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Abstract

Zinc oxide (ZnO) nanoparticles (NPs) are important materials when making different products like sun screens, textiles,
and paints. In the current study, the photocatalytic effect of prepared ZnO NPs from Moringa oleifera (M. oleifera) was
evaluated on degradation of crystal violet (CV) dye, which is largely released from textile industries and is harmful to
the environment. Preliminarily, ZnO NP formation was confirmed using a double beam ultraviolet visible (UV-Vis)
spectrophotometer; further, the NP size was estimated using XRD analysis and the functional group analysis was
determined using Fourier transform infrared (FT-IR) spectroscopy. The morphology of the synthesized NPs was
found to be a hexagonal shape using SEM and TEM analysis and elemental screening was analyzed using EDX.
ZnO NPs were shown sized 40–45 nm and spherical in shape. The degradation percentage of ZnO NPs was
calculated as 94% at 70 min and the rate of the reaction –k = 0.0282. The synthesized ZnO NPs were determined
for effectiveness on biological activities such as antifungal, hemolytic, and antibacterial activity. ZnO NPs showed
good antifungal activity against Alternaria saloni and Sclerrotium rolfii strains. Further, we have determined the
hemolytic and antibacterial activity of ZnO NPs and we got successive results in antibacterial and hemolytic
activities.

Keywords: Zinc oxide (ZnO) nanoparticle (NP) synthesis, Photocatalytic activity, Antifungal activity, In vitro
hemolytic activity, Antibacterial activity

Background
Synthetic dyes and other contaminated stuffs are the
waste products which are being discharged from many
industries. These effluents are mostly toxic to nature,
which also results in various health effects. Nowadays,
the decrease of the effect of these dyes on nature is step-
ping forward by using many degradation methods like
physical methods, chemical coagulation, ion exchange,
and other methods [1]. Normally, dyes are very stable
chemical pollutants, so traditional treatment methods

are unsuccessful for the degradation of dyes [2]. These
textiles dyes have many reactive ingredients on the
chemical oxidation process as well as stable photocata-
lytic agents. In recent years, the importance of the
photocatalyst in the process of dye degradation has been
explained by many researchers to overcome the draw-
back [3]. Dye removal from waste water treated using
green synthesized nanoparticles (NPs) by different meth-
odologies is gaining more interest. Considerably, nano-
technology is one of the emerging fields among the
various studies with vast applicational properties [4].
The metal and metal oxide NPs have attractable proper-
ties like biological, electronic, magnetic, and photocata-
lytic activity [5]. Due to the size and morphological
effect, the metal oxide NPs can be attached to the sur-
face of toxic chemicals [6]. The direct band gap at room
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temperature of zinc oxide (ZnO) NPs is 3.3 eV and the
excitation binding energy is 60 meV. Due to these en-
couraging specific characteristics, ZnO NPs were sug-
gested as good photocatalytic agents [7, 8]. On the other
hand, ZnO NPs have abundant biological properties
such as antimicrobial [9, 10], antioxidant [11], antican-
cer, and other activities [12–15].
The synthesis of ZnO NPs through the biological

method using enzymes, microorganisms, and plants and
their extracts has been suggested as a cost-free method.
This eco-friendly method for ZnO NP synthesis attracts
more importance and is an alternative to the chemical
and physical methods [16], due to the avoidance of the
use of toxic chemicals and high energy ingredients in
the synthesis process. Plant extracts actively participate
in the bio-reduction process to convert the metal ions to
metal and metal oxide NPs [17–19]. Basically, ZnO NPs
are quality photocatalysts due to their capacity to gener-
ate the energy by reactive oxygen species (ROS) [14].
Green synthesized ZnO NPs play a major role against
the degradation process of industrial dyes due to the
photocatalytic effect [20]. In this regard, we have effect-
ively synthesized the ZnO NPs from M. oleifera peel ex-
tract (MFPE). The photocatalytic degradation of high
concentrations of crystal violet (CV) has been investi-
gated for the first time in detail. Also, the antifungal,
hemolytic, and antibacterial activities of the ZnO NPs
were determined.

