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In this review I summarize available data pointing to the abundance of structural disorder within
the nucleoprotein (N) from three paramyxoviruses, namely the measles (MeV), Nipah (NiV) and
Hendra (HeV) viruses. I provide a detailed description of the molecular mechanisms that govern
the disorder-to-order transition that the intrinsically disordered C-terminal domain (NTAIL) of their
N proteins undergoes upon binding to the C-terminal X domain (XD) of the homologous phospho-
proteins. I also show that a significant flexibility persists within NTAIL–XD complexes, which makes
them illustrative examples of ‘‘fuzziness’’. Finally, I discuss the functional implications of structural
disorder for viral transcription and replication in light of the promiscuity of disordered regions and
of the considerable reach they confer to the components of the replicative machinery.
� 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

The measles (MeV), Nipah (NiV) and Hendra (HeV) viruses
belong all to the Paramyxovirinae sub-family within the
Paramyxoviridae family of the Mononegavirales order. MeV is a
Morbillivirus member, while NiV and HeV have been classified in
the Henipavirus genus. Paramyxovirinae possess a non-segmented,
negative-stranded RNA genome that encodes six proteins: the
nucleoprotein (N), the phosphoprotein (P), the matrix protein,
the F and H glycoproteins and the RNA-dependent RNA polymerase
(RdRp) or ‘‘large’’ protein (L). The genome of Paramyxoviridae is
encapsidated by a regular array of multiple copies of the N protein
forming a helical nucleocapsid that serves as template for both
transcription and replication. These activities are ensured by the
RdRp that is made of the L and P proteins, with P serving as an
essential polymerase factor allowing recruitment of L onto the
nucleocapsid (Fig. 1). This ribonucleoprotein complex made of
RNA and of the N, P and L proteins constitutes the replication
machinery of Paramyxoviridae.

In paramyxoviruses, N exists in a soluble, monomeric form (N�)
and in a nucleocapsid assembled form. Once N is synthesized, a
chaperone is required to maintain it in a soluble and monomeric
form. This role is played by the P protein, whose association
simultaneously prevents illegitimate self-assembly of N. This sol-
uble N�–P complex is used as the substrate for the encapsidation
of the nascent genomic RNA chain during replication. The assem-
bled form of N also forms complexes with either isolated P or P
bound to L, which are both essential to RNA synthesis by the viral
polymerase (see [1–5] for reviews on transcription and
replication).

In the past decade, a wealth of bioinformatics and experimental
evidence has been gathered showing that paramyxoviral N pro-
teins possess long intrinsically disordered regions (IDRs) (for
reviews see [5–12]). Intrinsically disordered proteins (IDPs) and
IDRs are ubiquitous proteins/regions lacking stable secondary
and tertiary structures under physiological conditions of pH and
salinity in the absence of their biological partner and thus exist
as dynamic ensembles of interconverting conformers [13].
IDPs/IDRs are functional while being either fully or partly disor-
dered, and they complement the functional repertoire of folded
proteins, being able to interact with several partners thus exerting
multiple biological functions (see [14] and references cited
therein).

The abundance of IDRs in paramyxoviral N proteins and the dif-
ficulty of obtaining homogenous polymers of N suitable for X-ray
analysis explain the relative paucity of structural data obtained
so far by X-ray crystallography. However, the combined use of
techniques such as circular dichroism (CD), nuclear magnetic reso-
nance (NMR), small angle X-ray scattering (SAXS), electron micro-
scopy (EM) and site-directed spin labelling (SDSL) coupled with
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Fig. 1. Schematic illustration of the Paramyxoviridae replicative complex. Scheme of
the replicative complex with the RNA represented by a black line. The neo-
synthetized RNA is shown already partially encapsidated. The N and P intrinsically
disordered regions are symbolized by lines. The extended conformation of the
disordered regions would allow the formation of a tripartite complex between N�, P
and L required for nucleocapsid assembly. The P/L complex forms the RNA-
dependent RNA polymerase (RdRp) complex, which cartwheels onto the nucleo-
capsid complex via the XD domain of P. P is shown as a tetramer to reflect the
prevalence of this oligomeric state in paramyxoviral P proteins. The N protein has
been drawn with a peanut-shape according to available structural data.
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electron paramagnetic resonance (EPR) have shed light onto the
molecular features of these proteins and have provided a quite
accurate description of their conformational behaviour.

In this review I will summarize all the available molecular infor-
mation on the N proteins of three representative Paramyxovirinae
members, namely MeV, NiV and HeV, and I will focus on their dis-
ordered regions and the interactions they establish with their part-
ners. Finally, I will discuss the functional implications of disorder
for transcription and replication.

2. Structural organization of N

In Paramyxovirinae, N binds to exactly six nucleotides [3], a
property that dictates the so-called ‘‘rule of six’’, i.e. the require-
ment for the viral genome to be a multiple of six in order to ensure
efficient transcription and replication. By encapsidating the viral
genome the N protein not only protects it from degradation, but
it also renders it competent for transcription and replication.
Indeed, the viral polymerase has a very poor processivity and
hence cannot transcribe nor replicate RNA when the latter is not
encapsidated by the N protein [15].

