The N = 4 vector multiplet contributes a factor

Zvector = detAdj

(
sh(σ)

)
=

N∏
i<j

sh(σij)
2 , for G = U(N) . (3.2)

A hypermultiplet in a representation R of the gauge group with real mass m,6 contributes

a factor

Zhyper = detR

(
1

ch(σ −m)

)
=

N∏
j

1

ch(σj −m)
, for R⊕R = N ⊕N of U(N) (3.3)

=

N,Ñ∏
i,j

1

ch (σi − σ̃j −m)
, for R⊕R =

(
N, Ñ

)
⊕
(
N, Ñ

)
of U(N)× U

(
Ñ
)
.

6It is meant that the two chiral multiplets transforming in R and R have opposite real masses −m and

m respectively.
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Figure 7. Some quiver theories.

An N = 3 Chern-Simons term with level k contributes a factor

ZCS = detF

(
eiπkσ

2
)

= eiπk
∑N
j σ2

j . (3.4)

A real Fayet-Iliopoulos term with parameter η contributes a factor

ZFI = detF

(
e2iπησ

)
= e2iπη

∑N
j σj . (3.5)

Here detR is the the determinant in the representation R. The indices F and Adj refer to

the fundamental and adjoint representations respectively.

Let us give a few examples. The partition functions of the quiver SCFTs shown in

figure 7 are given respectively by

Za=

∫
dσdσ̃

e2πiησ e2πiη̃σ̃

ch(σ −m) ch(σ − σ̃) ch(σ̃ − m̃)
(3.6)

Zb=

∫
dNσ

N !
e2πiη

∑N
j σj

∏N
i<j sh(σij)

2∏M,N
a,j ch(σj −ma)

(3.7)

Zc=

∫
dNσ

N !

dÑσ

Ñ !
e−πik

∑N
j σ2

j eπik
∑Ñ
j σ̃2

j e2πiη
∑N
j σj e2πiη̃

∑Ñ
j σ̃j

∏N
i<j sh(σij)

2
∏Ñ
i<j sh(σ̃ij)

2[∏N,Ñ
i,j ch (σi−σ̃j)

]2 ,

(3.8)

where η, η̃ are real FI parameters, m, m̃,ma are real mass parameters and k,−k are Chern-

Simons levels.

The partition function of the T (SU(N)) theory with fundamental hypermultiplet

masses ma and FI parameters ηp is given by

ZT (SU(N)) (3.9)

=

∫ N−1∏
p=1

dpσ(p)

p!

p∏
i<j

sh
(
σ

(p)
ij

)2

 ∏N−1
p=1 e2πi ηp

∑p
j σ

(p)
j∏N−2

p=1

∏p,p+1
i,j ch

[
σ

(p)
i −σ

(p+1)
j

] 1∏N,N−1
a,j ch

[
σ

(N−1)
j −ma

] .
The partition function for the theory T (U(N)) is the same with the addition of a FI

coupling for the flavor U(N)F global symmetry (background BF term):

ZT (U(N)) = e2πi tN
∑N
j mj ZT (SU(N)) , (3.10)

– 13 –



J
H
E
P
1
0
(
2
0
1
4
)
1
1
7

with tN the FI parameter. The evaluation of this matrix model was carried out in [26, 35]

and gives

ZT (U(N)) = (−i)
N(N−1)

2

∑
w∈SN (−1)w e2iπ

∑N
j tjmw(j)∏N

j<k sh (tj − tk) sh (mj −mk)
(3.11)

with SN the group of permutations of N elements and the tj defined by the relations

ηj = tj − tj+1, 1 ≤ j ≤ N − 1. ZT (U(N)) is invariant under the exchange of the mass and

FI parameters mj ↔ tj , as it is expected from mirror symmetry.

3.2 Repackaging of matrix models

The partition function’s matrix model of a given quiver theory can be recast into a sequence

of elementary matrix factors of two types, that are naturally associated to the two types

of 5branes entering into the brane realization of the quiver. This sequence of elementary

matrix factors reproduces the sequence of 5-branes, or dots, of the brane realization, or

graph. We will treat the cases Yang-Mills and Chern-Simons quivers that involve NS5, D5

and (1, k)-5branes. The (p, q)-5branes matrix factors will appear later.

Let us start with Yang-Mills quivers. The brane realization and associated graph can

be seen as a sequence made of two elementary 5-brane building blocks: one for the NS5-

brane and one for the D5-brane as shown in figure 8. Each 5-brane block can be associated

with a matrix factor depending on two sets on eigenvalues {σj , σ̃j}, which are associated to

the D3-branes ending on the left and on the right of the 5-brane respectively. The matrix

model computing the partition function of the quiver theory is obtained by assembling the

matrix factors of 5-branes blocks in a sequence reproducing the sequence of blocks of the

brane realization, then identifying the eigenvalues of adjacent blocks (those corresponding

to the same D3-segment) and finally integrating over all eigenvalues.

The NS5 matrix factor is given by[
1

0

]
σ σ̃

=
1(

N !Ñ !
)1/2 e−2iπ t

(∑N
j σ2

j−
∑Ñ
j σ̃2

j

)∏N
i<j shσij

∏Ñ
i<j sh σ̃ij∏N,Ñ

i,j ch (σi − σ̃j)
. (3.12)

It contains a bifundamental hypermultiplet matrix factor, “half” the matrix factors of the σ

and σ̃ vector multiplets and “half” the matrix factors of the σ and σ̃ FI terms. In the brane

picture t is realted to the position of the NS5-brane in transverse space and it contributes

to the FI terms of the two adjacent gauge nodes through the relations ηj = tj − tj+1, with

ηj the FI parameter of the jth node and tj the parameter of the jth NS5-brane. The factor(
N !Ñ !

)−1/2
are “half” the Weyl order of the left U(N) and right U(Ñ) groups.

The D5 matrix factor is given by[
0

1

]
σ σ̃

=
1∏N

j ch (σj −m)

1

N !

∑
w∈SN

(−1)w
N∏
j

δ
(
σj − σ̃w(j)

)
, (3.13)

where SN is the set of permutations of N elements. The D5-factor contains the contribution

of a fundamental hypermultiplet of mass m. The σ and σ̃ eigenvalues are associated to the

N D3-segments ending on the left and on the right of the D5-brane and are identified, as
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Figure 8. 5branes building blocks: a) NS5-brane. b) D5-brane. Below: corresponding graph

elements in the graph description.

they should, with the δ functions. The averaging over permutations w ∈ SN ensures the

anti-symmetrization of the factor with respect to permutations of the σ or σ̃ eigenvalues,

without affecting the matrix model. This anti-symmetrization will be naturally present

in all 5-brane factors. In the brane picture m is here again related to the position of the

D5-brane in transverse space.

The (1, k)-5brane matrix factor is given by[
1

k

]
σ σ̃

=
1(

N !Ñ !
)1/2 e−2iπ t

(∑N
j σj−

∑Ñ
j σ̃j

)
e
πi k

(∑N
j σ2

j−
∑Ñ
j σ̃2

j

)∏N
i<j shσij

∏Ñ
i<j sh σ̃ij∏N,Ñ

i,j ch (σi − σ̃j)
. (3.14)

In the brane picture t is the position of the 5-brane in transverse space and it contributes to

the FI terms of the left and right gauge nodes as in the NS5-brane case, which corresponds

to k = 0. As for the NS5-brane this factor contains the contribution of a bifundamental

hypermultiplet and “half” the contributions of the vector multiplet of the two nodes on

the sides of the (1, k)-5brane. Moreover this factor includes the contribution from the

Chern-Simons term induced by the 5-brane, with levels ±k in the two nodes.

To express conveniently matrix models, we define a “matrix-like” product:([
p1

q1

]
(N)

[
p2

q2

])
σ σ̃

=

∫
dNσ′

[
p1

q1

]
σ σ′

[
p2

q2

]
σ′ σ̃

. (3.15)

This product7 is associative, but not commutative. Here (pi, qi) can be (0, 1), (1, 0) or

(1, k), denoting a D5, NS5 or (1, k)-5brane factor. This “matrix-like” product will extend

7We may sometimes use the even shorter notation

[
p1

q1

][
p2

q2

]
σ σ̃

for such a product.
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naturally to other matrix factors that we define later in section 3.3 (general (pi, qi) 5-brane

factors and duality-wall factors). We also define a “trace” for a factor depending on two

sets of N eigenvalues Fσ σ̃ (“square matrix”):

TrF(N) =

∫
dNσ Fσ σ . (3.16)

This repackaging of the matrix model into elementary 5brane factors allows us to

express the partition function’s matrix model in a compact way, as a sequence of 5brane

factors. The partition function of a Yang-Mills linear quiver SCFT is expressed as8

ZYM =

[
1

0

]
(N1)

[
0

1

]
(N1)

[
0

1

]
(N1)

[
1

0

]
(N2)

[
0

1

]
(N2)

[
1

0

]
(N3) · · · (NP̂−1)

[
1

0

]
, (3.17)

where the first NS5-factor has no left-eigenvalues (no D3-segments on the left of the NS5-

brane) and the last NS5-factor has no right-eigenvalues (no D3-segments on the right of

the NS5-brane). The sequence of factors reproduces the sequence of NS5 and D5-branes

of the quiver brane picture, or equivalently the sequence of white and black dots of the

quiver’s graph, shown in figure 3.

For Yang-Mills circular quivers the partition function is expressed as

ZYM = Tr

[
1

0

]
(N1)

[
0

1

]
(N1)

[
0

1

]
(N1)

[
1

0

]
(N2)

[
0

1

]
(N2)

[
1

0

]
(N3) · · · (NP̂−1)

[
1

0

]
(NP̂ ) . (3.18)

Again the sequence of factors reproduces the sequence of NS5 and D5-branes.

Let us give a few examples. The partition function of the T (SU(2)) theory is given by

ZT (SU(2)) =

[
1

0

]
(1)

[
0

1

]
(1)

[
0

1

]
(1)

[
1

0

]
, (3.19)

the partition function of the U(2) theory with four fundamental hypermultiplets is given by:

Z =

[
1

0

]
(2)

[
0

1

]
(2)

[
0

1

]
(2)

[
0

1

]
(2)

[
0

1

]
(2)

[
1

0

]
, (3.20)

and the partition function of the U(3)×U(4) circular quiver theory with two fundamental

hypermultiplets for the U(4) node is given by:

Z = Tr

[
1

0

]
(4)

[
0

1

]
(4)

[
0

1

]
(4)

[
1

0

]
(3) . (3.21)

The corresponding graphs are shown in figure 9.

For Chern-Simons quivers, realized by a sequence of NS5-branes and (1, k)-5branes,

the partition function is similarly expressed in the linear case by:

ZCS =

[
1

0

]
(N1)

[
1

k

]
(N1)

[
1

k

]
(N1)

[
1

0

]
(N2)

[
1

k

]
(N2)

[
1

0

]
(N3) · · · (NP̂−1)

[
1

0

]
, (3.22)

8The sequence of factors here is just an example. In general it is given by its quiver data.
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Figure 9. a) Graph of T (SU(2)). b) Graph of T
(1111)
(22) . c) Graph of U(3) × U(4) circular quiver

with two U(4) fundamental hypermultiplets.

Figure 10. a) Graph of U(1)k × U(1)0 × U(1)−k linear CS quiver theory. b) Graph of U(4)k ×
U(6)−k ×U(3)0 circular CS quiver theory.

and for circular quivers:

ZCS = Tr

[
1

0

]
(N1)

[
1

k

]
(N1)

[
1

k

]
(N1)

[
1

0

]
(N2)

[
1

k

]
(N2)

[
1

0

]
(N3) · · · (NP̂−1)

[
1

0

]
(NP̂ ) . (3.23)

Again the sequence of 5brane blocks in Z reproduces the sequence of 5branes, or dots, in

the brane realization, or graph.

For instance the partition function of the linear quiver U(1)k × U(1)0 × U(1)−k is

given by

Z =

[
1

0

]
(1)

[
1

k

]
(1)

[
1

k

]
(1)

[
1

0

]
, (3.24)

while the partition function of the circular quiver U(4)k ×U(6)−k ×U(3)0 is given by

Z = Tr

[
1

0

]
(4)

[
1

k

]
(6)

[
1

0

]
(3) . (3.25)

The corresponding graphs are shown in figure 10.

3.3 Local SL(2,Z) action on matrix models

The quiver SCFTs realized on brane configurations must inherit SL(2,Z) dualities, from the

SL(2,Z) symmetry of type IIB string theory. For instance the standard mirror symmetry,

discussed in [1], is known to be related to the type IIB S-duality.

In the case of standard mirror symmetry, dual pairs of quiver theories are found by

identifying the brane realization of one theory with the S-dual of the brane realization

of the other theory [2, 3]. One theory is realized by a sequence of NS5 and D5-branes,

while the mirror-dual theory is realized with the same sequence of 5branes, with NS5 and

D5-branes exchanged (or NS5 → D5, D5 → NS5, see below).
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More dualities can be found by identifying the brane realizations of quiver theories

through general SL(2,Z) transformations of IIB string theory. We will give evidence for

these more general dualities by matching the partition function of dual SCFTs. The dual-

ities will actually extend to “local” SL(2,Z) dualities, that were already discussed in [25]

and implicitly studied in [23].

Let us first remind and generalize the picture developed in [25] of SL(2,Z) action on

the 5-brane factors of the matrix model.

The SL(2,Z) action on the brane realization of the 3d theories is easily understood.

M ∈ SL(2,Z) leaves the D3 branes invariant and transforms a (p, q) 5brane into a (p′, q′)

5brane with

M =

(
a b

c d

)
,

(
p′

q′

)
= M

(
p

q

)
=

(
ap+ bq

cp+ dq

)
, (3.26)

where ad− bc = 1 and p ∧ q = 1. The group SL(2,Z) is generated by the transformations

S and T given by

S =

(
0 −1

1 0

)
, T =

(
1 0

1 1

)
,

satifying S2 = −1 and (ST )3 = 1.