Methods
Materials
M. oleifera was procured in and around Vellore local
market (12.9202° N, 79.1333° E), Tamil Nadu, India. Fur-
ther, it was identified and authenticated by Agricultural
University, Coimbatore as BSI/SRC/S/23/2013-14/tech.
1116. Zinc acetate and C25N3H30Cl (CV) (Fig. 1) were
procured from Sigma Aldrich, India. Clinical bacterial
strains S. aureus (ATCC 4163) and E. coli (ATCC 25922)
were used. Potato dextrose broth was procured from Hi-
media Laboratories, Maharashtra, India and throughout
the experiment Milli Q water was utilized without any
further purification.

Methanolic Extract Preparation of M. Oleifera Peel
Drum sticks were cleaned by using distilled water and the
flesh removed. The separated peel was dried under room
temperature and milled as a fine powder. The source was
extracted by a technique of maceration with methanol as
a solvent. It was further distilled and the extract was
collected and stored in a refrigerator for future progress.

Green Synthesis of ZnO NPs Using M. Oleifera Peel
In the microwave-assisted synthesis, 1 mmol of
Zn(OAc)2 stock solution was prepared and methanolic

extract dissolved in milli Q water. The MFPE (20 mL)
solution was added to 80 mL of Zn(OAc)2 in the ratio of
20:80. After proper mixing, this mixture reaction placed
in oven at the microwave power of 300 W for the 5 min
irradiation time [21]. The preliminary conformation of
ZnO NPs was identified by ultraviolet visible (UV-Vis)
analysis in the range of 200–800 nm at different time in-
tervals of irradiation time. The reaction mixture of ZnO
NPs was subjected for centrifugation for 10 min at
10,000 rpm. Further pellets were collected and superna-
tants were discarded. This process was repeated for
three teams in order to remove impurities using distilled
water. Further, the obtained pellets were calcinated at
400 °C and 600 °C.

Characterization/Instrumentation Used During
Experiments
Synthesis of ZnO NPs and extraction of secondary me-
tabolites were performed in UWave - 1000 multifunction
microwave workstation. Schimazu UV-Vis Spectroscopy
(UV-1800) was used to record UV - Vis spectrum. FTIR
was recorded in Bruker Alpha T model whereas XRD
has been analyzed with the help of Bruker D8 instru-
ment. SEM/EDAX (JEOL JSM-6390LV) and TEM (Phi-
lips; CM 200) were used to find the morphological and
size of the ZnO NPs. Horiba nanoparticle analyzer was
utilized for Zeta potential result.

Photocatalytic Degradation of CV
Green synthesized ZnO NPs allowed for testing the effi-
ciency on CV dye degradation. The reaction mixture
was made by interacting 1 mg/L of CV solution with
5 mg/L of ZnO NPs. The photocatalytic degradation was
determined using UV-Vis analysis at a range of 254 nm

Fig. 1 Structure of CV
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based on the degradation of CV at 15 min time intervals
[1]. The accurate degradation rate of reaction:

ln C=C0ð Þ ¼ − kt ð1Þ

Where final concentration = C, starting concentra-
tion = C0, rate constant = k, and t = time.

ZnO NPs: Antifungal Studies
ZnO NP antifungal studies were done using the CLSI
method and two phytopathogenic fungal strains Alter-
naria saloni and Sclerrotium rolfii were used for the de-
termination of the activity. A total of 100 mL of potato
dextrose broth was autoclaved and 1 mL fungal cultures
were added to the broth. A 1 mg/mL concentration was
added to test samples and placed in an incubator for 7–10
days at 37 °C followed by continuous stirring at 120 rpm.
After incubation, the broth was filtered and the biomass
was collected for drying [22]. The weight of the dried bio-
mass was taken and analyzed for the study and carbenda-
zim was used as a standard.