Paramyxovirinae nucleoproteins consist of two regions: a struc-
tured N-terminal moiety, NCORE, and a C-terminal domain, NTAIL

(Fig. 2A). While NCORE contains all the regions necessary for
self-assembly and RNA-binding, as well as for interaction with
the N-terminal, disordered region of P (PNT) within the N�–P com-
plex (Fig. 1), NTAIL is responsible for interaction with the C-terminal
X domain (XD) of the P protein (Fig. 2A) (see [5–12] for reviews).
The structures of MeV and HeV XD have been solved and shown
to consist of a triple a-helical bundle [16–19] (Fig. 2A).
High-resolution structural data is also available for the X domains
of the closely related Sendai (SeV) and mumps virus (MuV) [20,21].
Contrary to all other paramyxoviral X domains investigated so far,
MuV XD does not however interact with the C-terminal region of N
but rather with the NCORE region [22]. Interestingly, while in the
majority of Paramyxovirinae members the C-terminal
nucleocapsid-binding region of P adopts a stably folded, compact
conformation, it is disordered in respiratory syncytial virus (RSV),
a member of the Pneumovirinae subfamily [23]. Similarly, the X
domains from Rubulavirus members were found to span a struc-
tural continuum ranging from stable a-helical bundles to largely
disordered forms in solution [20,24].

NTAIL domains from MeV, NiV and HeV possess features that are
hallmarks of intrinsic disorder: (i) they are hyper-sensitive to pro-
teolysis [25,26], (ii) they cannot be visualized in cryo-EM recon-
structions of nucleocapsids [27], (iii) they have an amino acid
sequence that is highly variable amongst phylogenetically related
members [28], and (iv) they are predicted to be mainly (if not fully)
disordered by the secondary structure and disorder predictors
implemented within the MeDor metaserver [29]. The disordered
nature of these NTAIL domains has been confirmed experimentally
[19,28,30–34].

As for all N proteins of the Mononegavirales family, and with the
sole exception of the N protein from the Borna disease virus [35],
MeV and Henipavirus N proteins self-assemble to form large helical
nucleocapsid-like particles with a broad size distribution when
expressed in heterologous systems [19,25,36–38]. MeV nucleocap-
sids, as visualized by negative stain transmission EM, have a typical
herringbone-like appearance [25,27,30,37,39]. EM studies by two
independent groups led to real-space helical reconstruction of
MeV nucleocapsids [27,39] (Fig. 2B). These EM studies
[27,30,39,40], along with recent solid-state NMR studies [41],
showed that the removal of the disordered NTAIL domain, which
protrudes from the globular body of NCORE, leads to more ordered
and more rigid nucleocapsids, with significant changes in both
pitch and twist.

High-resolution structural data on Paramyxoviridae N is limited.
So far, the only crystal structures of N proteins that have been
solved are those of the N protein from RSV and from parainfluenza
virus 5 (PIV5, a Rubulavirus member) [42,43]. In both cases, the N
proteins are in the form of N:RNA rings, where these latter corre-
spond to one turn of a nucleocapsid helix. In the case of PIV5, the
N protein was subjected to limited proteolysis to remove the
NTAIL disordered region prior to crystallization [43], whereas in
the case of RSV, it is the full-length form that was crystallized
[42], in line with the fact that the RSV N protein is shorter as com-
pared to its Paramyxovirinae counterparts and devoid of the disor-
dered NTAIL region. In both RSV and PIV5, the nucleoprotein
consists of two lobes (NTD and CTD) separated by a hinge that
accommodates the RNA. The RNA is tightly packed between the
two N lobes, being located on the external face of N:RNA rings
[42,43]. Each N protomer contacts 6 (PIV5) or 7 (RSV) nucleotides.
For both RSV and PIV5, each N subunit possesses an extended
N-terminal and C-terminal arm (NTD-arm, CTD-arm) that makes
contacts with the preceding (Ni�1) and following (Ni+1) protomer,
respectively. Using the structure of RSV N:RNA rings as template,
a model of MeV N:RNA was built and docked within the electron
density map of MeV nucleocapsids [40]. Although the disordered
NTAIL domain could not be resolved in the reconstruction of the
nucleocapsid, the fit suggests that NTAIL would point towards the
interior of the helical nucleocapsid [40].

The crystal structure of a monomeric, RNA-free form of the NiV
N protein devoid of the NTD-arm and of NTAIL (N32–383) in complex
with the N-terminal N�-binding region of P (PNTD, aa 1–50 of P) has
also been solved [44]. PNTD binds to CTD and interferes with the
binding of the CTD-arm from the Ni+1 protomer and the NTD-arm
from the Ni�1 protomer thereby providing a structural explanation
for the ability of PNT to prevent N self-assembly [44]. A notable
structural difference between NiV N from one hand and PIV5 and
RSV N from the other hand is the angle between NTD and CTD
formed at the hinge region. In the NiV N�CORE-PNTD structure, the
putative RNA-binding groove is open, with NTD bowing down by
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Fig. 2. Organization of the MeV, NiV and HeV nucleoproteins. (A) Modular organization of N from MeV and henipaviruses showing that N is composed of a folded domain,
NCORE, and a C-terminal disordered region, NTAIL. The various boxes, corresponding to putative or experimentally proven MoREs, are shown, as is the a-MoRE (see grey helix).
The box that interacts with XD is indicated by an arrow. The crystal structure of MeV and HeV XD is shown (PDB code 1OKS and 4HEO, respectively) [16,19]. (B) Cryo-electron
microscopy reconstruction of the MeV nucleocapsid [27,62]. (C) Surface representation of the cryo-EM 3D reconstruction of the MeV trypsin-digested, helical nucleocapsid
(cut away view). The colour code is the same as in panel A. The RNA is shown in green. The scale bar corresponds to 50 Å. Reproduced with permission from [45]. (D) Ribbon
representation of a protomer of MeV N as observed in trypsin-digested MeV nucleocapsids [45]. The NTD-arm of the preceding N protomer (Ni�1) (blue) and the CTD-arm of
the following N protomer (Ni+1) (yellow) are also shown with ribbon representation. The structure of NiV PNTD, as observed in the N�CORE–PNTD complex [44] and then docked
at the surface of N, is shown as a red ribbon.
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about 30� from the CTD. Modelling the open conformation
of PIV5 N onto its nucleocapsid-ring structure shows a rotation
of its CTD towards the centre of the ring cavity, thereby
exposing the RNA in the RNA-binding groove and making it acces-
sible for the viral polymerase during genome transcription and
replication [43].