In [23] Gaiotto and Witten suggested that SL(2,Z) transformations can be realized

locally on the brane configuration, in a region containing a single 5-brane (spanning an

interval along x3 around the 5-brane). The authors of [25] reformulated their results in

the following way. The local action of the transformation S on a (p, q)-5brane trades the

(p, q)-5brane for a (−q, p)-5brane and creates an S-duality wall on its right and a S−1

duality wall on its left (hyperplanes at fixed x3). The duality walls are the boundaries

of the region of local SL(2,Z) action and can be considered as new objects in the brane

construction. From the analysis of [23] it follows that a S-duality wall intersecting N D3-

branes induces in the quiver SCFT an interpolating T (U(N)) coupling between two U(N)

gauge nodes (see section 2.3), that are associated to the D3-branes on the left and on the

right of the S-wall, as shown in figure 11. And the S−1-wall intersecting N D3-branes

induces an interpolating T (U(N)) coupling between the two U(N) nodes.

Similarly the local action of T on a (p, q)-5brane trades the (p, q)-5brane for a (p, p+q)-

5brane with a T -duality wall on its right and a T−1-duality wall on its left. From [23] it

follows that a T -duality wall intersecting N D3-branes induces in the quiver SCFT a

Chern-Simons term with level k = +1 for a U(N) node, associated with the N D3-branes

crossing the T -wall, as shown in figure 11. The T−1-wall induces a Chern-Simons term

with coupling k = −1.

The iterations of S and T local actions bringing a (p, q)-5brane to a NS5-brane lead to

the quiver theory description of SCFTs realized with (p, q)-5branes, presented in section 2.3.

It is rather easy now to associate matrix factors to the S- and T -duality walls, as we

did for the 5branes. The S-wall with N D3-branes on both sides must be associated to

the contribution of an interpolating T (U(N)), plus “half” the contribution of the left and
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Figure 11. Graph representations and quiver descriptions of the S-duality wall (a) and T -duality

wall (b). The subscript +1 indices a Chern-Simons term at level k = 1.

right U(N) vector multiplets and some phase eiθ to be fixed:

Sσσ̃ =
eiθ

N !

N∏
i<j

shσij ZT (U(N))[σ, σ̃]

N∏
i<j

shσ̃ij =
eiθ(−i)

N(N−1)
2

N !

∑
w∈SN

e2πi
∑N
j=1 σj σ̃w(j)

−→ eiθS e2πi
∑N
j=1 σj σ̃j , (3.27)

where ZT (U(N))[σ, σ̃] denotes the partition function of T (U(N)) with mass parameters σj
and FI parameters σ̃j . These are identified with the eigenvalues of the U(N) left and right

gauge nodes, as required by the diagonal gaugings.9 The second equality is obtained after

plugging in (3.11). Since the 5-branes factors, that necessarily stand on the left and on the

right of the S-wall in the graph, are anti-symmetric under permutations of the σj or σ̃j
eigenvalues, it is does not affect the matrix models to replace the average over permutations

w ∈ SN above by a single term e2πi
∑N
j=1 σj σ̃j , that we can associate to the S-duality wall.

We named θS the overall phase of Sσσ̃.

For the T -duality wall with N D3-branes on both sides we can associate the factor

Tσ σ̃ = eiθT eπi
∑N
j=1 σ

2
j

N∏
j=1

δ(σj − σ̃j) , (3.28)

corresponding to the addition of a Chern-Simons term contribution at level k = 1 and the

identifications of the eigenvalues of the left and right nodes σ = σ̃, so that the quiver theory

has a single node for the N D3-branes crossing the T -wall. The phases eiθT and eiθS must

be fixed for consistency with the SL(2,Z) group relations as explained below.

To summarize, the S- and T -wall elements of the graph (or brane realization) are

associated with the elementary matrix factors:

Sσ σ̃ = eiθS e2πi
∑N
j=1 σj σ̃j , Tσ σ̃ = eiθT eπi

∑N
j=1 σ

2
j

N∏
j=1

δ(σj − σ̃j) . (3.29)

These duality-wall factors were already proposed in [25]. Our derivation emphasizes that

these factors follow from the description of GW quivers of [23].

9The masses mj of fundamental hypermultiplets are background values of the real scalar in a U(N)F
vector multiplet, as σj are background values for the scalar in the U(N)L vector multiplet. The diagonal

gauging U(N)L×U(N)F → U(N)L′ amounts to identifying the eigenvalues σj with the masses mj . Similarly

the other diagonal gauging leads to the indentification of the eigenvalues σ̃j with the FI parameters tj .
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Upon fixing e4iθS = 1 and e3i(θT+θS) = e
πiN

4 , the matrix factors obey the SL(2,Z)

relations (S2)σ σ̃ = (−1)σ σ̃ and (ST )3
σ σ̃ = 1σ σ̃ with (−1)σ σ̃ = e2iθS

∏N
j=1 δ(σj + σ̃j) and

1σ σ̃ =
∏N
j=1 δ(σj − σ̃j). ±1σ σ̃ are the matrix factors for ±1 ∈ SL(2,Z).

The local action of an arbitrary transformation M ∈ SL(2,Z) can be decomposed into

a sequence of S and T actions. The matrix factor Mσ σ̃ for the M -wall is given by the

product of the Sσ σ̃ and Tσ σ̃ factors, using (3.15), reproducing the sequence of S and T

transformations. In particular this gives

S−1
σ σ̃ = e−iθS e−2πi

∑N
j=1 σj σ̃j , T−1

σ σ̃ = e−iθT e−πi
∑N
j=1 σ

2
j

N∏
j=1

δ(σj − σ̃j) , (3.30)

which are in agreement with the quiver description as interpolating T (U(N)) coupling for

the S−1-wall and additional Chern-Simons coupling with level k = −1 for the T−1-wall.

To be concrete let us show explicitly the computation of the factors for the S−1-wall

and T−1-wall coupled to U(N) nodes. We have S−1 = TSTST and T−1 = STSTS, so the

matrix factors are given by:10

S−1
σ σ̃ = (TSTST )σ σ̃ , T−1

σ σ̃ = (STSTS)σ σ̃

(ST )σ σ̃ = ei(θT+θS)

∫
dNσ′ e2πi

∑N
j=1 σjσ

′
j eπi

∑N
j=1 σ

′
j
2

N∏
j=1

δ
(
σ′j − σ̃j

)
= ei(θT+θS) e2πi

∑N
j=1 σj σ̃j eπi

∑N
j=1 σ̃j

2

(
(ST )2

)
σ σ̃

= e2i(θT+θS)

∫
dNσ′ e2πi

∑N
j=1 σjσ

′
j eπi

∑N
j=1 σ

′
j
2

e2πi
∑N
j=1 σ

′
j σ̃j eπi

∑N
j=1 σ̃j

2

= e2i(θT+θS)−πiN
4 e−πi

∑N
j=1 σj

2

e−2πi
∑N
j=1 σj σ̃j

S−1
σ σ̃ = ei(3θT+2θS)−πiN

4

∫
dNσ′ eπi

∑N
j=1 σj

2
N∏
j=1

δ
(
σj − σ′j

)
e−πi

∑N
j=1 σ

′
j
2

e−2πi
∑N
j=1 σ

′
j σ̃j

= e−iθS e−2πi
∑N
j=1 σj σ̃j

T−1
σ σ̃ = ei(2θT+3θS)−πiN

4

∫
dNσ′ e−πi

∑N
j=1 σj

2

e−2πi
∑N
j=1 σjσ

′
je2πi

∑N
j=1 σ

′
j σ̃j

= e−iθT e−πi
∑N
j=1 σj

2
N∏
j=1

δ(σj − σ̃j) .

From now on we will assume the particular values:

θS = 0 , θT =
πN

12
, (3.31)

which are compatible with the conditions e4iθS = 1 and e3i(θT+θS) = e
πiN

4 .

10In the computations there is a sign ambiguity in the evaluation of the integrals
∫
dσeiπkσ

2

=

±e−i sgn(k)π/4
√

1
|k| , for k 6= 0 real. We choose

∫
dσeiπkσ

2

= e−i sgn(k)π/4
√

1
|k| , keeping in mind that the

overall sign may not be uniquely defined.

– 20 –



J
H
E
P
1
0
(
2
0
1
4
)
1
1
7

Figure 12. a) Part of a graph with a (p′, q′)-5brane. b) Graph after the local M -duality. The

curly lines denote the presence of duality walls.

The local SL(2,Z) actions on the brane configurations imply dualities between the 3d

gauge theories that they realize. At the level of the matrix models of the 3d gauge theories,

these local SL(2,Z) dualities should be expressed by the relation:[
p

q

]
σ σ̃

?
=

(
M−1

[
p′

q′

]
M

)
σ σ̃

, with t = t′ , (3.32)

with M ∈ SL(2,Z) and (p′, q′) given by (3.26) and arbitrary numbers N, Ñ of eigenvalues

{σj}, {σ̃j}. t and t′ denote the deformation parameters of the (p, q)- and (p′, q′)-5branes

respectively. Figure 12 displays the graphs of the two theories related by a local M -duality.

We have used the symbol
?
= to emphasize that we have not proven this relation. Indeed

we will show that the relation holds only up to a phase.

Checking the relation (3.32) for (p, q), (p′, q′) ∈ {(1, 0), (0, 1), (1, k)} constitutes a non-

trivial test of the local SL(2,Z) dualities. For other (p, q), (3.32) can be used to derive a

matrix factor for an arbitrary (p, q)-5brane with p ∧ q = 1.

3.3.1 (p, q)-5brane matrix factor

With p, q being two integers such that p 6= 0 and p ∧ q = 1, we propose the matrix model

factor for a (p, q) 5-brane (figure 13):

[
p

q

]
σ σ̃

=
|p|−µ(

N !Ñ !
)1/2 e−2πi tp

(∑N
j σj−

∑Ñ
j σ̃j

)
e
πi qp

(∑N
j σ2

j−
∑Ñ
j σ̃2

j

)∏N
i<j sh

[
p−1σij

]∏Ñ
i<j sh

[
p−1σ̃ij

]
∏N,Ñ
i,j ch [p−1(σi−σ̃j)]

,

(3.33)

where µ = N+Ñ
2 . In analogy with the previous 5-brane factors, t should be associated to

the position of the 5-brane in transverse space. This factor is compatible with the cases of

NS5-brane and (1, k)-5brane factors (3.12) (3.14). It generalizes the proposal of [25] to the

cases of unequal numbers of D3-segments ending on the left and right of the (p, q)-5brane,

N 6= Ñ and by the addition of the parameter t dependence.

We have to show that this factor obeys the relation (3.32) and it is enough to consider

the cases M = S and M = T and prove the inverted relations:[
−q
p

]
σ σ̃

?
=

(
S

[
p

q

]
S−1

)
σ σ̃

,

[
p

p+ q

]
σ σ̃

?
=

(
T

[
p

q

]
T−1

)
σ σ̃

. (3.34)
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Figure 13. (p, q)-5brane building block and corresponding graph element in the graph description.

Consider the sets of N eigenvalues {σj} and Ñ eigenvalues {σ̃j} and a couple of coprime

integers (p, q) with p 6= 0. For M = T , we have(
T

[
p

q

]
T−1

)
σ σ̃

=

∫
dNσ′dÑ σ̃′ e

πiN
12 eπi

∑N
j=1 σ

2
j

N∏
j=1

δ
(
σj − σ′j

)

· |p|
−µ

N !
e
−2iπ t

p

(∑N
j σ′j−

∑Ñ
j σ̃′j

)
e
πi q

p

(∑N
j σ′j

2−
∑Ñ
j σ̃′j

2
)∏N

i<j sh
[
p−1σ′ij

]∏Ñ
i<j sh

[
p−1σ̃′ij

]
∏N,Ñ
i,j ch

[
p−1

(
σ′i−σ̃′j

)]
· e−

πiÑ
12 e−πi

∑Ñ
j=1 σ̃

′
j
2

Ñ∏
j=1

δ
(
σ̃′j − σ̃j

)
= e

πi∆
12
|p|−µ

N !
e
−2iπ t

p

(∑N
j σj−

∑Ñ
j σ̃j

)
e
πi p+q

p

(∑N
j σj

2−
∑Ñ
j σ̃j

2
)∏N

i<j sh
[
p−1σij

]∏Ñ
i<j sh

[
p−1σ̃ij

]
∏N,Ñ
i,j ch [p−1 (σi−σ̃j)]

= e
πi∆
12

[
p

p+ q

]
σ σ̃

, (3.35)

where µ = N+Ñ
2 and ∆ = N − Ñ .

For M = S the computation is given in appendix C.1. In total we obtain:(
S

[
p

q

]
S−1

)
σ σ̃

= e
πi

12 pq
∆(∆2−1)

e
− iπ∆t2

pq

[
−q
p

]
σ σ̃

, pq 6= 0(
T

[
p

q

]
T−1

)
σ σ̃

= e
πi∆
12 pqpp+ qσ σ̃ , p 6= 0 . (3.36)

These relations have extra phases compared to the expected relations (3.34). The phases

e
πi

12 pq
∆(∆2−1)

and e
πi∆
12 are a priori irrelevant to the dynamics of the theories.11 On the other

11It is possible that these phases are related to a change of frame of the Chern-Simons actions on S3

(see [6]).
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hand the phase e
− iπ∆t2

pq can be attributed to the presence of a background Chern-Simons

term for a weakly gauged U(1) symmetry associated to the deformation parameter t, with

Chern-Simons level k = ∆
pq . It was shown in [27, 28] that the background Chern-Simons

terms with integer coefficients are local counter-terms and characterize the ambiguity of the

partition function. In the case at hand the Chern-Simons level ∆
pq is generically fractional,

but it is not clear what conclusions should be drawn from this observation, since the

theories realized with (p, q)-5branes are rather peculiar (non-Langrangian). However there

are simpler cases when ∆
pq is an integer. For instance when N = Ñ or when |p| = |q| = 1.

In those cases the S-action on the matrix factors is directly compatible with local S-duality

of the brane configuration.

We are left with the untreated case when the relations involve D5-factors or D5-factors

(p, q) = (0,±1). The D5-factor was given in (3.13) when N = Ñ , but we have not specified

it when N 6= Ñ , because it was not needed to describe the matrix models of quiver theories.

Let us review first this simpler case. When N = Ñ , we have directly:(
T

[
0

1

]
T−1

)
σ σ̃

=

[
0

1

]
σ σ̃

, (3.37)

and(
S

[
0

1

]
S−1

)
σ σ̃

=

∫
dNσ′dN σ̃′

e2πi
∑N
j=1 σjσ

′
j∏N

j ch
(
σ′j −m

)
 ∑
w∈SN

(−1)w

N !