ZnO NPs: In Vitro Hemolysis
We collected a healthy volunteer human sample (B+ blood
male) and stored it in a sterile container. The erythrocyte
suspension was obtained by the centrifugation of the
blood sample at 1500 rpm for 5 min. The obtained sus-
pension was washed with phosphate buffered saline (PBS)
at pH 7.4 for pure erythrocyte suspension for hemolytic
activity. The synthesized ZnO NPs were distributed in
PBS under a sonication process and separated as different
concentrations of 25, 50, 75, and 100 μL. The NP solution
was added to the human erythrocytes diluted in PBS.

The red blood cells (RBCs) mixed in PBS were used as
a negative control and Triton- × 100 was used as a posi-
tive control. After 30 min incubation at room
temperature, the samples were centrifuged at the same
rpm as mentioned above for 10 min. The obtained
supernatant was used for the determination of toxicity
on RBCs at 540 nm [23]. The hemolysis percentage was
calculated using (As – Anc/Apc – Anc) × 100, where
As is denoted as sample absorbance, Apc is denoted as
positive control absorbance, and Anc is denoted as
negative control absorbance.

ZnO NPs: Antibacterial Studies
We processed this study against the two standard clin-
ical strains such as S. aureus (gram positive) and E. coli
(gram negative) using a well diffusion method [24]. The
nutrient agar plate was used for the inoculation of both
bacterial strains. The bacterial strains were swabbed
using the cotton buds or swab and about 7 mm diameter
of well was made using a well borer. About 25 μL of
synthesized ZnO NPs were added into the well and
plates placed in an incubator at room temperature for
24 h. Here we used Amoxicillin -1 as the positive control
and water as the negative control to perform the study.

Results and Discussion
UV-Vis Spectroscopy
The UV-Vis analysis was used for the identification of
optical property of ZnO NPs. ZnO NP formation was
confirmed with the absorption peak around 300 nm as
shown in Fig. 2. The high exciton binding energy of
ZnO NPs was responded at 270 nm as clear absorption

Fig. 2 UV-Vis absorption spectra of Zno NP formation
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band. As a results 150 s was observed as optimized time
for the formation of ZnO NPs.

ZnO NP XRD Studies
The XRD results in several peaks at 31.73°, 34.43°,
36.21°, 47.55°, 56.56°, 62.82°, 66.30°, 67.92°, 69.02°,
72.50°, and 76.97° and these correspond to (100), (002),
(101), (102), (110), (103), (200), (112), (201), (004), and
(202) planes of ZnO NPs (Fig. 3). The XRD plane values
were in agreement with JCPDS no. 89-7102.8. The an-
isotropic growth and crystallites orientation of the ZnO
NPs were indicated by a high intensity peak at (101).
The structure of the ZnO NPs was confirmed as a hex-
agonal wurtzite structure and the crystalline nature of
the NPs was confirmed by stiff and narrow diffraction
peaks. Scherrer’s formula was used for calculate crystal-
line size which resulted in 40–45 nm.

D ¼ Kλ=β COS θ ð2Þ

Where the size of the particle is denoted as D,
Scherer’s (0.94) constant is denoted as K, Bragg’s equa-
tion (2dsinθ = nλ), Wavelength is denoted as be λ,
FWHM is denoted as β, and the diffraction angle is de-
noted as θ.

ZnO NPs: FT-IR Analysis
FT-IR analysis was carried out using the KBr method for
the detection of functional groups which are present in
the synthesized ZnO NPs and MFPE (Fig. 4). The ZnO
bond bending peak appeared in the range of 430 cm−1

and the metal oxygen peak was observed in the region
400–600 cm−1. The peaks appeared at 3462, 2963, 1739,

and 1585 cm−1 and corresponded with phenol O-H, C-
H stretching, C = O, and 1° amine, respectively. The
intense bands observed at 1368 cm−1 indicate the rock
C-H of the alkane group and 1208 cm−1 is a region of
C-N stretching of aliphatic amines.
FT-IR spectra also confirm the functional groups of

MFPE with the absorption band at 3279, 2919, 1593,
and 1035 cm−1, respectively, as shown in Fig. 4. These
peaks occurred due to amino acids, alkaloids, flavonoids,
and phenolic acids. Further, the Zn(OAc)2 structure was
conformed with the absorption peaks at 3000–3100,
1735, 1549, 1431, 1379, and 947 cm−1, respectively.