Recently, elegant cryo-EM studies led to near-atomic resolution
of the MeV helical nucleocapsid formed by the folded NCORE

domain [45]. Combined with the atomic structures of RSV N and
NiV N�CORE-PNTD, 3D reconstruction of MeV helical nucleocapsid
allowed building a reliable pseudo-atomic model of the MeV
NCORE–RNA helix. Those studies confirmed the role of the
NTD-arm and CTD-arm in maintaining the cohesion of N protomers
(Fig. 2C). Like in the structure of PIV5 nucleocapsid, and contrary to
the structure of the RSV nucleocapsid [42], the Ni�1 and Ni+1 sub-
units in the MeV NCORE–RNA helix do not interact directly.
Beyond ensuring cohesion between adjacent N protomers, the
NTD-arm and CTD-arm also play a critical role in rigidifying the
CTD thus keeping N in a closed conformation allowing the RNA
to be trapped between the NTD and the CTD chaws. Four aromatic
residues (Phe11, Phe269, Tyr303 and Phe324), conserved in
Paramyxovirinae members [44], stack together thereby fixing the
a-helix of the NTD-arm. In addition, the MeV NCORE structure pro-
vides a structural basis explaining how PNTD can prevent N
self-assembly. Indeed, when the structure of the RNA-free,
monomeric form of NiV NCORE in complex with PNTD is superim-
posed onto the MeV NCORE structure, the a-helix of the NTD-arm
of the MeV Ni�1 protomer perfectly superimposes onto the helix
a1 of PNTD (Pa1) from the NiV N�CORE–PNTD structure, while the
loop of the CTD-arm of the MeV Ni+1 protomer overlaps with helix
a2 of PNTD (Pa2) (Fig. 2D). Thus Pa1 competes with the NTD-arm of
the Ni�1 protomer, and Pa2 with the CTD-arm of the Ni+1 protomer,
as already proposed [44]. The first a-helix of PNTD (Pa1) and the
a-helix of the NTD-arm of N appear to play similar roles: they lock
the CTD and the NTD–CTD junction in a stable conformation that
can be either open or closed depending on the presence of the
RNA embedded in the interdomain cleft.

All those studies showed that in Paramyxoviridae nucleocapsids
the RNA is not accessible to the solvent, and has to be
partially released from N to become accessible to the polymerase.
Therefore, a conformational change must occur within N to
allow exposure of the RNA. The disordered NTAIL domain is
thought to play a major role in this conformational change (see
Section 7).
3. Residual order within NTAIL domains

Although HeV, NiV and MeV NTAIL domains are mostly disor-
dered, they possess a certain amount of residual structure
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[28,30,31]. In line with this, bioinformatics analyses indicated the
presence of short order-prone regions, corresponding to putative
Molecular Recognition Elements (MoREs) [28,31]. MoREs are short,
order-prone regions within IDPs that have a certain propensity to
bind to a partner and to undergo induced folding (i.e. a
disorder-to-order transition) [46,47].

In the case of MeV, one MoRE of a-helical nature was predicted
to occur within one (i.e. Box2, aa 489–506) out of three regions (i.e.
Box1–3) conserved within members of the Morbillivirus genus [48]
(Fig. 2A). While Box1 (aa 401–420) interacts with a yet unidenti-
fied nucleoprotein receptor (NR) expressed at the surface of den-
dritic cells of lymphoid origin [49] and of T and B lymphocytes
[50], Box2 is the region responsible for interaction with XD
[16,31,51,52]. Analysis of the Ca chemical shifts of NTAIL and of
the mobility of spin labels grafted within Box2 showed that the
a-MoRE of MeV NTAIL is partly preconfigured as an a-helix in the
absence of XD [18,53,54]. In addition, an atomic-resolution ensem-
ble description of the a-MoRE of MeV NTAIL was obtained by com-
bining residual dipolar coupling measurements and ensemble
optimization methods [55,56]. The a-MoRE was shown to exist
in a rapidly interconverting conformational equilibrium between
an unfolded form and four discrete a-helical conformers of differ-
ent length encompassing the XD binding site [57]. Spectroscopic
approaches unveiled that binding of XD triggers stable a-helical
folding of the MoRE [16,18,31,51,53,54,57,58]. Similar studies car-
ried out on SeV NTAIL unveiled a similar conformational behaviour
of the free form, although in that case the a-MoRE was shown to
sample an extended conformation and only three helical conform-
ers [56,59].