N∏
j

δ
(
σ′j − σ̃′w(j)

) e−2πi
∑N
j=1 σ̃

′
j σ̃j

=
1

N !

∑
w∈SN

(−1)w
∫
dNσ′

e2πi
∑N
j=1 σjσ

′
j∏N

j ch
(
σ′j −m

) e−2πi
∑N
j=1 σ

′
j σ̃w(j)

=
e2πim

∑N
j (σj−σ̃j)

N !

∑
w∈SN

(−1)w
1∏N

j ch
(
σj − σ̃w(j)

)
=

[
−1

0

]
σ σ̃

, (3.38)

where the last equality follows from the Cauchy formula (B.2). The D5-factor is defined as

the D5-factor (3.13) with m replaced by −m, and the above relations hold with the roles

of D5 and NS5 exchanged for D5 and NS5 . It will be important to test mirror symmetry

on arbitrary quivers in section 4 to provide a D5-factor when N 6= Ñ , so we address this

question now.

3.3.2 D5-factor with N 6= Ñ

To complete the picture it is possible to derive a D5-factor when N 6= Ñ (different numbers

of D3-branes ending on the left and on the right of the D5-brane) by assuming the local
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S-duality relation for arbitrary N, Ñ :[
0

1

]
σ σ̃

=

(
S

[
1

0

]
S−1

)
σ σ̃

. (3.39)

Then we only need to check (3.32) for M = T on this D5-factor to complete the proof

that (3.32) holds for all M ∈ SL(2,Z) and (p, q)-factors. With ∆ = N − Ñ , µ = N+Ñ
2 and

N > Ñ , the explicit D5-factor is[
0

1

]
σ σ̃

=

(
S

[
1

0

]
S−1

)
σ σ̃

=

∫
dNτdÑ τ̃ e2πi

∑N
j σjτj

[
1

0

]
τ τ̃

e−2πi
∑Ñ
j τ̃j σ̃j

=
(−1)∆Ñ(
N !Ñ !

)1/2 ∑
w∈SN

(−1)w
∫
dNτdÑ τ̃ e2πi

∑N
j τj(σj−m) e−2πi

∑Ñ
j τ̃j(σ̃j−m)

·
Ñ∏
j=1

e−π∆(τw(j)−τ̃j)

ch
(
τw(j) − τ̃j

) N∏
j=Ñ+1

e2πτw(j)(µ+ 1
2
−j)

where we used the generalized Cauchy formula (B.3) to replace the NS5 factor. m is the

5-brane deformation parameter. The result factorizes into a product of Ñ single integrals

over the τ̃j . These integrals are not convergent, however it is possible to evaluate them as

the analytical continuation to complex y of the standard integral
∫
dx e2πi x y

chx = 1
ch y .12

=
(−1)∆Ñ(
N !Ñ !

)1/2 ∑
w∈SN

(−1)w
∫
dNτe2πi

∑N
j τj(σj−m)

Ñ∏
j=1

e2πi(m−σ̃j)τw(j)

ch
(
m−σ̃j−i∆

2

) N∏
j=Ñ+1

e2πτw(j)(µ+ 1
2
−j)

=
(−1)∆Ñ

(
N !Ñ !

)−1/2∏Ñ
j=1 ch

(
σ̃j−m+i∆

2

) ∑
w∈SN

(−1)w
∫
dNτ

Ñ∏
j=1

e2πiτj(σw(j)−σ̃j)
N∏

j=Ñ+1

e2πiτj(σw(j)−m−i(µ+ 1
2
−j))

where we have relabelled τw(j) → τj in each integral. We are left with the integrations over

the τj which correspond to usual δ functions and special δ functions of a complex variable

that we denote δ̂(.).

=

(
N !Ñ !

)−1/2∏Ñ
j=1 ch

(
σ̃j −m− i∆

2

) ∑
w∈SN

(−1)w
Ñ∏
j=1

δ
(
σw(j) − σ̃j

) N∏
j=Ñ+1

δ̂
[
σw(j) −m

(∆)

j−Ñ

]
12A more rigorous approach is to consider expanding the integrand as e

−π∆xj

ch(xj)
= eπ(∆−1)xj − eπ(∆−3)xj +

· · ·+ (−1)∆/2

ch(xj)
for ∆ ∈ 2Z, or e

−π∆xj

ch(xj)
= eπ(∆−1)xj − eπ(∆−3)xj + · · ·+ (−1)(∆−1)/2

2
(1 + th(xj)) for ∆ ∈ 2Z+ 1,

where xj = τw(j) − τ̃j , and then notice that all contributions vanish because of the τj anti-symmetrization,

except the contribution from (−1)∆/2

ch(xj)
or (−1)(∆−1)/2

2
th(xj). The integrals over these factors are convergent

and give the same result as the analytical continuation proposed in the text.
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with m
(∆)
j = m + i

(
∆+1

2 − j
)

for j = 1, · · · ,∆ and we have used ch(x + in) = (−1)nchx,

for n ∈ Z. The δ̂ must be defined as a special distribution that generalizes the usual δ

distribution for the class of integrals that we treat.13 Formally it should correspond to:

δ̂(y) =

∫
R
dx e2πiyx , (3.40)

for y ∈ C. A heuristic computation presented in appendix A lead us to the following

definition. For z0 ∈ Z, δ̂z0 ≡ δ̂( . − z0) is defined by its action on a meromorphic function

f with simple poles (away from z0):∫
R
dx δ̂(x− z0)f(x) = f(z0) + 2πiε(z0)

∑
j

δ̂(uj − z0)f̂(uj) (3.41)

where ε(z0) = sgn(Im(z0)), uj are the poles of f in the region 0 ≤ Im(u) ≤ Im(z0)

(or Im(z0) ≤ Im(u) ≤ 0). When 0 < |Im(uj)| < |Im(z0)|, f̂(uj) is the residue at the

pole uj , when Im(uj) = 0 or Im(uj) = Im(z0), f̂(uj) is half the residue at the pole uj . We

give details about these exotic δ̂ in appendix A.

To conclude we have obtained a generalized D5-factor:[
0

1

]
σ σ̃

=

(
N !Ñ !

)−1/2∏Ñ
j=1 ch

(
σ̃j−m−i∆

2

) ∑
w∈SN

(−1)w
Ñ∏
j=1

δ
(
σw(j)−σ̃j

) N∏
j=Ñ+1

δ̂
[
σw(j)−m

(∆)

j−Ñ

]
with m

(∆)
j = m+ i

∆− 2j + 1

2
, for N ≥ Ñ . (3.42)

For N = Ñ it reduces to (3.13) with mass parameter m. When N < Ñ the D5-factor is

given by the above formula with N ↔ Ñ , σ ↔ −σ̃ and m→ −m. This yields[
0

1

]
σ σ̃

=

(
N !Ñ !

)−1/2∏N
j=1 ch

(
σ̃j−m+i ∆̃

2

) ∑
w∈SÑ

(−1)w
N∏
j=1

δ
(
σ̃w(j)−σj

) Ñ∏
j=N+1

δ̂
(
σ̃w(j)−m

(∆̃)∗
j−N

)
, (3.43)

with ∆̃ = Ñ −N and ∗ denotes complex conjugation.

Let us see what becomes of the relations (3.34) for the D5-factor.(
S

[
0

1

]
S−1

)
σ σ̃

=

(
S2

[
1

0

]
S−2

)
σ σ̃

=

(
(−1)

[
1

0

]
(−1)

)
σ σ̃

=

[
−1

0

]
σ σ̃

. (3.44)

13When dealing with divergent matrix integrals, a standard recipe is to rely on analytic continuation of the

integrals [36] with respect to some parameters of the integrand. In our case such an analytical continuation

is not possible because the the function to be analytically continued is the Dirac delta function. This is why

we do not speak about analytic continuation, but about “generalization” of the delta function. It might

be surprising that we have to define such an exotic object, however one should remember that this defines

a matrix factor for a D5-brane with N 6= Ñ , which is not a natural factor arising in the matrix model

of a gauge theory. When gluing together all the factors of a “good” matrix model, one should be able to

integrate out the D5-factors and remain with a standard converging matrix model.
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This equality can also be checked directly using the D5-factor we have derived. Then

for N ≥ Ñ ,(
T

[
0

1

]
T−1

)
σ σ̃

= e
πi∆
12

∫
dNτdÑ τ̃ eπi

∑N
j=1 σ

2
j

N∏
j=1

δ(σj − τj)

[
0

1

]
τ τ̃

e−πi
∑Ñ
j=1 τ̃

2
j

Ñ∏
j=1

δ (τ̃j − σ̃j)

= e
πi∆
12 eπi

∑N
j=1 σ

2
j

[
0

1

]
σ σ̃

e−πi
∑Ñ
j=1 σ̃

2
j

=
e
πi∆
12

(
N !Ñ !

)−1/2∏Ñ
j=1 ch

(
σ̃j−m−i∆

2

) ∑
w∈SN

(−1)w
Ñ∏
j=1

δ
(
σw(j)−σ̃j

) N∏
j=Ñ+1

δ̂
[
σw(j)−m

(∆)

j−Ñ

]
e
πi
∑∆
j

(
m

(∆)
j

)2

= e
πi∆
12 e

πi
12

∆(∆2−1) eπi∆m
2

[
0

1

]
σ σ̃

, (3.45)

at the third line we have used the property (A.3). The relations (3.36) are then

completed with:(
S

[
1

0

]
S−1

)
σ σ̃

=

[
0

1

]
σ σ̃

,

(
S

[
0

1

]
S−1

)
σ σ̃

=

[
−1

0

]
σ σ̃(

T

[
0

1

]
T−1

)
σ σ̃

= e
πi
12

∆3
eπi∆m

2

[
0

1

]
σ σ̃

. (3.46)

The phase eπi∆m
2

accounts for a background Chern-Simons term with integer level ∆,

which does not affect the physics of the theory [27, 28].

The dualities we will test involve theories realized with D5-, NS5- and (1,±1)-5branes

and thus the additional phases will contain only unphysical integer level background

CS terms.

3.4 Tests of SL(2,Z) dualities

In this section we show how the machinery of local SL(2,Z) transformations produces a

powerful test of SL(2,Z) dualities, by matching the exact partition functions on S3 of

dual SCFTs.

Let us first re-derive the test of mirror symmetry for Yang-Mills circular quivers with

nodes of equal rank presented in [7]. Consider a circular quiver theory A with nodes of equal

ranks. It has a gauge group GA =
∏P̂
j=1 U(N) with bifundamental hypermultiplets and Mj

fundamental hypermultiplets in the jth node. Its brane realization involves N D3-branes

on a circle crossing a sequence of NS5 and D5-branes. The mirror-dual theory B is realized

by the S-dual brane configuration changing the NS5 into D5-branes and the D5 into NS5-

branes. Theory B is also a Yang-Mills circular quiver, with gauge group GB =
∏P
j=1 U(N)

and M̃j fundamental hypermultiplets in the jth node. The relations between the A and B
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Figure 14. Triplet of SL(2,Z) dual theories. Theories A and B are Yang-Mills quiver SCFTs,

while theory C is a Chern-Simons quiver SCFT. Theory B is the S-dual of theory A, it coincides

with the mirror dual of theory A. Theory C is the TT -dual of theory A, where TT is the transposed

of the matrix T . The subscript (−1, 0) above the white dots indicates a NS5 brane.

quivers data can be read from the brane configurations. The partition function of theory

A is given by its sequence of NS5 and D5 factors:

ZA = Tr

[
1

0

]
(N)

[
0

1

]
(N)

[
0

1

]
(N)

[
1

0

]
(N) · · · (N)

[
0

1

]
(N)

= Tr

[
1

0

][
0

1

][
0

1

][
1

0

]
· · ·

[
0

1

]
. (3.47)

Each 5-brane factor can be replaced by its local S-dual using (3.32):

ZA = Tr S−1

[
0

1

]
S S−1

[
−1

0

]
S S−1

[
−1

0

]
S S−1

[
0

1

]
S · · · S−1

[
−1

0

]
S

= Tr

[
0

1

][
−1

0

][
−1

0

][
0

1

]
· · ·

[
−1

0

]
= ZB , (3.48)

where the second equality follows from (S S−1)σσ̃ = 1σσ̃. The matrix model obtained after

these simple manipulations is the matrix model for the partition function ZB of the S-dual

theory B. The parameter tj of the j-th 5brane in the sequence of ZA is mapped to the

parameter t̂j of the j-th 5brane in the sequence of ZB. This means that the mass parameters

mi and tj , associated to D5- and NS5-branes, are exchanged with the parameters t̂i and

m̂j of the mirror theory, associated with NS5 and D5-branes. For these quiver theories,

S-duality coincides with mirror symmetry. Theories A and B in figure 14 are an example

of YM mirror theories.

In [4], mirror symmetry is associated to a S-duality transformation, together with a

rotation that brings xj into −xj+3 and xj+3 into xj for j = 4, 5, 6, changing the NS5 into

NS5-branes. At the level of the matrix model, this extra rotation can be implemented

by reversing the sequence of 5-brane factors and reversing the NS5-charge of the factors

(p, q)→ (−p, q). This operation does not change the matrix model, since it is equivalent to
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a simple relabelling of the nodes from right to left. In the “matrix language” it would be

the equivalent of the property Tr(M1 . . .Mk) = Tr
(
MT
k . . .M

T
1

)
with the “transposition”

implementing the NS5-charge conjugation. We obtain:

ZB = Tr

[
0

1

][
−1

0

][
−1

0

][
0

1

]
· · ·

[
−1

0

]

= Tr

[
1

0

]
· · ·

[
0

1

][
1

0

][
1

0

][
0

1

]
. (3.49)

This completes the usual mirror symmetry transformation.