SEM, TEM, EDAX, and Histogram Analysis
We performed a microscopic analysis to identify the size
and shape of the synthesized particles. The observed re-
sult stated that synthesized ZnO NPs were spherical in
shape (Fig. 5a–c). The chemical profile of ZnO NPs was
analyzed using EDAX which results in 72.15% of zinc
and 27.85% of oxygen present and the atomic percentage
of zinc at 61.20% and oxygen at 38.80% (Fig. 5b).
Figure 6a and b show the agglomerated ZnO NPs aver-
age size to be 40–45 nm, as shown in Fig. 6c, and the
highest distribution percentage of the ZnO NPs histo-
gram is 40 nm.

Photocatalytic Efficiency of ZnO NPs
The band gap will increase the ROS by the NPs when
treating with the irradiation light of frequency within or
above of their range. The wavelength and surface elec-
trons of the nanoparticles will get energy and move from
ground level to an excited level, as the result a new band
will form [25]. The formation of valence bands (VBs)

Fig. 3 X-ray diffraction pattern of ZnO NP formation
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and conduction bands (CBs) occurs due to the mechan-
istic properties with the positive charged holes and nega-
tive charged electrons, respectively. The positive charged
holes react with water; it leads to hydroxyl radical
(.OH–) formation and acts as a strong oxidizing agent.
The radical anions (.O−2) are formed due to the reaction
between photogenerated negative charged electrons and
molecular oxygen. These two species are commonly
known as ROS. ROS were a very important species to
the photocatalytic activity of the NPs [26].

We utilized a photoreactor with a multilamp at exactly
365 nm. The effect and color changes of CV dye degrad-
ation are shown in Fig. 7. To determine the degradation,
efficiency was observed using UV-Vis spectroscopy ana-
lysis which was shown in Fig. 8a and confirmed the sur-
face plasmon resonance (SPR) band of CV at 580 nm.
The efficiency of a nano catalyst was proved as 94%
within 70 min which has been proved as a UV band at
580 nm. The CV rate of degradation is said to be
0.02848/min (Fig. 8b) which has been supported by first

Fig. 4 FT-IR spectrum: (a) ZnO NPs, (b) Zn (OAc)2, and (c) MFPE

Fig. 5 (a–c) SEM and (d) EDX spectrum of ZnO NPs
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order kinetics. Finally, we have concluded that it is a
time-dependent reaction (Fig. 8c and d).
Figure 9 was proposed as a possible mechanism of

photocatalytic activity of ZnO NPs against CV. The UV
light absorption was extended by SPR band of ZnO NPs.
Further, ZnO absorbs more energy photons than its
band gap; due to this reason electrons are promoted to
the CB from its VB. This leads to creating an equal

number of holes in the VB [27]. Accordingly, ZnO NPs
act as good photogenerated electrons to avoid the holes
recombination with energy. This process is known as
direct electron transfer and depends on the band struc-
ture of noble metal and metal oxide NPs. Furthermore,
ZnO NPs participated in the degradation of CV dye
using the UV light irradiation. The CV transfers the
electrons into the ZnO CB [27]. This process leads to
the reaction between photogenerated electrons and
dissolved O2 and the formation of superoxide anion rad-
icals [28–30].