Henipavirus NTAIL domains contain four predicted MoREs [28],
with Box3 having been shown to undergo a-helical induced folding
upon binding to XD [19,26,32,33,60] (Fig. 2A). Interestingly, SDSL
EPR spectroscopy studies unveiled a considerable conformational
heterogeneity within Box3 consistent with the occurrence of mul-
tiple helical conformers of different length [32]. In agreement,
analysis of the Ca chemical shifts of the free form of both HeV
and NiV NTAIL domains showed that Box3 is at least transiently
populated as an a-helix [19,33].

While Box1, Box2 and Box4 are not involved in binding to XD,
they influence to some extent the a-helical folding of Box3 as well
as the compaction properties of NTAIL. In particular, Box1, which is
devoid of a-helical propensities, was found to be a major determi-
nant of protein compaction, a finding that incidentally also indi-
cates that the ability to adopt a collapsed state does not depend
on the content in regular secondary structure [60]. Interestingly,
subtle differences between NiV and HeV NTAIL were observed
[32,33,60]. For example, a NiV NTAIL truncated form devoid of
Box1 and Box2 was found to possess a more extended conforma-
tion than its HeV counterpart [60]. This difference in the extent
of compaction might arise from slight differences in sequence
polarity between the two proteins. Indeed, they slightly differ in
their k value, where the latter reflects the linear distribution of
oppositely charged residues [61]. Proteins with low k values are
well-mixed sequences in which intrachain electrostatic repulsions
and attractions are counterbalanced, leading to conformations that
resemble either self-avoiding random walks or generic Flory ran-
dom coils [61].

NMR studies further confirmed that NiV and HeV NTAIL proteins
have distinct features in spite of their high sequence identity (74%)
[33]. In particular, the NiV NTAIL Box2 region experiences a slightly
higher extent of a-helical preconfiguration and seemingly plays a
role in binding to XD, while HeV NTAIL Box2 does not. A close
inspection of the Box2 region reveals a notable difference at posi-
tion 457, where the Asp of HeV NTAIL is replaced by an Asn in NiV
NTAIL. In light of the proposed role of charges in pre-orienting Box3
at the HeV XD surface [19] (see Section 5), it is tempting to
speculate that this substitution could be responsible for the
observed difference in the role of Box2 during binding for the
two viruses.

Notably, the subtle differences observed between NiV and HeV
NTAIL domains do not affect XD-binding abilities, with Box3 being
functionally interchangeable between the two viruses. However,
there are no cross-interactions between proteins from HeV or
NiV and proteins from MeV (unpublished data).
4. Structural state of NTAIL domains within nucleocapsid-like
particles

Beyond being disordered in isolation, the MeV and Henipavirus
NTAIL domains are also disordered within full-length N proteins
from nucleocapsid-like particles, as judged from NMR studies car-
ried out on 15N-labeled nucleocapsids [19,33,57] (Fig. 3A–C). In
those studies, both MeV and Henipavirus NTAIL were found to retain
their disordered state in situ, i.e. when appended to nucleocapsids.
For the three viruses, experimental evidence was obtained sup-
porting a model in which the first 50 disordered amino acids of
NTAIL are conformationally restricted. In the case of MeV, by com-
bining those data with previous modelling data [40], a model
was proposed where NTAIL escapes from the inner channel to the
outside of the nucleocapsid via the interstitial space between suc-
cessive NCORE helical turns [19,57] (Fig. 3D). Notably, this model
provides a plausible explanation for the increased rigidity of nucle-
ocapsids in which the flexible NTAIL region has been cleaved off
[30,39,45]. The inherent flexibility of intact nucleocapsids likely
confers at least partial accessibility to the N-terminal region of
NTAIL, thereby accounting for the ability of the Box1 region to bind
to NR in the context of nucleocapsids released in the extracellular
compartment [49,50]. The flexibility of the NTAIL region sand-
wiched between successive turns of the nucleocapsid may be the
basis for variations in pitch and twist that may be related to
switches between transcription and replication [62] (see
Section 7).
5. Molecular mechanisms of NTAIL–XD complex formation

The NTAIL domains of MeV, NiV and HeV were shown to bind to
XD with an equilibrium dissociation constant (KD) in the lM range
[26,63]. As already mentioned, binding to XD triggers a-helical
folding of NTAIL [16,26]. Interestingly, while NMR titration experi-
ments with 15N-labeled NTAIL indicated an a-helical transition
within MeV NTAIL upon addition of the homologous X domain, as
judged from the appearance of new peaks in the a-helical region
of the NTAIL spectra [18,26,51], no such peaks were observed in
the HeV and NiV NTAIL spectra even with saturating amounts of
XD [19,33].