This simple S-transformation of blocks allowed us to match the partition functions

of S-dual pairs of Yang-Mills N = 4 SCFTs for all the circular quivers with nodes of

equal rank. The same manipulation would work for any pair of theories A and B, whose

brane realizations are related by a transformation M ∈ SL(2,Z). A theory A realized by a

sequence of (p1, q1)- and (p2, q2)-5branes has a partition function given generically by

ZA = Tr

[
p1

q1

]
(N1)

[
p2

q2

]
(N2)

[
p2

q2

]
(N3)

[
p1

q1

]
(N4) · · · (NQ−1)

[
p2

q2

]
(NQ)

= eπi ϕAB Tr M−1

[
p′1
q′1

]
MM−1

[
p′2
q′2

]
MM−1

[
p′2
q′2

]
MM−1

[
p′1
q′1

]
M · · · M−1

[
p′2
q′2

]
M

= eπi ϕAB Tr

[
p′1
q′1

]
(N1)

[
p′2
q′2

]
(N2)

[
p′2
q′2

]
(N3)

[
p′1
q′1

]
(N4) · · · (NQ−1)

[
p′2
q′2

]
(NQ)

= eπi ϕAB ZB (3.50)

where M ∈ SL(2,Z) and the dual theory B is realized by the same sequence of 5branes as

theory A, but with (p′i, q
′
i) = M(pi, qi). The two partition functions are not equal but only

equal up to a pure phase eπi ϕAB that follows from the relations (3.36), (3.46). This extra

phase is irrelevant as long as it can be understood as a background Chern-Simons term

with integer level (see discussion above). This happens for instance when the gauge nodes

have equal ranks N1 = N2 = · · · = NQ, in which case the phase vanishes.

This simple computation constitutes a non-trivial test of the global M -duality symme-

try between quiver theories A and B. Although we have tested successfully general SL(2,Z)

dualities, all the dualities that involve Gaiotto-Witten quivers (2.3), realized with (p, q)-

5branes with |p| > 1 are empty, because the GW quiver SCFTs are already described by

using (local) SL(2,Z) duality. The theories for which we have an independent descrip-

tion are those involving D5-, NS5- and (1, k)-5branes, corresponding to YM or CS quiver

SCFTs. Non-trivial SL(2,Z) dualities acting in this subclass of SCFTs can be found for

dual theories realized with D5-, NS5- and (1,±1)-5branes. An example of a triplet A,B,C

of dual SCFTs is described in figure 14. Theory A and B are mirror dual YM quiver

SCFTs and theory C is a dual CS quiver SCFT, obtained by acting with the SL(2,Z)

transformation TT that changes D5-branes into (1, 1)-5branes.

Let us detail another example, where a Yang-Mills SCFT is mapped to a pure Chern-

Simons SCFT (non-vanishing CS levels at all nodes):
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• theory A: Yang-Mills quiver with gauge group GA =
∏P̂
j=1 U(Nj) with bifundamen-

tal hypermultiplets and one fundamental hypermultiplet in each node. The brane se-

quence has P̂ NS5-branes and P̂ D5-branes alternating. The deformation parameters

of the theory are the fundamental hypermultiplet masses mj and the FI parameters

tj − tj+1 for the jth node.

• theory B: Chern-Simons quiver with gauge group GB =
∏P̂
j=1

[
U(Nj)−1 × U(Nj)1

]
with bifundamental hypermultiplets and Chern-Simons level +1 and −1 alternating

from one node to its neighbours. The brane sequence has P̂ NS5-branes and P̂ (1, 1)-

5branes alternating. The deformation parameters of the theory are the FI parameters

t̃j − t̃j+1 for the jth node.

Theory B is the TT-dual of theory A, with TT =

(
1 1

0 1

)
= −TST , transforming D5-branes

into (1, 1)-5branes, while leaving the NS5-branes invariant. The map between deformation

parameters is given by t̃2j = mj , t̃2j−1 = tj for j = 1, · · · , N . An illustration in given

in figure 15.

It should be noticed however that SL(2,Z) dualities are not sufficient to test mirror

symmetry for quivers with nodes of varying ranks. Acting with S-duality on a generic YM

quiver SCFT, one obtains a brane realization involving D5-branes with different numbers of

D3-branes ending on their left and on their right. These brane configurations do not have a

simple gauge theory description. To arrive at the mirror dual brane configuration, one has

to move the D5-branes along the x3 direction, crossing NS5-branes and making the number

of D3-branes vary, until a configuration corresponding to a YM quiver is reached. To be

able to check mirror symmetry, it is necessary to understand how the 5-brane moves and

the D3-brane creation effect is reproduced in matrix models. We turn now to this question.

4 Mirror symmetry and other dualities involving HW moves

To be able to test mirror symmetry we need to combine the S-duality transformation of

the matrix models with another type of transformation that corresponds to interchanging

the positions of 5-branes in the brane realization. For instance consider the case of the

self-mirror T (SU(2)) theory, which is N = 4 SQED with two fundamental hypermultiplets.

Its brane realization involves a single D3-brane stretched between two NS5-branes and

intersecting two D5-branes (figure 16). After S-duality the NS5-branes have become D5-

branes and the D5-branes have been turned into NS5-branes. However we do not know

which SCFT is realized by such a brane configuration. To reach a brane configuration that

we understand, one has to move the D5-branes in between the two NS5-branes (figure 16)

to recover a brane configuration realizing again T (SU(2)). When two 5-branes of different

types pass through each other, the number of D3-branes stretched between vary. This is

known has the Hanany-Witten effect and it is not supposed to affect the IR theory living

on the D3-branes. This is why one can use these 5-brane moves to reach the desired brane

configuration, as in the case of the self-mirror T (SU(2)).
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Figure 15. Pure Chern-Simons theory B is the TT-dual of Yang-Mills theory A.

Figure 16. On the left is the graph of the T (SU(2)) theory, then the the graph resulting from the

action of S-duality and below is the graph obtained after moving the external D5-branes (black

dots) in-between the two NS5-branes (white dots), recovering the graph of T (SU(2)), which is a self

mirror theory.

In this section we show that the 5-brane moves, with brane creation effect, are re-

produced by identities in the matrix model, allowing us to prove the equality of partition

functions for mirror dual theories with nodes of arbitrary ranks. Moreover these HW-

identities can also be used to test various dualities between CS quiver SCFTs involving

5-brane moves. Combined with SL(2,Z) dualities, they generate a rich web of dualities for

N = 4 quiver SCFTs.

4.1 Hanany-Witten moves

Hanany-Witten 5-brane moves refer to the situation when a D5-brane and a NS5-brane

pass through each other by moving along the x3 direction. The conservation of 3-form

fluxes on the 5-brane worldvolumes implies the creation of a D3-brane stretched between

them [4]. In the meantime the D3-branes that were initially stretched between the D5- and

NS5-branes have their orientation reversed an become anti-D3-branes, annihilating with

other D3-branes. In total we arrive at the following rule: if the initial configuration has

a D5-brane with N1 D3-branes ending on its left, a NS5-brane with N3 D3-branes ending

on its right and N2 D3-branes are stretched between the two 5-branes, then after the HW

move the positions of the 5-branes are exchanged and the number of D3-branes stretched

between the two has changed to Ñ2 = N1+N3−N2+1. This is summarized in the graphs of

figure 17-a. The HW 5-brane move has a generalization when one considers the exchange
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Figure 17. Parts of graphs of two theories related by a Hanany-Witten move. a) A D5-brane

(black dot) and a NS5-brane (white dot) are exchanged and the rank of the middle link is changed

from N2 to Ñ2 = N1 +N3 −N2 + 1. b) Generic (p1, q1)- and (p2, q2)-5branes are exchanged, with

D = |p1q2 − p2q1| > 0. In this case Ñ2 = N1 +N3 −N2 +D.

of a (p1, q1)-5brane and a (p2, q2)-5brane, with D = |p1q2 − p2q1| > 0, in which case D

new D3-branes are created and the final number of D3-branes stretched between the two

5-branes is Ñ2 = N1 + N3 − N2 + D [33] (see figure 17-b). Note the we do not consider

the exchange of 5-branes of the same type, which would have D = 0, and for which the

argument developed in [4] does not apply. These “forbidden” 5-brane moves are related to

N = 4 Seiberg-like dualities and involve subtleties that we hope to address in the future.

It is important to notice that the number N2 of D3-branes stretched between a D5-

brane and a NS5-brane obeys the constraint N2 ≤ N1 +N3 + 1 to ensure unbroken super-

symmetry. This follows from the “s-rule” ([4, 37]) that says that supersymmetry is broken

if more than one D3-branes are stretched between a D5-brane and a NS5-brane. The coun-

terpart for (p1, q1)- and (p2, q2)-5branes is that there must not be more than D D3-branes

stretched bewteen the two 5branes, leading to N2 ≤ N1 +N3 +D. This ensures Ñ2 ≥ 0.

The claim of [38] is that the two brane configurations represented by the graphs in

figure 17 flow to equivalent IR theories. For the matrix models this imply the following

identity for (p1, q1)- and (p2, q2)-5brane factors:([
p1

q1

]
(N2)

[
p2

q2

])
σσ̃

?
=

([
p2

q2

]
(Ñ2)

[
p1

q1

])
σσ̃

. (4.1)

This identity would ensure that the SCFT realized with the (p1, q1)- and (p2, q2)-5branes

has the same partition function has the theory realized with the same brane configuration,

but with these two 5-branes exchanged. Again we used the symbol
?
= to point out that we

have not proven this relation yet and that it will be modified ultimately by the addition

of some phase.

The identity (4.1) is difficult to prove, however we can use the local SL(2,Z) action on

matrix models to trade the (p1, q1)-5brane factor and (p2, q2)-5brane factor for a D5-brane

factor and a generic (p, q)-5brane factor with p 6= 0. The identity to prove is reduced to([
0

1

]
(N2)

[
p

q

])
σσ̃

?
=

([
p

q

]
(Ñ2)

[
0

1

])
σσ̃

, (4.2)
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with Ñ2 = N1 + N3 − N2 + |p|. Deriving this identity involves various tricks and ma-

nipulations that we present in appendix C.2. The computation relies on properties of the

special δ̂ distributions that enter into the D5-brane matrix factor (3.43) and requires several

mathematical identities given in appendix B. Moreover it is necessary to deal with various

cases corresponding to different ordering of N1, N2, N3, N1 +p,N3 +p. In appendix C.2, we

discuss only the case N1 + p ≤ N2 ≤ N3, which contains the tricks necessary to deal with

the other cases. There are however cases for which we were not able to finish the computa-

tions due to some additional complications appearing, corresponding to 0 < N2 < |p| and

N1 + N3 < N2 < N1 + N3 + |p|.14 In the dualities that we discuss in this work, we only

consider p = ±1 for which these cases do not exist.

Our final result is (C.16)15([
0

1

]
(N2)

[
p

q

])
σσ̃

= e∓2πitm e±πiqm
2
e
πi
12

q
p

Φ

([
p

q

]
(Ñ2)

[
0

1

])
σσ̃

, (4.3)

where ± is the sign of p (and ∓ its opposite) and Φ = |∆21|
(
∆2

21 − 1
)
− |∆32̃|

(
∆2

32̃
− 1
)

,

with ∆21 = N2 − N1 and ∆32̃ = N3 − Ñ2. The extra phase in the relation (4.3) contains

matrix factors for a background CS term with level ±q for the U(1) global symmetry

associated to m and a background BF coupling between the two U(1) global symmetries

associated to m and t, which can be viewed as a mixed CS coupling with level ∓1. The

CS levels are integers, implying that such background terms do not affect the physics of

the theory [28].

We are now in a position to argue for the equality of the partition functions, up to irrel-

evant phases, of mirror dual theories for YM quiver SCFTs with nodes of arbitrary ranks.

4.2 Mirror symmetry

Mirror symmetry is a duality that relates pairs of N = 4 Yang-Mills quiver SCFTs, satis-

fying the “good” conditions of [23], namely at each node Mj +Nj+1 +Nj−1 ≥ 2Nj , where

Mj is the number of fundamental hypermultiplets of the node U(Nj). The mirror dual of a

YM quiver theory A is found by first considering the brane configuration realizing A, with

D5 and NS5-branes, then taking the S-dual of this brane configuration and implementing

HW moves until the D5-branes have the same number of D3-branes on each side. One

obtains the brane configuration realizing a YM quiver theory B, which is the mirror dual

of the theory A. For this algorithm to work, it is necessary that, after some HW moves,

each D5-brane arrives at a position where it has zero net number of D3-branes ending on

it, where by net number we mean the number of D3-branes ending on its right, minus the

number of D3-branes ending on its left. Although it is not completely straightforward, this

is ensured by the conditions Mj + Nj+1 + Nj−1 ≥ 2Nj that define a “good” quiver. Note

also that the mirror theory B is also a “good” quiver theory.

14We believe however that the identities hold also for these cases.
15In our computation we have not taken care of overall factors of i, so our result is only valid up to factors

of i. This can be justified by the fact that the partition function is generally complex and that it is not

clear wether the initial matrix model summarized in 3.1 contains the correct factors of i or not (see [6] for

a related discussion).
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The partition functions of mirror dual theories A and B can be mapped using the tools

we have developed. The partition function ZA of the theory A is given by the sequence of

5-brane factors mimicking its brane realization, for instance:

ZA = Tr

[
1

0

]
(N1)

[
0

1

]
(N1)

[
0

1

]
(N1)

[
1

0

]
(N2)

[
0

1

]
(N2)

[
1

0

]
(N3) · · · (NP̂ )

[
0

1

]
(NP̂ ) . (4.4)

Each 5-brane factor can be replaced by its local S-dual using (3.46):

ZA = TrS−1

[
0

1

]
S S−1

[
−1

0

]
S S−1

[
−1

0

]
S S−1

[
0

1

]
S S−1

[
−1

0

]
S · · · S−1

[
−1

0

]
S

= Tr

[
0

1

]
(N1)

[
−1

0

]
(N1)

[
−1

0

]
(N1)

[
0

1

]
(N2)

[
−1

0

]
(N2)

[
0

1

]
(N3) · · · (NP̂ )

[
−1

0

]
(NP̂ ). (4.5)

At this stage the matrix model is given by the sequence of D5 and NS5 factors, but the

associated brane configuration has D5-branes with different numbers of D3-branes on each

side (except when all Ni are equal). Then we can use the identity (4.3) to exchange D5- and

NS5 factors. For instance if N1 > NP̂ (≡ N0), we have to exchange the two first factors:

ZA = eiϕ Tr

[
−1

0

]
(Ñ1)

[
0

1

]
(N1)

[
−1

0

]
(N1)

[
0

1

]
(N2) · · · (NP̂ )

[
−1

0

]
(NP̂ ) , (4.6)

where Ñ1 = N1 +NP̂ −N1 + 1 = NP̂ + 1 and eiϕ is a phase depending on the background

parameters. Note that the net number of D3-branes ending on the D5-brane has decreased

by one unit. If Ñ1 < N1, we have to continue moving the same D5-factor to the right of the

chain of factors by permuting with NS5 factors, until the net number of D3-branes ending

on it is zero (it decreases by one unit at each permutation). The fact that there are enough

NS5 factors is ensured by the conditions defining a “good” quiver. The same algorithm

must be applied to all D5-factors, so that in the end they all have zero net number of

D3-branes ending on them.