ZnO þ UV light 365 nmð Þ→ZnO e− CBð Þ þ hþ VBð Þ� � ð3Þ
ZnO hþ VBð Þ� � þ H2O→ZnO þ Hþ þ OH• ð4Þ
ZnO e− CBð Þ½ � þ O2→ZnO þ O2

− ð5Þ
O2

− þ Hþ→HO2 ð6Þ
HO2 þ HO2→H2O2 þ O2 ð7Þ
H2O2þ O2

−→OH• þOHn þ O2 ð8Þ
Dye þ OH•→Degradation product ð9Þ

ZnO NPs: Antifungal Activity
It resulted in excellent in vitro antifungal activity on the
two plant pathogens such as of the A. saloni and S. rolfii.
The results were recorded for ZnO NPs at 400 °C, ZnO

Fig. 6 a, b TEM images of ZnO NPs. c Particle size histogram

Fig. 7 Color and effect degradation of CV dye by ZnO NPs: (1) Dye,
(2) Dye + ZnO NPs at 0 min, and (3) Dye + ZnO NPs at 70 min
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NPs at 600 °C, and methanolic extract of MFPE. The
ZnO NPs at 400 °C showed efficient antifungal activ-
ity compared with ZnO NPs at 600 °C and methanol
extract in both fungal strains. Figure 10 shows the
antifungal activity of ZnO NPs at 400 °C, 600 °C, and
methanol extract of MFPE on A. saloni and S. rolfii
strains.

In Vitro Hemolysis Activity of ZnO NPs
The activity to determine the hemolytic property of ZnO
NPs at 400 °C showed the different percentage of ranges
such as 1.95, 1.58, 1.00, and 0.6% for the different con-
centrations of 100, 75, 50, and 20 μL, respectively
(Fig. 11). The results stated that ZnO NPs showed lower
hemolytic activity compared with positive control. The

Fig. 8 a Photocatalytic degradation of CV dye by ZnO NPs. b Rate constant (ln C/C0). c C/C0. d % degradation

Fig. 9 Schematic diagram of dye degradation mechanism of ZnO NPs
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mechanism of the hemolytic activity of the NPs depends
on the increasing permeability to complete lysis of the
cell. The cell lysis caused free radical formation and cell
death [23] and resulted in harmless RBC cell count.

ZnO NPs: Antibacterial Activity
With the method zone of inhibition, antibacterial assays
were calculated against S. aureus and E. coli bacterial
strains (Fig. 12). The ZnO NPs, which are synthesized
from MFPE, showed efficient antibacterial activity on
both gram positive and gram negative bacterial strains
[24]. The zone of inhibition of the ZnO NPs on S. aur-
eus and E. coli is 6 mm.
The ZnO NPs have a good capacity to disrupt the bac-

terial cell membrane by ROS, e.g. super oxides and

hydroxyl radical production. The surface of the ZnO
NPs was also occupied with positive zeta potential; due
to this, the particles can actively participate in the dam-
age of bacterial cell membrane. This may show the im-
pact decreases the cytoplasmic content on bacterial cells
and leads to cell death [31]. According to this mechan-
ism action, the synthesized ZnO NPs damaged the
bacterial cell membrane and extrusion of cytoplasm was
followed by cell death.

Conclusions
In this research paper, we have synthesized the ZnO NPs
from MFPE and determined the photocatalytic efficiency
of ZnO NPs. The analytical data also resulted in an aver-
age size of 40–45 nm using XRD analysis. TEM analysis

Fig. 10 Antifungal activity on (a) A. saloni and (b) S. rolfii strains

Fig. 11 Hemolysis percentage of ZnO NPs
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determined the morphology of ZnO NPs as spherical
and hexagonal shapes. The photocatalytic activity in-
creased due to its smaller particle size and ZnO NPS
showed excellent photocatalytic activity at 365 nm. ZnO
NPs at 400 °C showed good antifungal activity against
both A. saloni and S. rolfii strains. Further, NPs were
tested the effect of erythrocyte count and antibacterial
activity on S. aureus and E. coli. The results stated that
ZnO NPs synthesized from MFPE were non-toxic on
RBCs and good antibacterial agents.
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