In the case of MeV, a model of the interaction in which the
a-MoRE of NTAIL adopts an a-helical conformation and is embed-
ded in a large hydrophobic cleft delimited by helices a2 and a3
of XD has been proposed [16] and successively validated by
Kingston and co-workers, who solved the crystal structure of a chi-
meric construct made of XD and the NTAIL region encompassing
residues 486–504 [17] (Fig. 4A). Those studies unveiled that Box2
is tightly packed at the binding interface. The residues involved
in the interaction of the two partners are mainly hydrophobic,
involving Leu481, Leu484, Ile488, Phe497, Met500 and Ile504 from
XD, and Ser491, Ala494, Leu495, Leu498 and Met501 from NTAIL

(Fig. 4A). In addition, site directed mutagenesis studies revealed
that Ala502 is also involved in the interaction with XD, as deduced
from the 30-fold increase in the KD observed with an NTAIL variant
bearing an Asp at this position [64]. Recently, random mutagenesis
studies confirmed the crucial role of NTAIL residue Ser491 in



Fig. 3. Structural state of NTAIL in the context of nucleocapsid-like particles. Superimposition of the 1H–15N HSQC spectrum of NTAIL either in isolation or in the context of
nucleocapsid-like particles in MeV (A), HeV (B) and NiV (C). The x and the y axis correspond to 1H and 15N frequencies (in ppm), respectively. Data shown in (A) were taken
from [57]. Data shown in (B) and (C) were taken from [19] and [33], respectively. (D) Proposed model of the location of NTAIL (red) in intact nucleocapsids where successive
NCORE monomers are coloured green and yellow and RNA in blue. Left: representation of the conformational sampling of NTAIL from a single N protomer in the capsid. Different
copies of NTAIL (red) are shown to indicate the available volume sampling of the chain. Only the first 50 amino acids of NTAIL are shown. Middle and right panels:
representation of the 13 NTAIL conformers from a single turn of the nucleocapsid shown across (middle) or along (right) the axis of the nucleocapsid. Modified from [57].
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complex formation [65]. Those studies also unveiled a previously
unnoticed role for residue Arg497, whose side chain points out of
the binding surface. In spite of its orientation towards the solvent,
the side chain of Arg497 is at bonding distance from the OH group
of Tyr480 of XD (Fig. 4A). Through generation and characterization
of a ‘‘mirror’’ XD variant bearing the Y480F substitution, the crucial
role of the Arg497–Tyr480 interaction in stabilizing the NTAIL–XD
complex was confirmed [65].

ITC studies revealed that Henipavirus NTAIL–XD complexes are
stable under NaCl concentrations as high as 1 M, suggesting that
the interaction does not rely on polar contacts [26], in line with
an interaction driven by the burying of apolar residues of NTAIL at
the XD surface, as already observed in the case of MeV [16,22].
Strikingly, while in the case of NiV, NTAIL/XD complex formation
could be documented by size-exclusion chromatography, it could
not in the case of HeV [26]. This suggests that the NiV complex is
tighter than its HeV counterpart, consistent with NMR studies that
pointed out a unique, additional role for Box2 in binding to XD in
the case of NiV [33].

While the crystal structure of HeV XD is available [19], no struc-
tural data of the Henipavirus NTAIL–XD complex is available so far.
Based on spectroscopic data showing that Box3 undergoes
a-helical folding [19,26,32,33], the more hydrophobic side of the
amphipathic a-MoRE located within the Box3 region of
Henipavirus NTAIL was modelled at the hydrophobic surface delim-
ited by helices a2 and a3 of XD using the MeV NTAIL–XD structure
as a template (Fig. 4B and C). In all complexes, the interface is
hydrophobic, in agreement with findings by Meszaros and
co-workers, who reported that the binding interfaces of protein
complexes involving IDPs are often enriched in hydrophobic resi-
dues [66]. In striking contrast, in the SeV NTAIL–XD complex, the
binding interface is dominated by charged residues [67].

Although direct structural data on Henipavirus NTAIL–XD com-
plexes are still lacking, recent NMR studies provided the first clues
on the structure of the HeV complex. In particular, analysis of
chemical shift perturbations in reciprocal titration studies allowed
residues involved in the interaction to be identified [19]. The avail-
ability of the crystal structure of HeV XD allowed mapping at the
XD surface the residues involved in binding to NTAIL [19].
Although the binding interface is made of hydrophobic residues,
the binding pocket of XD is surrounded by charged residues that
may establish electrostatic interactions with basic residues of
Box3 (Fig. 4B and C). This observation suggests that the HeV
NTAIL–XD interaction could be controlled by a combination of
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long-range electrostatic forces that correctly orient NTAIL prior to
accommodation in the narrow hydrophobic pocket at the surface
of XD. ITC studies carried out on the HeV NTAIL/XD pair at different
pH values confirmed the role of electrostatics in complex forma-
tion, a conclusion further strengthened by mutational studies that
targeted charged residues both within NTAIL and XD [68].
Collectively, those studies provided direct evidence that charged
residues surrounding the hydrophobic binding interface play a cru-
cial role in complex formation, thus arguing for a multiparametric
interaction and emphasizing the role of residues located in the
neighbourhood of the binding interface. It is therefore conceivable
that the HeV NTAIL/XD complex formation relies on the so-called
‘‘electrostatic steering mechanism’’ [69]. According to this model,
long-range electrostatic forces pull an IDP towards the relevant
acidic (or basic) patch on the surface of a target protein, thus estab-
lishing contact in the vicinity of the binding site. The resulting
state, in which the IDP is loosely anchored at the periphery of
the binding site, has been described as ‘‘electrostatic encounter
complex’’ [70]. This mechanism effectively increases the local con-
centration of the ligand in the vicinity of the binding site and thus
promotes binding. The corollary of this assumption is that HeV
NTAIL would fold according to a folding after binding mechanism,
a hypothesis supported by quantitative analysis of NMR titration
data (see below) [19].