ZA = eiϕAB Tr

[
−1

0

]
(Ñ1)

· · · (NP̂ ) = eiφAB ZB . (4.7)

The final sequence of D5 and NS5 factors is obviously very different from the initial sequence

associated to the theory A, instead it corresponds precisely to the sequence associated to

the brane configuration of theory B. This is because the permutations of 5-brane factors

reproduce exactly the HW 5-brane moves that are needed to go to the brane configuration

realizing the mirror theory B.

As discussed in section 3.4, it is common to complete the transformation of the brane

configuration by a “rotation” that changes the NS5-branes into NS5-branes. At the level of

the matrix model, this corresponds to reversing the sequence of 5-brane factors and trading

the NS5 factors for NS5-factors. This is actually a simple relabelling of the eigenvalues

(from right to left) that does not affect the matrix model.
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Figure 18. a) A HW-move in CS quiver theories. The rank and CS level of the central node are

changed for Ñ2 = N1 +N3 −N2 + |k| and −k. b) Example of dual theories obtained from a single

HW move. Only the element of the quivers changing under the duality are shown, the rest of the

quiver is identical for the two theories.

In the end we find that the partition functions ZA and ZB differ only by a phase eiϕAB ,

corresponding to unphysical background CS terms. If {mi, tj}, 1 ≤ i ≤ P , 1 ≤ j ≤ P̂ ,

are the mass and FI deformation parameters of theory A, then deformation parameters of

theory B are the FI parameters t̂i = mi and the mass parameters m̂j = tj .

The map between the exact partition functions of the SCFTs A and B, with FI and

mass deformation terms, provides a important new test of mirror symmetry for all non-

abelian circular and linear16 YM quiver SCFTs.

4.3 Level-rank and YM-CS dualities

The identity (4.3) can be used to test other dualities that involve 5-brane moves. Such

dualities have already been described for a few abelian SCFTs in [17]. Instead of trying to

describe all possible dualities, we will concentrate on specific interesting cases corresponding

to N = 4 level-rank dualities for CS quiver theories and dualities mapping YM quiver

SCFTs and pure Chern-Simons SCFTs.

CS quiver theories are realized with brane configurations corresponding sequences of

NS5-branes and (1, k)-5branes (see section 2.2). Permuting a NS5-brane and a (1, k)-

5brane, adjacent in a brane sequence, leads to the brane configuration of a dual CS quiver

theory, as illustrated in figure 18. The 5-brane exchange affects three consecutive gauge

nodes of the quiver, in particular the central node is changed from U(N2)k to U
(
Ñ2

)
−k

with Ñ2 = N1 +N3−N2 + |k|. This can be seen as a generalization to N = 4 quiver SCFTs

of the Giveon-Kutasov duality for N = 2 SCFTs [39] (tests of the Giveon-Kutasov duality

using exact partition functions were presented in [40]), which is already a generalization of

the level-rank duality of simple Chern-Simons theory without matter.

16The test for linear quivers corresponds to having NP̂ = 0 in the above argument.
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The equality of matrix models of the two dual theories, up to a phase, is ensured by

the HW relation:

(N1)

[
1

0

]
(N2)

[
1

k

]
(N3) = e−πi (t−s)

2

(N1)

[
1

k

]
(Ñ2)

[
1

0

]
(N3) , (4.8)

which is obtained using (3.36), (3.46) and (4.3) in the following way:17

(N1)

[
1

0

]
(N2)

[
1

k

]
(N3) = e

πi
k

∆23 s2 S−1

[
0

1

]
(N2)

[
−k
1

]
S

= e
πi
k

∆23 s2 e2πi ts e−πi t
2
S−1

[
−k
1

]
(Ñ2)

[
0

1

]
S

= e−πi s
2
e2πi ts e−πi t

2

(N1)

[
1

k

]
(Ñ2)

[
1

0

]
(N3) ,

where t and s are the deformation parameters associated to the NS5 and (1, k)-5brane

respectively and we have used ∆23 − ∆12̃ = k. Note that again the extra phase in (4.8)

appears as a background CS term with integer level, that does not affect our conclusions

regarding dualities. The map between parameters of the dual theories indicates that the

FI parameter of the middle node is reversed η2 = t − s → η̃2 = s − t = −η2. The FI

parameters of the two exterior nodes U(N1) and U(N3) are also affected.

This simple 5-brane permutation can be repeated for all couple of adjacent NS5 and

(1, k)-5brane, leading to a web of dualities between CS quiver SCFTs. The identity (4.8)

proves that the exact partition functions of the theories related by these HW-moves are

equal, up to an irrelevant phases.

The dualities following from HW 5brane moves can be combined with the SL(2,Z)

dualities to generate interesting dualities. Mirror symmetry between YM SCFTs is one

example of such combined dualities. Another interesting case would be a duality mapping

Yang-Mills SCFTs to pure Chern-Simons SCFTs, where by pure Chern-Simons we mean

that all nodes of the CS quiver have non-vanishing CS levels. The Chern-Simons theories

have superconformal Lagrangians and would be understood as an explicit description of

the infrared fixed points of the “dual” Yang-Mills quiver theories.

We have already seen in section 3.4 that YM theories have CS duals related through

TT-duality, which changes D5-branes into (1, 1)-5-branes. However, the CS duals have

generically U(N)0 auxiliary nodes. To obtain a pure CS dual theory we can try to use

HW-moves. The necessary and sufficient condition to obtain a pure CS dual theory is that

the number of D5-branes and NS5-branes in the brane realization of the initial YM theory

are equal for circular quivers, or differ by at most one for linear quivers. In this case, the

(1, 1)-5branes of the TT-dual CS theory can be moved along the x3 direction to reach a

sequence of alternating NS5 and (1, 1)-5branes. The corresponding SCFT is then a pure

CS theory with alternating Chern-Simons levels ±1.

17We omit here the phases of the form e
iπ
12

(...) that are independent of the parameters of the theory and

play no role in the derivation of the dualities.
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Figure 19. From top to bottom: quiver and graph of T (SU(4)) theory; graph after TT action;

graph and quiver of the pure CS dual theory, obtained after HW moves.

The T (SU(N)) theories belong to this class of YM theories with pure CS duals. Let

us see how the duality works by transforming the partition function of T (SU(4)) to its

Chern-Simons dual. The partition function of T (SU(4)) with deformation parameters

t1,2,3,4,m1,2,3,4 is given by the sequence of 5brane factors:

ZT (SU(4)) =

[
1

0

]
(1)

[
1

0

]
(2)

[
1

0

]
(3)

[
0

1

]
(3)

[
0

1

]
(3)

[
0

1

]
(3)

[
0

1

]
(3)

[
1

0

]
. (4.9)

After acting (locally on each 5-brane factor) with TT-duality, the matrix model becomes

ZT (SU(4)) =eπi(t
2
1+t22+t23−3 t24)

[
1

0

]
(1)

[
1

0

]
(2)

[
1

0

]
(3)

[
1

1

]
(3)

[
1

1

]
(3)

[
1

1

]
(3)

[
1

1

]
(3)

[
1

0

]
, (4.10)

where the extra phase is derived from the identities (3.46) and the decomposition TT =

−TST . Next we use the identity (4.8) to rearrange the sequence of factors, so that NS5

and (1, 1)-5brane factors alternate:

ZT (SU(4)) = eπi ϕ

[
1

0

]
(1)

[
1

1

]
(3)

[
1

0

]
(3)

[
1

1

]
(4)

[
1

0

]
(3)

[
1

1

]
(3)

[
1

0

]
(1)

[
1

1

]
= ZCS, (4.11)

with ϕ = t21 + t22 + t23 − 3 t24 − (t2 − m1)2 − (t3 − m1)2 − (t3 − m2)2 + (t4 − m4)2. The

final matrix model correspond to a pure Chern-Simons theory with gauge group U(1)1 ×
U(3)−1 ×U(3)1 ×U(4)−1 ×U(3)1 ×U(3)−1 ×U(1)1. The transformation is summarized in

figure 19.

The necessary and sufficient condition for a YM fixed point to admit a pure CS de-

scription boils down to having a number of nodes equal to the number of fundamental

hypermultiplets for circular quivers (or different by at most one for linear quivers). It must

also be noticed that the pure Chern-Simons duals of Yang-Mills theories have only nodes

with Chern levels ±1 and thus are never weakly coupled, since the effective gauge coupling

in Chern-Simons theory is λ = N
k and it can become small only in the large k limit.

4.3.1 A check by direct computations

In the argumentation that we have developed, we were able to map partition functions of

dual theories without explicitly computing the matrix models. We would like to provide
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Figure 20. Quivers and graphs of three abelian dual theories.

some consistency check of our results by computing matrix models of simple dual theories.

Let us consider the three dual abelian theories:

• T (SU(2)), which is a Yang-Mills theory with gauge group U(1) and two fundamental

hypermultiplets. The deformation parameters are the FI parameter t1 − t2 and the

real masses m1,m2. We denote its partition function ZA;

• the CS theory with gauge group U(1)1 × U(1)0 × U(1)−1, with FI parameters t̂1 −
t̂2, t̂2 − t̂3, t̂3 − t̂4. We denote its partition function ZB;

• the pure CS theory with gauge group U(1)1 × U(1)−1 × U(1)1, with FI parameters

ť1 − ť2, ť2 − ť3, ť3 − ť4. We denote its partition function ZC .

These abelian duals were already proposed in [17], where it was shown that their moduli

spaces coincide. In addition our analysis provides the following map between parameters

t1 = t̂1 = ť1 , m1 = t̂2 = ť2 , m2 = t̂3 = ť4 , t2 = t̂4 = ť3 . (4.12)

The gauge quivers and corresponding graphs are presented in figure 20. The theories A

and B be are related by TT-duality, while the theories B and C are related by a HW move

or level-rank duality.

The map between partition functions obtained by acting with TT duality on the matrix

model, using (3.36), (3.46), is given by:

ZA = eiπ(t
2
1−t22) ZB = eiπ[t

2
1−t22+(t2−m2)2] ZC , (4.13)

up to overall phases independent of the deformation parameters.

The matrix model for the T (SU(2)) theory is given by:

ZA = ZT (SU(2)) =

∫
dσ

e2πi(t1−t2)σ

ch(σ −m1)ch(σ −m2)
= (−i) e

2πi(t1−t2)m1 − e2πi(t1−t2)m2

sh(t1 − t2)sh(m1 −m2)
,

where the integral was computed by deforming the contour to i∞ and summing over

residues. The partition function for the CS theory B is given by:

ZB =

∫
dσ1dσ2dσ3 e

πi(σ2
1−σ2

3) e
2πi[(t̂1−t̂2)σ1+(t̂2−t̂3)σ2+(t̂3−t̂4)σ3]

ch(σ1 − σ2)ch(σ2 − σ3)
.
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To evaluate these integrals, we change variables σ1 → σ1 + σ2, σ3 → σ3 + σ2 . Then the

integration over σ2 yields a delta function that can be used to integrate over σ1, leading to

ZB = eπi(t̂
2
4−t̂21) e2πi(t̂1−t̂4)t̂2

∫
dσ3

e2πi(t̂3−t̂2)σ3

ch
(
σ3 − t̂1 + t̂4

)
ch(σ3)

= eπi(t̂
2
4−t̂21) (−i) e

2πi(t̂1−t̂4)t̂2 − e2πi(t̂1−t̂4)t̂3

sh
(
t̂1 − t̂4

)
sh
(
t̂2 − t̂3

) .

The partition function of the pure Chern-Simons theory C can be evaluated using similar

ideas, giving

ZC =

∫
dσ1dσ2dσ3 e

πi(σ2
1−σ2

2+σ2
3) e

2πi[(ť1−ť2)σ1+(ť2−ť3)σ2+(ť3−ť4)σ3]

ch(σ1 − σ2)ch(σ2 − σ3)

= e−
πi
4 e−πi(ť

2
1+ť24−2ť3 ť4) (−i) e

2πi(ť1−ť3)ť2 − e2πi(ť1−ť3)ť4

sh
(
ť1 − ť3

)
sh
(
ť2 − ť4

) .

These explicit results match the relations (4.13) with the parameter mapping (4.12),

providing a direct check of the dualities.

5 Explicit partition functions

Finally we can make use of our matrix model machinery to derive some explicit evaluation

of partition functions.

In [26] the authors conjectured an explicit formula for the partition function of an

arbitrary YM linear quiver SCFT deformed by mass and FI terms. The formula is expressed

in terms of two partitions (ρ, ρ̂) of a positive integer N , that encode the linear quiver data.

An invariant way of encoding a brane configuration — and the corresponding quiver

gauge theory — is by specifying the linking numbers of the five-branes. They can be defined

as follows

la = −na +RNS5
a (a = 1, . . . , P )

l̂b = n̂b + LD5
b (b = 1, . . . , P̂ ) , (5.1)

where na is the number of D3 branes ending on the ath D5 brane from the right minus

the number ending from the left, n̂b is the same quantity for the bth NS5 brane, RNS5
a is

the number of NS5 branes lying to the right of the ath D5 brane and LD5
b is the number

of D5 branes lying to the left of the bth NS5 brane. These numbers are conserved under

Hanany-Witten moves [4], which correspond to moving a D5-brane across a NS5-brane

with a D3-brane creation or annihilation. Since the extreme infrared limit is expected to

be insensitive to these moves, it is convenient to label the infrared dynamics in terms of

the linking numbers of the 5-branes.

We may move all the NS5-branes to the left and all the D5-branes to the right, noting

that a new D3-brane is created every time that a D5 crosses a NS5. In the end, all the

D3 branes will be suspended between a NS5 brane on the left and a D5 brane on the

right (see figure 21 for an example), so that the linking numbers satisfy the sum rule∑P
a=1 la =

∑P̂
b=1 l̂b ≡ N , where N is the total number of suspended D3 branes. This

implies that the two sets of five-brane linking numbers define two partitions of N . This is
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Figure 21. Pushing all D5-branes (black dots) to the right of all NS5-branes (white dots) makes it

easy to read the linking numbers (indicated below each 5-brane), as the net number of D3-branes

ending on each five-brane. In this example ρ = (1, 1, 3) and ρ̂ = (1, 1, 1, 2). The IR fixed point is

T
(113)
(1112)(SU(5)).

the repackaging of the quiver data in terms of partitions ρ, ρ̂ of N mentioned above with

ρ = (l1, l2, . . . , lP ) , l1 ≤ l2 ≤ . . . ≤ lP ,

ρ̂ = (l̂1, l̂2, . . . , l̂P̂ ) , l̂1 ≤ l̂2 ≤ . . . ≤ l̂P̂ . (5.2)

We adopt the convention that the linking numbers in the partitions are ordered non-

decreasingly.18 The IR fixed point SCFT of the theory labelled by (ρ, ρ̂) is called T ρρ̂(SU(N)).

In the original configuration of figure 1 the D5-brane linking numbers are, by construc-

tion, positive and non-decreasing but this is not automatic for the linking numbers of the

NS5 branes. Requiring that the NS5-brane linking numbers be non-decreasing is equivalent

to the conditions for the quiver to be a “good” theory.

In the presence of mass and FI deformation terms, each D5-brane is associated to a

real mass parameter ma and each NS5-brane with a FI parameter tb. It is convenient to

define deformed partitions, that we call again ρ and ρ̂, as

ρ :=
(

(l1,m1), (l2,m2), . . . , (lP ,mP )
)

ρ̂ :=
((

l̂1, t1

)
,
(
l̂2, t2

)
, . . . ,

(
l̂P̂ , tP̂

))
. (5.3)

With these definitions, the mirror dual of T ρρ̂ (SU(N)) is T ρ̂ρ (SU(N)). It is implied here

that the masses ma label the D5-branes from right to left (which is the opposite of the

convention we had adopted up to now), whereas the FI parameters tb label the NS5-branes

from left to right as before.

To express our results it is convenient to define “N -vectors” as

M =
(
coord(~m1) , coord(~m2) , . . . , coord(~mP )

)
with ~ma =

{
ma + i

(
la + 1

2
− 1

)
, ma + i

(
la + 1

2
− 2

)
, . . . , ma + i

(
la + 1

2
− la

)}
T =

(
coord(~t1) , coord(~t2) , . . . , coord(~tP̂ )

)
(5.4)

with ~tb =

{
tb + i

(
l̂b + 1

2
− 1

)
, tb + i

(
l̂b + 1

2
− 2

)
, . . . , tb + i

(
l̂b + 1

2
− l̂b

)}
,

18We point out, to try to avoid confusions, that this is the opposite choice compared to the convention

of [26] where the linking numbers are ordered non-increasingly.
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Figure 22. Acting with S-duality on the left part of the graph of figure 21, one obtains a graph

with only black dots and a S-duality wall.

where coord(~v) = v1, v2, v3, . . . , vp for a vector ~v with p coordinates. Note that M and

T are vectors with N coordinates, while ~ma and ~tb are vectors with la and l̂b coordinates

respectively. For instance for the linear quiver described by the graph of figure 21, we have

ρ =
(

(1,m1), (1,m2), (3,m3)
)
, ρ̂ =

(
(1, t1), (1, t2), (1, t3), (2, t4)

)
M =

(
m1 , m2 , m3 + i , m3 , m3 − i

)
, T =

(
t1 , t2 , t3 , t4 +

i

2
, t4 −

i

2

)
. (5.5)

The exact formula for the partition function of linear quivers can be proven in a simple

way using the tools we have developed.

Starting form an arbitrary linear quiver T ρρ̂ (SU(N)), one can move all the white dots

to the left and all the black dots to the right and then act locally with S-duality on the

left part of the graph, transforming all the white dots into black dots, as shown in the

example of figure 22. The resulting graph has only black dots and a S-wall separating the

graph into two branches. The left branch of the graph is characterized by the partition ρ̂,

the right branch by the partition ρ and the two branches are glued together through the

S-wall. The partition function can be read from this graph and has the following structure:

Z(ρ,ρ̂) =

∫
dN σ̃dNσ Z ρ̂branch[σ̃] Sσ̃σ Z

ρ
branch[σ] (5.6)

where Zρbranch[σ] is the partition function of a single black dots-branch, associated to the

partition ρ and the set of eigenvalues {σj}. As in 4.2, the partition function of the original

theory Zquiver and the partition function associated with the graph with two branches Z(ρ,ρ̂)

are equal up to an unphysical phase:

Zquiver = ei ϕ Z(ρ,ρ̂) , (5.7)

with ϕ = −2π
∑

a≺bmatb and a ≺ b indicates that the D5-brane with parameter ma is

placed to the left of the NS5-brane with parameter tb in the initial brane sequence realizing

the theory.

The single branch partition function for a partition ρ = [ (la,ma) , 1 ≤ a ≤ P ] of N

evaluates to:

Zρbranch[σ]=
1√
N !

∑
w∈SN

(−1)w
P∏
a=1

 1∏La−1

j=1 ch
(
σw(j)−ma−i la2

) la∏
j=1

δ̂
(
σw(j+La−1)−ma,j

)
(5.8)

with La ≡
∑a

c=1 lc (LP = N , L0 = 0) and ma,j = ma + i la+1−2j
2 .
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This result can be proved by induction. For P = 1 the branch has a single black-dot

and (5.8) reproduced the associated D5-factor. Then suppose (5.8) is true for a value

P and take a partition of ρ′ = [(ma, la) , 1 ≤ a ≤ P + 1]. ρ′ is a partition of LP+1 =

LP + lP+1, corresponding to adding one black dot to the graph with P dots. Using (5.8),

the corresponding matrix model is:

Zρ
′

branch[σ′]=
∑

w′∈SLP+1

(−1)w
′
∫
dLP σ

P∏
a=1

 1∏La−1

j=1 ch
(
σj−ma−i la2

) la∏
j=1

δ̂
(
σj+La−1−ma,j

)
· 1√

LP+1!

∏LP
j=1 δ

(
σ′w′(j) − σj

)
∏LP
j=1 ch

(
σj −mP+1 − i lP+1

2

) lP+1∏
j=1

δ̂
(
σ′w′(j+LP ) −mP+1,j

)
where we have de-antisymmetrized the matrix factor (5.8) by permuting the eigenvalues

σj in the integrand, cancelling an overall 1/LP ! factor. Integrating over the σj using the

δ(.) we recover the result (5.8) at level P + 1, which completes the proof.

We can turn now to the partition function (5.6) of a linear quiver with partitions

ρ = [(ma, la) , 1 ≤ a ≤ P ], ρ̂ =
[(
tb, l̂b

)
, 1 ≤ b ≤ P̂

]
of N . De-antisymmetrizing the two

branch factors by permuting the σj and σ̃j in the integrand leads to:

Z(ρ,ρ̂) =
∑
w∈SN

(−1)w
∫
dN σ̂dNσ

P̂∏
b=1

 1∏L̂b−1

j=1 ch
(
σ̂j − tb − i l̂b2

) l̂b∏
j=1

δ̂
(
σ̂j+L̂b−1

− tb,j
)

· e2πi
∑N
j σ̂jσw(j)

P∏
a=1

 1∏La−1

j=1 ch
(
σj −ma − i la2

) la∏
j=1

δ̂
(
σj+La−1 −ma,j

) .

The integration must now be carried out using the δ̂(.). The result of such integration

contains generally a regular piece obtained by treating the δ̂ as simple δ functions plus a

complicated sum of terms involving products of δ̂(.). However in our case we know that

the matrix model evaluates to a regular finite result as it is equal to the matrix model

of a good linear quiver. This means that the singular terms with δ̂(.) all cancel in the

anti-symetrization by
∑

w∈SN , so we can evaluate the result by treating the δ̂(.) as usual

δ(.) functions.19 This leads directly to the NTY conjectured formula:20

Z(ρ,ρ̂) =

∑
w∈SN (−1)we2πi

∑N
j TjMw(j)

∆(T )∆(M)
(5.9)

with ∆(M) =
P∏
a=1

La−1∏
j=1

ch

(
Mj −ma − i

la
2

)
, ∆(T ) =

P̂∏
b=1

L̂b−1∏
j=1

ch

(
Tj − tb − i

l̂b
2

)

and M and T are the N -vectors defined in (5.4). As pointed in [26], the result is explicitly

symmetric under the exchange of the deformed partitions ρ and ρ̂.

19We have verified this property explicitly in simple examples.
20Our formula correct some overall factor mistake in the NTY formula.
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As a simple consistency check of the validity of our manipulations of matrix models, we

provide in appendix C.3 an explicit computation mapping the matrix model of a separated

graph (black dots on the right, white dots on the left) to the matrix model of the initial

quiver theory.

6 Perspectives

We have shown how the matrix model giving the exact partition function of an N = 4

theory on S3 can be expressed as a sequence of elementary factors, mimicking the sequence

of 5-branes of its brane realization in type IIB string theory. We have described the action

of SL(2,Z) dualities on these 5-brane factors and shown that the partition functions of

SL(2,Z) dual theories are equal, up to a phase, which was unphysical in all cases we studied.

We found that the Hanany-Witten 5-brane move is expressed by a non-trivial identity for 5-

brane blocks that we proved. This allowed us to map the partition functions of Yang-Mills

mirror-dual theories for linear and circular quivers with unitary nodes of arbitrary ranks,

providing a significant extension of the results of [7]. In addition our results go beyond

simple mirror symmetry and provide maps between the partition functions for a large

web of dualities, generated by SL(2,Z) actions and 5-brane moves. These involve N = 4

level-rank dualities and dualities relating Yang-Mills to Chern-Simons quiver theories.

There are several extensions one can think of. It would be nice to consider the cases

of quivers with orthogonal and symplectic gauge nodes realized by brane configurations in-

volving orientifold planes [10] and see if a similar story exists. At the technical level one can

try to consider the partition functions on a squashed 3-sphere S3
b instead of the round S3,

providing stronger tests of the dualities. An interesting question, which we did not address

at all, is the question of how the moduli spaces of the SL(2,Z) dual theories are mapped and

how they are affected or not by quantum corrections. Usual mirror symmetry is known to

exchange the Coulomb and Higgs branches of dual Yang-Mills theories, the Higgs branch

being classically exact (no quantum correction). It would be natural to investigate the

properties of the moduli space of dual Chern-Simons theories, as was done in [17].
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A δ̂ distributions

In this paper we consider integrations of meromorphic functions with simple poles, whose

integral on the real line is convergent. When a pole lies on the integration contour we

choose the principal value prescription to integrate.

Formally, the function x→ δ̂(x−z0), with x∈R, z0∈C, is meant to be the Fourier trans-

form of the function x→e−2πiz0x, generalizing the usual Dirac distribution to complex z0:

δ̂(x− z0) =

∫
R
dy e2πiy(x−z0) , x ∈ R , z0 ∈ C . (A.1)

With f a meromorphic function on C with simple poles away from z0. Concretely we define

the δ̂z0 ≡ δ̂( .− z0) distribution by the recursion relation:∫
R
dx δ̂(x− z0)f(x) = f(z0) + 2πiε(z0)

∑
j

δ̂(uj − z0)f̂(uj) (A.2)

where ε(z0) = sgn(Im(z0)) and uj are the poles of f in the region 0 ≤ Im(u) ≤ Im(z0)

for ε(z0) = +1 or the region Im(z0) ≤ Im(u) ≤ 0 for ε(z0) = −1. When 0 < |Im(uj)| <
|Im(z0)|, f̂(uj) is the residue at the pole uj . When Im(uj) = 0 or Im(uj) = Im(z0), f̂(uj)

is half the residue at the pole uj . This definition comes down to shifting the contour of the

x integration from R to R + iIm(z0), picking pole residues, as can be understood from the

heuristic derivation:∫
R
dx δ̂(x−z0)f(x)

=

∫
R
dx

∫
R
dσ e2πi(x−z0)σf(x) =

∫
R
dσ

∫
R
dx e2πi(x−z0)σf(x)

=

∫
R
dσ

∫
R
dx e2πi(x−Re(z0))σf(x+iIm(z0))+2πiε(z0)

∑
j

e2πi(uj−z0)σf̂(uj)


= f(z0) + 2πiε(z0)

∑
j

δ̂(uj − z0)f̂(uj)

where at the second line we have moved the contour of integration of x to R + iIm(z0),

picking pole residues, and made a change of variable x→ x+ iIm(z0).

The definition (A.2) implies

δ̂(x− z0)g(x) = δ̂(x− z0)g(z0) , (A.3)

for any function g without poles on the complex plane (or simply without poles in the

region 0 ≤ Im(u) ≤ Im(z0)).21

When dealing with multiple integrals, the δ̂ distribution can lead to shifts of contours

of integration. For instance:∫
R
dx

∫
R
dx̃ δ̂(x̃− x− iy0)f(x)g(x̃) =

∫
C(y0)

dx f(x)gy0(x) , (A.4)

21This formula can be applied in an integral as
∫
dx f(x)g(x)δ̂(x− z0) =

∫
dx f(x)g(z0)δ̂(x− z0), as long

as f does not have a pole at z0. It may happen that g(z0) = 0 and f has a pole at z0, so that the integral

yields a finite result, in which case (A.3) is not valid.
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where y0 ∈ R, gy0(x) = g(x+iy0), and the final contour of integration C(y0) of x is obtained

by deforming the real line R to a curve in C in such a way that, for y0 ≥ 0, the contour

passes below the poles u of gy0 in the region −y0 ≤ Im(u) ≤ 0, or for y0 ≤ 0, the contour

passes above the poles u of gy0 in the region 0 ≤ Im(ug) ≤ −y0, while the poles of f stay

on the same side of the contour.

B Formulas

This appendix contains some formulas we used in our compuations.

• Weyl denominator formula

N∏
i<j

sh(σi − σj) =
∑
w∈SN

(−1)w e
2π
∑N
j=1 σjW

(N)
w(j) (B.1)

where W (N) is the Weyl vector of U(N): W
(N)
j = N+1−2j

2 , j = 1, · · · , N .