Notably, neither chemical shifts nor electrostatic interactions
are able to distinguish rotational symmetry about the axis of the
NTAIL helix, although two conformations are most probable, both
having the hydrophobic face of the a-MoRE in contact with the
hydrophobic interface of XD (Fig. 4). In both conformations, the
two arginine residues flanking the hydrophobic face on HeV NTAIL

interact with acidic residues on the surface of XD. Through a com-
bination of mutational and SAXS studies, experimental evidence
was recently gathered supporting a parallel orientation of the
MoRE at the XD surface [68]. The parallel orientation of the
MoRE at the XD surface is thus a conserved feature between MeV
and HeV, arguing for a functional relevance. It is tempting to spec-
ulate that this could be related to the relative orientation of the
whole P protein with respect to the NTAIL region protruding from
the nucleocapsid. In its turn, this might be related to optimal posi-
tioning of the polymerase onto the nucleocapsid template and
might impart directionality to the polymerase movement along
the nucleocapsid (see [5,10,11] for reviews).

The finding that the a-MoRE of MeV and Henipavirus NTAIL is
transiently populated as an a-helix might be taken as a hint sug-
gesting that the molecular mechanism governing the folding cou-
pled to binding of NTAIL could rely on conformational selection
[71]. Two different, but not exclusive, binding mechanisms have
been described in the literature for IDPs/IDRs (see [14] and refer-
ences cited therein). In the first one, called ‘‘folding after binding’’,
the binding event takes place before folding [72]. In the second
mechanism, the partner binds to the pre-folded MoRE, thereby
shifting the equilibrium of the conformational ensemble to the
folded form. In the case of MeV NTAIL, computational and experi-
mental studies converged to support a folding after binding mech-
anism. Indeed, the resonance behaviour of NTAIL in titration
experiments with XD indicated a very poor fit to a two-state pro-
cess, suggesting that binding may imply the formation of a binding
intermediate in the form of a weak encounter complex [18]. In sup-
port of this hypothesis, recent data obtained by molecular dynam-
ics simulations confirmed that binding preferentially occurs via an
induced folding mechanism in spite of the partial
pre-configuration of the a-MoRE [73]. That MeV NTAIL does fold
after binding to XD has been definitely proven by kinetic studies
[63].

The presence of a preconfigured MoRE with nevertheless a
folding-after-binding mechanism is not a unique feature to MeV
NTAIL, having also been documented in the case of HeV NTAIL [19].
In this latter case, quantitative analysis of peak intensities in the
HSQC spectra of NTAIL at each XD titration point showed that the
signal intensity decreases faster for the residues located at the
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extremities of the MoRE and for which a smaller amount of resid-
ual helical structure is observed in the isolated state of NTAIL. This
differential broadening suggests that XD binds to a short, central
helix within the a-MoRE, and that this helix is subsequently
extended via helical folding of the adjacent residues. Data there-
fore indicate that HeV NTAIL interacts with XD via a
folding-upon-binding mechanism, with the folding event occurring
on the micro- to millisecond time scale [19].

6. Residual flexibility within the NTAIL–XD complex

A low-resolution model of the MeV NTAIL–XD complex obtained
by SAXS showed that most of NTAIL (residues 401–488) remains
disordered within the complex [51]. A subsequent study that made
use of a combination of SDSL EPR spectroscopy and modelling
showed that a considerable residual flexibility persists also within
the NTAIL region encompassing residues 505–525 in the complex
[74]. In further support, a recent mass spectrometry study showed
that the MeV NTAIL–XD complex is characterized by a high struc-
tural heterogeneity. In those studies, distinct conformers of the
complex could be detected by electrospray ionization-mass spec-
trometry (ESI-MS). Beyond documenting structural heterogeneity,
those studies enabled to capture a collapsed form of the complex
that had escaped detection in previous studies. Indeed, a bimodal
charge state distribution was observed with a high-charge compo-
nent (18+) and a low-charge (11+) component. While the former
would correspond to an ‘‘open’’ conformation, in which the disor-
dered arms of NTAIL flanking the a-MoRE fluctuate maintaining
high solvent accessibility, the low-charge component likely repre-
sents a compact or ‘‘closed’’ conformation of the complex in which
the NTAIL arms collapse onto the surface of the folded partner [34].
Computational modelling of the ‘‘open’’ complex in solution, using
experimental chemical shifts as restraints, provided
atomic-resolution structural models with calculated solvent acces-
sible surface area (SASA) in good agreement with that experimen-
tally determined by ESI-MS. In the resulting models, the
intermolecular interactions are predominantly hydrophobic, not
only in the ordered core of the complex, but also in the disordered
regions. Interestingly, the more compact states were found to
involve electrostatic interactions [34], suggesting that MeV NTAIL

binding to XD could rely on an electrostatic steering mechanism
[69], as already proposed in the case of HeV [68].