• Cauchy determinant formula∏N
i<j sh(σi − σj)

∏N
i<j sh(σ̃i − σ̃j)∏N

i,j ch(σi − σ̃j)
=
∑
w∈SN

(−1)w
1∏N

j ch
(
σw(j) − σ̃j

) . (B.2)

A generalized version of this formula is, for N ≥ Ñ , ∆ ≡ N − Ñ :

∏N
i<j sh(σi − σj)

∏Ñ
i<j sh(σ̃i − σ̃j)∏N

i

∏Ñ
j ch(σi − σ̃j)

= (−1)∆Ñ
∑
w∈SN

(−1)w
Ñ∏
j=1

e−π∆(σw(j)−σ̃j)

ch
(
σw(j) − σ̃j

) N∏
j=Ñ+1

e
2πσw(j)

(
N+Ñ+1

2
−j
)
. (B.3)

This formula was derived from a similar formula in [41].22

• Others identities, for p ∈ N, x ∈ C:

p∏
j=1

2 sinh

[
π

p

(
x+ i

p+ 1

2
− ij

)]
=

{
2 cosh(πx) , p even

2 sinh(πx) , p odd

p∏
j=1

2 cosh

[
π

p

(
x+ i

p+ 1

2
− ij

)]
= 2 cosh(πx) (B.4)

∏
1≤j<k≤p

2 sinh

(
iπ

p
(k − j)

)
= i

p(p−1)
2 p

p
2 ,

22We use their formula with xj = e2πσ̃j , yj = e2πσj .
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and more generally for A,B ∈ N with p = A+B:

A∏
j=1

2 sinh

[
π

p

(
x+ i

A+ 1

2
− ij

)] B∏
j=1

2 cosh

[
π

p

(
x+ i

B + 1

2
− ij

)]

=

{
2 cosh(πx) , A even

2 sinh(πx) , A odd

(−i)
A(A−1)

2 p−
A
2

∏
1≤j<k≤A

2 sinh

(
iπ

p
(k−j)

)

= (−i)
B(B−1)

2 p−
B
2

∏
1≤j<k≤B

2 sinh

(
iπ

p
(k−j)

)
. (B.5)

We tested these formulas with Mathematica for small values of p, but did not prove

them in general.

C Computations

In this appendix we present computations.

C.1 Local S-transformations

We assume ∆ = N − Ñ ≥ 0, p 6= 0, q 6= 0 and we remind µ = N+Ñ
2 .(

S

[
p

q

]
S−1

)
σ σ̃

=

∫
dNτdÑ τ̃ e2πi

∑N
j σjτj

[
p

q

]
τ τ̃

e−2πi
∑Ñ
j τ̃j σ̃j

=
|p|−µ√
N !Ñ !

∫
dNτdÑ τ̃ e2πi

∑N
j σjτj e

−2πi t
p

(∑N
j τj−

∑Ñ
j τ̃j

)

· eπi
q
p

(∑N
j τ2

j −
∑Ñ
j τ̃2

j

) ∏N
i<j sh

[
p−1τij

] ∏Ñ
i<j sh

[
p−1τ̃ij

]
∏N,Ñ
i,j ch [ p−1 (τi − τ̃j)]

e−2πi
∑Ñ
j τ̃j σ̃j

=
|p|µ√
N !Ñ !

∫
dNτdÑ τ̃ e2πi

∑N
j τj(pσj−t) e

πi pq
(∑N

j τ2
j −
∑Ñ
j τ̃2

j

)

·
∏N
i<j sh(τij)

∏Ñ
i<j sh(τ̃ij)∏N,Ñ

i,j ch(τi − τ̃j)
e−2πi

∑Ñ
j τ̃j(pσ̃j−t)

=
|p|µ√
N !Ñ !

(−1)∆Ñ
∑
w∈SN

(−1)w
∫
dNτdÑ τ̃ e2πi

∑N
j τj(pσj−t)e

πi pq
(∑N

j τ2
j −
∑Ñ
j τ̃2

j

)

·
Ñ∏
j=1

e−∆(τw(j)−τ̃j)

ch(τw(j) − τ̃j)

N∏
j=Ñ+1

e2πτw(j)(µ+ 1
2
−j) e−2πi

∑Ñ
j τ̃j(pσ̃j−t)

where we have rescaled τj , τ̃j → pτj , pτ̃j (3rd equality) and used the generalized Cauchy

determinant formula (B.3).
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In each integral we can reshuffle the eigenvalues τw(j) → τj for j = 1, · · · , N and then

shift τw(j) → τw(j) + τ̃j for j = 1, · · · , Ñ to obtain

= (−1)∆Ñ |p|µ√
N !Ñ !

∑
w∈SN

(−1)w
∫
dNτdÑ τ̃ e2πi

∑N
j τj(pσw(j)−t) eπi pq

∑N
j τ2

j

·
Ñ∏
j=1

e−∆τj

ch(τj)

N∏
j=Ñ+1

e2πτj(µ+ 1
2
−j) e2πi p

∑Ñ
j τ̃j(σw(j)+qτj−σ̃j) .

Integrating over the τ̃j yields δ
[
p
(
σw(j) + qτj − σ̃j

)]
that can be used to integrate over the

τj for j = 1, · · · , Ñ (since pq 6= 0). We get

= (−1)∆Ñ |q|−Ñ |p|
∆
2√

N !Ñ !

∑
w∈SN

(−1)w
∫
d∆τ e

2πi
∑N
j=Ñ+1

τj(pσw(j)−t) e
2πi
q

∑Ñ
j (σ̃j−σw(j))(pσw(j)−t)

· eπi
p
q

∑Ñ
j (σ̃j−σw(j))

2

e
πi pq

∑N
j=Ñ+1

τ2
j

Ñ∏
j=1

e
−∆
q (σ̃j−σw(j))

ch
[
q−1

(
σ̃j − σw(j)

)] N∏
j=Ñ+1

e2πτj(µ+ 1
2
−j)

= (−1)∆Ñ |q|−Ñ |p|
∆
2√

N !Ñ !

∑
w∈SN

(−1)we
πi p

q

∑Ñ
j (σ̃j−σw(j))

2

e
2πi p

q

∑Ñ
j (σ̃j−σw(j))

(
σw(j)− t

p

)

·
Ñ∏
j=1

e
−∆
q (σ̃j−σw(j))

ch
[
q−1

(
σ̃j − σw(j)

)] N∏
j=Ñ+1

∫
dτ eπi pq τ

2
e2πiτ(pσw(j)−t−i(µ+ 1

2
−j))

= (−1)∆Ñ |q|−Ñ |p|
∆
2√

N !Ñ !

∑
w∈SN

(−1)we
πi p

q

∑Ñ
j (σ̃j−σw(j))

2

e
2πi p

q

∑Ñ
j (σ̃j−σw(j))

(
σw(j)− t

p

)

·
Ñ∏
j=1

e
−∆
q (σ̃j−σw(j))

ch
[
q−1
(
σ̃j−σw(j)

)]e πi
12 pq

∆(∆2−1)
e
− πi
pq

∑N
j=Ñ+1

(pσw(j)−t)2

|pq|−
∆
2

N∏
j=Ñ+1

e
− 2π

q
σw(j)(µ+ 1

2
−j).

It is now possible to rearrange the factors and then to use the Cauchy formula (B.3)

backward to obtain(
S

[
p

q

]
S−1

)
σ σ̃

= e
− iπ∆t2

pq
|q|−µ√
N !Ñ !

e
πi

12 pq
∆(∆2−1)

e
−πi p

q

(∑N
j σ2

j−
∑Ñ
j σ̃2

j

)
e

2πi t
q

(∑N
j σj−

∑Ñ
j σ̃j

)

·
∏N
i<j sh

[
−q−1σij

]∏Ñ
i<j sh

[
−q−1σ̃ij

]
∏N,Ñ
i,j ch [−q−1(σi − σ̃j)]

= e
πi

12 pq
∆(∆2−1)

e
− iπ∆t2

pq

[
−q
p

]
σ σ̃

. (C.1)

When N < Ñ , the computation amounts to changing N ↔ Ñ , σ ↔ −σ̃, t → −t and

q → −q. The above result is invariant under these exchanges, so it holds also for N < Ñ .
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C.2 HW-move identity

Here we give the details of the computations proving the identity (4.2).

We consider the case N1 + p ≤ N2 ≤ N3 with p > 0. This implies N1 + p ≤ Ñ2 ≤ N3.
The part of the matrix model corresponding to the graph on the left of figure 17-a is given
by the product of the two 5-brane factors:([

0

1

]
(N2)

[
p

q

])
σσ̃

=

∫
dN2τ

(N1!N3!)−
1
2∏N1

j ch
[
σj −m+ i∆21

2

] N1∏
j=1

δ (τj − σj)
∆21∏
j=1

δ̂
(
τj+N1

− m̄(∆21)
j

)

· |p|−µ23 e
πi qp

(∑N2
j τ2

j−
∑N3
j σ̃2

j

)
e
−2πi tp

(∑N2
j τj−

∑N3
j σ̃j

) ∏N2

i<j sh(p−1τij)
∏N3

i<j sh(p−1σ̃ij)∏N2,N3

i,j ch[p−1(τi − σ̃j)]

=
∑

w∈SN3

(−1)w√
N1!N3!

∫
dN2τ

∏N1

j=1 δ (τj−σj)∏N1

j ch
[
σj−m+i∆21

2

] ∆21∏
j=1

δ̂
(
τj+N1

−m̄(∆21)
j

)
e
πi qp

(∑N2
j τ2

j−
∑N3
j σ̃2

j

)

· (−1)∆32N2 |p|−µ23e
−2πi tp

(∑N2
j τj−

∑N3
j σ̃j

) N2∏
j=1

e−
∆32
p (σ̃w(j)−τj)

ch
[
p−1
(
σ̃w(j)−τj

)] ∏
N2<i<j≤N3

e
2π
p σ̃w(j)(µ23+ 1

2−j)

=
∑

w∈SN3

(−1)w
(−1)∆32N2 |p|−µ23

√
N1!N3!

e
2πi tp

(∑N3
j σ̃j−

∑N1
j σj

)
e
πi qp

(∑N1
j σ2

j−
∑N3
j σ̃2

j

)
∏N1

j ch
[
σj −m+ i∆21

2

] N1∏
j=1

e−
∆32
p (σ̃w(j)−σj)

ch
[
p−1
(
σ̃w(j)−σj

)]
·

∏
N2<i<j≤N3

e
2π
p σ̃w(j)(µ23+ 1

2−j)
∆21∏
j=1

[∫
dτe−2πi tp τeπi

q
p τ

2 e−
∆32
p (σ̃w(j+N1)−τ)

ch
[
p−1
(
σ̃w(j+N1)−τ

)] δ̂ (τ−m̄(∆21)
j

)]
(C.2)

=
∑

w∈SN3

(−1)w
(−1)∆32N2 |p|−µ23

√
N1!N3!

e
2πi tp

(∑N3
j σ̃j−

∑N1
j σj

)
e
πi qp

(∑N1
j σ2

j−
∑N3
j σ̃2

j

)
∏N1

j ch
[
σj−m+i∆21

2

] N1∏
j=1

e−
∆32
p (σ̃w(j)−σj)

ch
[
p−1
(
σ̃w(j)−σj

)]
· e−2πi tp∆21m eπi

q
p∆21m

2

e
πi
12

q
p∆21(∆2

21−1)
∏

N2<i<j≤N3

e
2π
p σ̃w(j)(µ23+ 1

2−j)

·
∆21∏
j=1

∫
dτ e

∆32
p (τ−σ̃w(j+N1))

δ̂
(
τ − m̄(∆21)

j

)
ch
[
p−1

(
τ − σ̃w(j+N1)

)] . (C.3)

At the first line we have de-anti-symmetrized the D5-factor, using the fact that the (p, q)-

factor is already antisymmetric under permutation of the τj eigenvalues. At the second

line we have replaced the NS5-factor using (B.3). At the third line we have integrated

over τj for j = 1, · · · , N1, using the delta functions. At the fourth line we have replaced

e
−2πi t

p
τ
e
πi q
p
τ2

→ e
−2πi t

p
m̄j e

πi q
p
m̄j

2

using the property (A.3). The next step is to evaluate

the remaining ∆21 integrals using (A.2).

We introduce j∗ ≡ ∆21+1
2 and first assume j∗ ∈ N corresponding to ∆21 odd. Then we

translate the labels j → j + j∗, so that
∏∆21
j=1 →

∏j∗−1
j=−j∗+1 , m̄

(∆21)
j → m̄

(∆21)
j+j∗ = m + ij ,

σ̃w(j+N1) → σ̃w(j+µ+1/2) ≡ τ̃j and we focus on a single integral:

I(τ̃j) =

∫
dτ e

∆32
p

(τ−τ̃j) δ̂(τ −m− ij)
ch [p−1 (τ − τ̃j)]

. (C.4)
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We also assume for the moment that p is odd and positive, so that p
2 ∈ N + 1

2 . Then for

−p
2 < j < p

2 the integrand has no pole in the region 0 ≤ |Im(τ)| ≤ |j|, so the evaluation of

the δ̂ is simply

I(τ̃j) =
e

∆32
p

(m+ij−τ̃j)

ch [p−1 (τ̃j −m− ij)]
. (C.5)

For p
2 < |j| <

3p
2 , the pole at τ = τ̃j ± ip2 contributes to the evaluation of the δ̂ giving

I(τ̃j) =
e

∆32
p

(m+ij−τ̃j)

ch [p−1 (τ̃j −m− ij)]
+ p e±i

∆32
2 δ̂

[
τ̃j −m− i

(
j ∓ p

2

) ]
(C.6)

where ∓ is the sign of −j.
More generally for

(
k − 1

2

)
p < |j| <

(
k + 1

2

)
p with k ∈ N, the poles τ = τ̃j±i

(
n+ 1

2

)
p

with n = 0, 1, · · · , k − 1 contribute to the evaluation of the integral with the δ̂ giving:

I(τ̃j)=
e

∆32
p

(m+ij−τ̃j)

ch[p−1(τ̃j−m−ij)]
+

k−1∑
n=0

p(−1)n e±i∆32(n+ 1
2) δ̂

[
τ̃j −m− i

(
j ∓ p

(
n+

1

2

))]
(C.7)

where ± is the sign of j.