The MeV NTAIL–XD complex therefore provides an illustrative
example of ‘‘fuzziness’’, where this term has been coined by
Tompa and Fuxreiter to designate the persistence of conspicuous
regions of disorder within protein complexes implicating IDPs
[75]. Henipavirus NTAIL–XD complexes were found to be fuzzy
too. Indeed, the experimentally determined hydrodynamic radius
of the NiV NTAIL–XD complex is 1.6 times higher than expected
for a compact complex [26]. In further support of the ‘‘fuzziness’’
within MeV, HeV and NiV NTAIL–XD complexes, the many observ-
able and relatively sharp NMR resonances that are nearly unaltered
upon addition of XD provide evidence that these NTAIL regions
remain significantly disordered in the bound state [17–19,26,33].
Strikingly, the Henipavirus NTAIL–XD complexes are even fuzzier,
as judged from the vanishing of resonances of the MoREs at the
beginning of titration with no reappearance even at saturation
[19,33]. This observation suggests that even when bound to XD,
the a-MoRE of both NiV and HeV NTAIL remains highly dynamic,
undergoing exchange between different conformers at the XD sur-
face [19,33].

The functional relevance of this fuzziness may reside in the abil-
ity of the disordered appendages to serve as a platform to capture
other (regulatory) binding partners. In line with this speculation,
the fuzzy Box3 region of MeV NTAIL was shown to constitute a
binding site for the major inducible heat shock protein hsp70
[76,77], where the latter is known to stimulate both viral transcrip-
tion and replication [78–80]. Box3 constitutes however a
low-affinity binding site for hsp70, with Box2 providing a
high-affinity binding site (KD of 10 nM) [78,81]. Since hsp70 com-
petitively inhibits XD binding to NTAIL [76], it has been proposed
that hsp70 could enhance transcription and genome replication
by reducing the stability of P–NTAIL complexes, thereby promoting
successive cycles of binding and release that are essential to poly-
merase movement along the nucleocapsid template [51,76]. The
hsp70-dependent reduction of the stability of P–NTAIL complexes
would thus rely on competition between hsp70 and XD for binding
to the a-MoRE of NTAIL, with recruitment of hsp70 being ensured
by both Box2 and Box3 [76] (see also Section 7).

Finally, fuzzy regions flanking MoREs can also serve as natural
modulators of the interactions established by IDPs. In fact, a recent
descriptive random mutagenesis study of MeV NTAIL led to the
identification of five regulatory regions that are located in the
upstream fuzzy region and dampen the interaction [82]. This find-
ing is consistent with recent observations based on mini-replicon
studies [83] (see Section 7). The molecular mechanism by which
these regulatory regions modulate the NTAIL–XD interaction
remains however to be elucidated. In the same vein, MeV NTAIL

variants devoid of Box3 were found to exhibit enhanced interac-
tion with XD, suggesting that Box3 would naturally serve as a
dampener.

7. Functional impact of the NTAIL–XD interaction and of
structural disorder within NTAIL

The NTAIL–XD interaction is thought to be critical as it allows the
P/L complex to be recruited onto the nucleocapsid thereby allow-
ing transcription and replication to take place (see [9,84,85] for
reviews). A recent study by the Plemper group has however chal-
lenged the model according to which Box2 is strictly required to
recruit the MeV polymerase complex; indeed, Box2 was shown
to be dispensable for MeV transcription and replication in the
absence of the upstream NTAIL region, which was found to act as
a negative modulator (i.e. to prevent binding of the L–P complex
to the nucleocapsid) [83].

In Paramyxovirinae, the NTAIL–XD interaction is also thought to
trigger the opening of the nucleocapsid to provide access of the
polymerase to the viral RNA. In agreement, EM studies showed that
addition of XD triggers unwinding of MeV nucleocapsids (unpub-
lished data). This dramatic conformational change is accompanied
by an increased exposure of viral RNA to the solvent as indicated
by its increased sensitivity to RNase. In line with these observa-
tions, recent studies documented the ability of the MuV P protein
to induce nucleocapsid uncoiling, with both N- and C-terminal P
domains being involved [86]. In striking contrast with these find-
ings, NMR studies have shown that addition of XD to HeV nucleo-
capsids does not trigger any major nucleocapsid rearrangement
[19]. We can speculate that the expectedly necessary HeV nucleo-
capsid unwinding requires either the full-length P protein, or the
P–L complex and/or cellular cofactors. One such possible cellular
cofactor could be hsp70, by analogy with previous studies that
showed that hsp70-nucleocapsid complexes of the closely related
canine distemper virus exhibit an expanded helical diameter, an
increased fragility, and an enhanced exposure of the genomic
RNA to nuclease degradation [87,88].

The P XD-induced folding of NTAIL and/or the inherent flexibility
(and hence potential to undergo conformational changes) of the
first 50 NTAIL residues stacked between successive nucleocapsid
turns, could also affect the structure of the replication promoter.
Indeed, the replication promoter, located at the 30 end of the viral
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genome, is composed of two discontinuous elements that form a
functional unit when juxtaposed on two successive helical turns
[89]. The switch between transcription and replication could be
dictated by variations in the helical conformation of the nucleocap-
sid, which would result in a modification in the number of N
monomers (and thus of nucleotides) per turn, thereby disrupting
the replication promoter in favour of the transcription promoter
(or vice versa). Morphological analyses, showing the occurrence
of a large conformational flexibility within Paramyxoviridae nucle-
ocapsids [27,37,87,88], corroborate this hypothesis.