We have now to gather these results and consider
∏j∗−1
j=−j∗+1 I(τ̃j), which is a product

of sums. However the final result in (C.3) is anti-symmetrized over permutations of the

τ̃j . This means that when we expand the product
∏j∗−1
j=−j∗+1 I(τ̃j), all the terms symmetric

in τ̃j1 , τ̃j2 (= invariant under τ̃j1 ↔ τ̃j2), for any j1 6= j2, will not contribute to the final

result and can be dropped. For 0 ≤ |j| < p
2 , I(τ̃j) contains a single term (C.5) that

will contribute to the final result. For p
2 < |j| < 3p

2 , I(τ̃j) is a sum of two terms (C.6),

but the first term in (C.6) can be dropped because of the anti-symmetrization with the

previous terms 0 ≤ |j| < p
2 . Then only the second term in (C.6) with a δ̂ will contribute.

Similarly for
(
k − 1

2

)
p < |j| <

(
k + 1

2

)
p, I(τ̃j) is a sum of 1 + (k − 1) terms (C.7), but

1 + (k − 2) terms can be dropped because of the anti-symmetrization with the previous

terms 0 ≤ |j| <
(
k − 1

2

)
p. Only the term with a δ̂ for n = 0 in (C.7) will contribute.

In total we get

j∗−1∏
j=−j∗+1

I(τ̃j) =

(p−1)/2∏
j=−(p−1)/2

e
∆32
p

(m+ij−τ̃j)

ch[p−1(τ̃j −m− ij)]

·
j∗−1∏

j=(p+1)/2

p ei
∆32

2 δ̂
[
τ̃j−m−i

(
j− p

2

)]−(p+1)/2∏
j=−j∗+1

p e−i
∆32

2 δ̂
[
τ̃j−m−i

(
j+

p

2

)]
+ sym (C.8)

where “sym” denotes terms symmetric in τ̃j1 , τ̃j2 for some j1 6= j2, that drop from the

computation.

The eigenvalues σ̃w(j+N1) = τ̃j−j∗ can be permuted σ̃w(j) → σ̃w(w′((j)), with some

permutation w′, to rearrange the result as:

∆21∏
j=1

I
(
σ̃w(j+N1)

)
= p∆32̃

p∏
j=1

e
−∆32

p

(
σ̃w(j+N1)−m

(p)
j

)
ch
[
p−1

(
σ̃w(j+N1) −m

(p)
j

)] ∆32̃∏
j=1

δ̂
(
σ̃w(j+N1+p) − m̄j

)
(C.9)
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where ∆32̃ =∆21−p=N3−Ñ2, m
(p)
j =m+ i

(
p+1

2 −j
)

and m̄j = m̄
(∆32̃)
j =m− i

(
∆32̃+1

2 −j
)

.

The permutation of the σ̃w(j) eigenvalues affects the total result (C.3) only by a sign (which

is the signature of the permutation) that we will not keep track of.

Let us define σj+N1 = m
(p)
j , for j = 1, · · · , p, as p “frozen eigenvalues”. Plugging (C.9)

back in (C.3) and permuting again the σ̃w(j) eigenvalues conveniently yields (up to a sign):([
0

1

]
(N2)

[
p

q

])
σσ̃

=
∑

w∈SN3

(−1)w
p−µ12̃−

p
2

√
N1!N3!

e−2πitm eπiqm
2
e
πi
12

q
p

Φ e
2πi t

p
(
∑Ñ2
j σ̃w(j)−

∑N1
j σj)e

πi q
p

(∑N1
j σ2

j−
∑Ñ2
j σ̃2

j

)
∏N1
j ch

[
σj−m+i∆21

2

]
·
N1+p∏
j=1

e
−∆32

p
(σ̃w(j)−σj)

ch
[
p−1
(
σ̃w(j)−σj

)] Ñ2∏
j=N1+p+1

e
2π
p
σ̃w(j)(µ23+ 1

2
−j)

∆32̃∏
j=1

δ̂

(
σ̃
w(j+Ñ2)

−m̄(∆32̃)
j

)
, (C.10)

with µ12̃ = N1+Ñ2
2 , Φ = ∆21

(
∆2

21 − 1
)
−∆32̃

(
∆2

32̃
−1
)

and we have used the property (A.3)

again to modify some exponential terms.

Transforming
∑

w∈SN3
(−1)wf

[
σ̃w(j)

]
=
∑

w∈SN3

1

Ñ2!

∑
w′∈S

Ñ2

(−1)w+w′f
[
σ̃w(w′(j))

]
and

using the Cauchy formula (B.3) backwards yields:([
0

1

]
(N2)

[
p

q

])
σσ̃

=
∑

w∈SN3

(−1)w
p−µ12̃−

p
2

|W |
e−2πitm eπiqm

2
e
πi
12

q
p

Φ e
2πi t

p

(∑Ñ2
j σ̃w(j)−

∑N1
j σj

)
e
πi q

p

(∑N1
j σ2

j−
∑Ñ2
j σ̃2

j

)
∏N1
j ch

[
σj −m+ i∆21

2

]
·
∏N1+p
i<j sh

(
p−1σij

)∏Ñ2
i<j sh

(
p−1σ̃w(ij)

)
∏N1+p,Ñ2
i,j ch

[
p−1
(
σi−σ̃w(j)

)] ∆32̃∏
j=1

δ̂

(
σ̃
w(j+Ñ2)

− m̄(∆32̃)
j

)
(C.11)

where |W | ≡ Ñ2!
√
N1!N3! . Remembering that σj+N1 = m − i

(
p+1

2 − j
)

and using the

trigonometric formulas (B.4), the above simplifies to:([
0

1

]
(N2)

[
p

q

])
σσ̃

(C.12)

=
∑

w∈SN3

(−1)w
p−µ12̃

|W |
e−2πitm eπiqm

2
e
πi
12

q
p

Φ
e

2πi t
p

(∑Ñ2
j σ̃w(j)−

∑N1
j σj

)
e
πi q

p

(∑N1
j σ2

j−
∑Ñ2
j σ̃2

j

)

·
∏N1
i<j sh

(
p−1σij

)∏Ñ2
i<j sh

(
p−1σ̃w(ij)

)
∏N1,Ñ2
i,j ch

[
p−1
(
σi−σ̃w(j)

)]
∏∆32̃
j=1 δ̂

(
σ̃
w(j+Ñ2) − m̄

(∆32̃)
j

)
∏Ñ2
j ch

(
σ̃w(j)−m

) ,
[
∆32̃ even

]
up to factors of i that we do not keep track of.

We have treated the case when ∆21 and p are both odd. When ∆21 and p are both

even, the analysis proceeds similarly and yields the same result (C.12). Together these
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two cases correspond to ∆32̃ being even. When ∆32̃ is odd, corresponding to ∆21 and p

with different parities, there is an extra complication in the evaluation of the δ̂ due to the

presence of half pole contributions (see appendix A). However the computations can still

be performed following the same steps. The “frozen eigenvalues” are σj+N1 = m−i
(p

2 − j
)

in this case and the result is given, up to factors of i, by:([
0

1

]
(N2)

[
p

q

])
σσ̃

(C.13)

=
∑

w∈SN3

(−1)w
p−µ12̃

|W |
e−2πitm eπiqm

2
e
πi
12

q
p

Φ
e

2πi t
p

(∑Ñ2
j σ̃w(j)−

∑N1
j σj

)
e
πi q

p

(∑N1
j σ2

j−
∑Ñ2
j σ̃2

j

)

·
∏N1
i<j sh

(
p−1σij

)∏Ñ2
i<j sh

(
p−1σ̃w(ij)

)
∏N1,Ñ2
i,j ch

[
p−1(σi−σ̃w(j))

]
∏∆32̃
j=1 δ̂

(
σ̃
w(j+Ñ2)−m̄

(∆32̃)
j

)
∏Ñ2
j sh

(
σ̃w(j)−m

) ,
[
∆32̃ odd

]
which differs from (C.12) only by the “sh” in the denominator of the last factor.

We may now consider the other combination of 5-brane factors involved in the HW

identity:([
p

q

]
(Ñ2)

[
0

1

])
σσ̃

=

∫
dÑ2τ

|p|−µ12̃

|W |
e
πi qp

(∑N1
j σ2

j−
∑Ñ2
j τ2

j

)
e
−2πi tp

(∑N1
j σj−

∑Ñ2
j τj

)∏N1

i<j sh
(
p−1σij

)∏Ñ2

i<j sh
(
p−1τij

)
∏N1,Ñ2

i,j ch[p−1(σi−τj)]

·

 ∑
w∈SN3

(−1)w
∏Ñ2

j=1 δ
(
σ̃w(j) − τj

)
∏Ñ2

j ch
[
τj −m+ i

∆32̃

2

] ∆32̃∏
j=1

δ̂
(
σ̃w(j+Ñ2) − m̄

(∆32̃)
j

)
=

∑
w∈SN3

(−1)w
|p|−µ12̃

|W |
e
πi qp

(∑N1
j σ2

j−
∑Ñ2
j σ̃2

w(j)

)
e
−2πi tp

(∑N1
j σj−

∑Ñ2
j σ̃w(j)

)

·
∏N1

i<j sh
(
p−1σij

)∏Ñ2

i<j sh
(
p−1σ̃w(ij)

)
∏N1,Ñ2

i,j ch
[
p−1

(
σi − σ̃w(j)

)]
∏∆32̃
j=1 δ̂

(
σ̃w(j+Ñ2) − m̄

(∆32̃)
j

)
∏Ñ2

j ch
[
σ̃w(j) −m+ i

∆32̃

2

] , (C.14)

where we have simply integrated over the τj with the δ-functions.

From (C.12), (C.13) and (C.14), we observe the relation (up to factors of i):([
0

1

]
(N2)

[
p

q

])
σσ̃

= e−2πitm eπiqm
2
e
πi
12

q
p

Φ

([
p

q

]
(Ñ2)

[
0

1

])
σσ̃

. (C.15)

There are various other cases to consider with different orderings between N2 and

N1, N1 + p,N3, plus cases with negative p. In each of these cases the computations involve

the same tricks as in the case described above. It is also necessary to use the more general

relations (B.5). These computations are long and tedious, so we do not reproduce them

here. Also we mention that we were not able to complete the computations for the extremal

cases 0 < N2 < |p| and N1 +N3 < N2 < N1 +N3 + |p| due to some additional complications

appearing. In practice we will only consider p = ±1 for which these cases do not exist.
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Figure 23. Graph of the T
(12)
(111)(SU(3)) quiver SCFT and its separated graph (black dots pushed

to the right).

The final result is the relation:([
0

1

]
(N2)

[
p

q

])
σσ̃

= e∓2πitm e±πiqm
2
e
πi
12

q
p

Φ

([
p

q

]
(Ñ2)

[
0

1

])
σσ̃

, (C.16)

where ± is the sign of p (and ∓ its opposite) and Φ = |∆21|
(
∆2

21 − 1
)
− |∆32̃|

(
∆2

32̃
− 1
)

.

C.3 Matrix model of a separated graph

Here we show explicitly how the matrix model of the separated graph is mapped to the

matrix model of the quiver theory in an explicit example. We consider the theory with

U(1)× U(1) gauge group, one bifundamental hypermultiplet and one fundamental hyper-

multiplet in each U(1) node. The corresponding SCFT deformed by mass and FI param-

eters is T
(12)
(111)(SU(3)) and its graph is shown in figure 23. After moving the black dots to

the right of the graph, one obtains the separated graph of figure 23. The matrix model

associated to this graph is:

Zsepar =

∫
dσd2σ̃d3λ̃dλ

2.3!

e2πi(t1−t2)σ∏2
j ch(σ−σ̃j)

e2πi(t2−t3)(σ̃1+σ̃2)∏2,3
j,k ch(λk−σ̃j)

sh(σ̃12)2e2πit3(
∑3
k λ̃k)

∏
j<k

sh
(
λ̃jk

)

·

∑
w∈S3

(−1)w
δ(λ̃w(1) − λ)

ch(λ−m2 + i)
δ̂[λ̃w(2) −m2 +

i

2
]δ̂[λ̃w(3) −m2 −

i

2
]

 δ(λ−m1) .

After a few simplifications the matrix model can be expressed as

=
e2πit3m1

2ch(m1 −m2)

∫
dσd2σ̃d2λ̃

e2πi(t1−t2)σ∏2
j ch(σ − σ̃j)

e2πi(t2−t3)(σ̃1+σ̃2)∏2,2
j,k ch(λk − σ̃j)

sh(σ̃12)2e2πit3(λ̃1+λ̃2)∏2
j ch(m1 − σ̃j)

· sh
(
λ̃1 − λ̃2

)
sh
(
m1 − λ̃1

)
sh
(
m1 − λ̃2

)
δ̂

[
λ̃2 −m2 +

i

2

]
δ̂

[
λ̃1 −m2 −

i

2

]
.

Integrating over λ̃1 with the δ̂ distribution yields after simplifications (contributions appear

from the poles at λ̃1 = σj + i
2):

=
e2πit3(m1+m2+ i

2)

2

∫
dσd2σ̃dλ̃2

e2πi(t1−t2)σ∏2
j ch(σ−σ̃j)

e2πi(t2−t3)(σ̃1+σ̃2)∏2
j ch(λ2−σ̃j)

sh(σ̃12)2e2πit3λ̃2∏2
j ch(m1−σ̃j)

sh
(
m1−λ̃2

)

· ch
(
m2−λ̃2

)
δ̂

[
λ̃2−m2+

i

2

] 1

sh (σ̃1 −m2) sh (σ̃2 −m2)
+
i

2

∑
j=1,2

(−1)j
δ (σ̃j −m2)

sh(σ̃12)

 .
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Then the integration over λ̃2 can be performed using the remaining δ̂. Four terms appear

out of which two vanishes and the two others are equal. In total we obtain

= ie2πit3(m1+2m2)

∫
dσd2σ̃

e2πi(t1−t2)σ∏2
j ch(σ−σ̃j)

e2πi(t2−t3)(σ̃1+σ̃2) sh(σ̃12)

ch(σ̃1−m1)sh(σ̃1−m2)
δ(σ̃2−m2)

= ie2πi[t2m2+t3(m1+m2)]

∫
dσdσ̃

e2πi(t1−t2)σ

ch(σ −m2)ch(σ − σ̃)

e2πi(t2−t3)σ̃

ch(σ̃ −m1)

= ie2πi[t2m2+t3(m1+m2)] Zquiver .

As expected, we recover the matrix model for the partition function of the quiver theory

we started with. The extra phase is also as expected from (5.7) (as usual we ignore overall

factors of i).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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