A tight N–P complex is predicted to hinder the polymerase pro-
cessivity, according to the cartwheeling mechanism, which posits
that contacts between NTAIL and XD have to be dynamically
made/broken to allow the polymerase to progress along the nucle-
ocapsid template in order to allow transcription and replication to
take place. Mutational studies that targeted the Box2 region of
MeV NTAIL unexpectedly showed that a reduced binding strength
has no impact on the polymerase rate [64]. This tolerance of the
polymerase to NTAIL substitutions is probably true only in a certain
range of affinities, where in spite of a pronounced drop in the affin-
ity towards XD, the NTAIL–XD interaction remains strong enough to
ensure recruitment of the polymerase. These results suggest that
the accepted model whereby the interaction has to be relatively
weak to allow the polymerase to cartwheel on the nucleocapsid
template needs to be revisited. A relatively labile complex can
result from either an inherently low affinity of the binding reac-
tion, or from a tight complex whose strength is modulated by
co-factors. Taking into account the ability of hsp70 to compete
out XD for binding to NTAIL [76], it is tempting to speculate that
the progression of the MeV polymerase complex along the tem-
plate could be ensured by hsp70. In this model hsp70 would pro-
mote successive cycles of binding and release thanks to its
destabilizing effect on the NTAIL–XD interaction. The prevalently
disordered nature of NTAIL even in the bound form would facilitate
recruitment of hsp70, thus providing an easy means to modulate
the N–P interaction strength, which would ultimately result in
modulation of transcription and replication rates.

The presence of the disordered NTAIL domain protruding at the
surface of the viral nucleocapsid confers the ability to establish a
complex molecular partnership with a panel of structurally distinct
cellular and viral partners, in agreement with previous reports that
underscored a relationship between disorder and protein interac-
tivity (i.e. promiscuity) [90]. In fact, in addition to P, MeV NTAIL does
also interact with the M protein [91] and many cellular proteins
[49,50,77,92–96], which leads to plethora of functional effects
including virus assembly, stimulation of transcription and replica-
tion, and evasion of the antiviral response. The presence of long
disordered regions is not unique to paramyxoviral N proteins,
being also a conserved property of P proteins of Paramyxovirinae
members [28,97,98]. The occurrence of long disordered domains
on both N and P proteins would allow for coordinated interactions
between the polymerase complex and a large surface area of the
nucleocapsid template, including successive turns of the helix.
Indeed, the maximal extension of MeV PNT as measured by SAXS
is 40 nm (unpublished data). In comparison, one turn of the MeV
nucleocapsid is about 6 nm high [37,39,45]. PNT could thus easily
stretch over several turns of the nucleocapsid, and since MeV P is
multimeric [99,100], N�–P might have a considerable extension.
Likewise, the maximal extension of MeV NTAIL in solution is
13 nm [30]. The very long reach of disordered regions could enable
them to act as scaffolding engines to tether partners. It is conceiv-
able that during replication, the extended conformation of PNT and
NTAIL would allow the establishment of contacts between the
assembly substrate (N�–P) and the polymerase complex (L–P),
leading to a tripartite N�–P–L complex. The plasticity of IDRs
within N and P would therefore confer a considerable reach to
the elements of the replication machinery.

8. Conclusions

The presence of large disordered regions in proteins of the
replicative complex of Paramyxovirinae members is far from being
a unique feature in the virosphere. Several bioinformatics studies
have indeed shown that viral proteins, and in particular proteins
from RNA viruses, are enriched in short disordered regions [101–
104]. Beyond these computational studies, a considerable body of
experimental evidence has been collated that points to the abun-
dance of disorder within viral proteins (see [105,106] for reviews).
The wide occurrence of disordered regions in viral proteins beyond
affording a broad partnership would also represent a strategy for
buffering the deleterious effects of mutations, with this being par-
ticularly relevant in RNA viruses that have high mutation rates.

Viruses are obligate intracellular parasites. They thus live in a
very hostile environment and have to find strategies to survive in
their host and to counteract the host immune response. In the
course of evolution, viruses have ‘‘learned’’ to hijack and manipu-
late host proteins for their benefit and to evade host defence mech-
anisms. A recent study by Davey and co-workers showed that
viruses have achieved this ability through broad mimicry of host
protein short linear motifs (SLiMs), where the latter are embedded
in disordered regions and play a variety of roles [107]. Binding to
cell proteins through sites that mimic SLiMs also helps viral pro-
teins to elude the host cell’s immune system by rendering viral epi-
topes poorly recognizable by it (see [106] and references therein
cited).

Finally, disorder has also been reported to provide a means to
tolerate insertions and/or deletions, and therefore to be abundant
in regions with dual coding capacity [108–110]. Taking into
account the correlation between overlapping genes and disorder
and the typically high compaction of viral genomes that often con-
tain overlapping reading frames, one major advantage of disorder
within viral proteins would reside in pleiotropy and genetic com-
paction [106]. Indeed, disorder provides a solution to reduce both
genome size and molecular crowding, where a single gene would
(i) encode a single (regulatory) protein product that can establish
multiple interactions via its disordered regions and hence exert
multiple concomitant biological effects, and/or (ii) encode more
than one product by means of overlapping reading frames. In fact,
since disordered regions are less sensitive to structural constraints
than ordered ones, the occurrence of disorder within one or both
protein products encoded by an overlapping reading frame can
represent a strategy to alleviate evolutionary constraints imposed
by the overlap. As such, disorder would give viruses the ability to
‘‘handle’’ overlaps, thus further expanding the coding potential of
viral genomes.
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