Dehydro-flavonolignans from silymarin are potent inhibitors of lipid peroxidation in isolated respiring rat heart and liver mitochondria

Martin Modrianský, Ales Dvořák, David Biedermann, Vladimír Kříž, Petr Ježek, Martin Jabůrek

Department of Medical Chemistry and Biochemistry, Palacký University, Czech Republic

Department of Membrane Transport Biophysics, Institute of Physiology, ASCR, Czech Republic

Institute of Microbiology, Czech Republic

E-mail: martin.modriansky@upol.cz

Flavonoids and polyphenolic compounds are known for their cytoprotective and antioxidant properties, but the interactions of these compounds with isolated respiring mitochondria are largely unexplored. Here, we studied selected active constituents of silymarin, flavonolignan complex from the seeds of Silybum marianum, which is known for its cytoprotective properties [1]. We used the major silymarin compound silybin, as well as several minor components, such as silydianin, silychristin, 2,3-dehydroxybin, 2,3-dehydroxydianin and 2,3-dehydroxysilchristin, and tested their effects on respiration, membrane potential and the kinetics of mitochondrial lipid peroxidation, using isolated respiring rat heart and liver mitochondria. Compared to the dehydroxybin, which causes a partial dissipation of the mitochondrial protonmotive force [2], all other compounds had a negligible effect on mitochondrial respiration and membrane potential in the concentration range tested. All compounds, however, were potent inhibitors of spontaneous mitochondrial lipid peroxidation, although with different potencies. Dehydroxychristin, dehydroxybin and dehydroxydianin were the most potent inhibitors, with IC50 values below 0.5 μM (2.5 nmol per mg of protein). These results contribute to our understanding of the interactions of natural polyphenolic compounds with mitochondria and suggest that not the major flavonolignan silybin, but the minor components are responsible for the antioxidant properties of the silymarin mixture. These results further indicate that flavonolignans may execute their antioxidant and cytoprotective actions through inhibition of lipid peroxidation originating from respiring mitochondria.

This work was supported by the Czech Science Foundation (GAČR 301/11/0662).

References

doio:10.1016/j.bbabio.2014.05.241

Probing the interaction between the N-terminal domain of Escherichia coli AhpF and AhpC

Wilson Nartey, Sandip Basak, Gerhard Grüber

Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore

E-mail: wilson1@e.ntu.edu.sg

Oxidative stressors are employed by host systems to defend it from pathogenetic bacteria. Consequently, several pathogens have developed sophisticated mechanisms to evade such insult from the host. To do this, pathogens depend on enzymes like catalases and the alkylhydroperoxide reductase (AhpR) system to convert harmful H2O2 and organic peroxides to water and alcohol, respectively. The AhpR consists of AhpC which directly reduces H2O2 and organic peroxides and AhpF, which is an NADH-linked flavoprotein, a reductase of the AhpC. Together, this system contributes to pathogenesis (1) and resistance (2) in several pathogens. Despite the potential of targeting this system with drugs, the exact interaction, and therefore the binding interface between the AhpC and AhpF has not been characterized yet. In this study, with knowledge that the N-terminal domain (NTD) of the AhpC is responsible for binding AhpF, the NTD of the E. coli AhpF has been purified to high homogeneity and used for small angle X-ray scattering (SAXS) experiments. The SAXS-data indicate a highly

The finding of an inverse correlation between ROS production by isolated mitochondria and species longevity would strongly support
stable protein and confirm the solution state of the construct. Using Isothermal Titration Calorimetry (ITC) we have examined the interactions involved in the catalytic cycle of the enzyme. The interaction is endothermic and the K_d was calculated to be $3.2 \mu M$. Furthermore, with Nuclear Magnetic Resonance (NMR) spectroscopy, we are attempting to zero in on the exact residues and binding interface of the interaction. Information from this study will facilitate drug development against known pathogens depending on AhpF.

References

doi:10.1016/j.bbabio.2014.05.242

S6.P14

Pre-diabetes disrupts testicular PGC-1α/SIRT3 axis prompting oxidative stress
Luís Rato, Ana I. Duarte, Gonçalo D. Tomás, Maria S. Santos, Paula I. Moreira, Silvia Socorro, José E. Cavaco, Marco G. Alves, Pedro F. Oliveira

Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Portugal
CNC — Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal
CNC — Center for Neuroscience and Cell Biology, University of Coimbra, Department of Life Sciences, Portugal
E-mail: luis.pedro.rato@gmail.com

Pre-diabetes, a risk factor for type 2 diabetes development, alters testicular physiology disturbing in particular its metabolism and bioenergetic capacity, which favors oxidative stress. Oxidative stress occurs due to uncontrolled reactive oxygen species (ROS) production and an inefficient ROS scavenging system. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and Sirtuin 3 (SIRT3) act synergistically as key inducers of ROS-detoxifying enzymes. In this regard, we hypothesized that pre-diabetes disrupts testicular PGC-1α/SIRT3 axis enhancing an oxidative environment and contributing to the decline of reproductive performance. Using a high-energy-diet (HED) induced pre-diabetic rat model, we evaluated testicular levels of PGC-1α and its downstream targets, nuclear respiratory factor 1 (NRF-1) and 2 (NRF-2), mitochondrial transcription factor A (TFAM) and SIRT3. We also assessed oxidative stress parameters, such as antioxidant capacity, lipid peroxidation and protein carbonylation. Protein levels were quantified by Western Blot. Antioxidant capacity and lipid peroxidation were evaluated spectrophotometrically. Protein carbonylation was assessed by immunoblot. After HED treatment animals displayed the characteristics of a pre-diabetic state, such as slightly increased blood glucose levels and impaired glucose tolerance. Both testicular PGC-1α and SIRT3 levels were significantly decreased. NRF-1, NRF-2 and TFAM were not altered. Concerning oxidative status parameters, pre-diabetes decreased testicular antioxidant capacity and increased both lipid and protein oxidation. In sum, HED-induced pre-diabetes downregulates testicular PGC-1α/SIRT3 axis, favoring oxidative damage. As the synergistic role of PGC-1α and SIRT3 proteins is blunted in pre-diabetic animals, an entire oxidative cascade is triggered with associated increase of testicular lipid and protein oxidative injuries and decreased testicular antioxidant capacity, which occur earlier in the development of type 2 diabetes and may later have a severe negative impact in male fertility.

doi:10.1016/j.bbabio.2014.05.243

S6.P15

Influence of the Ca$^{2+}$-independent phospholipase A2 (iPLA2) on the electron-transport-chain dependent ROS generation in brain mitochondria
Nordmann, Schönfeld, Reiser
Otto-von-Guericke University Magdeburg, Germany
E-mail: georg.reiser@med.ovgu.de

Oxidative stress is a factor for the pathogenesis of many diseases, like neurodegeneration in Alzheimer’s disease. Therefore, drug-based prevention of reactive oxygen species (ROS) generation is important. The Ca$^{2+}$-independent phospholipase A2 (iPLA2), which liberates free fatty acids (FFA) by hydrolyzing the sn-2 ester bond of membrane glycerophospholipids, has been found in various mammalian mitochondria. According to a classical concept, the activity of the inner mitochondrial membrane-associated iPLA2 removes oxidatively damaged fatty acids for lipid remodeling and repair. Since mitochondria are main ROS producers in cells, the question arises, whether the iPLA2 has antioxidative defense, to attenuate the formation of electron transport chain (ETC)-associated superoxide (O_2^-), and thereby oxidative stress, by mild-uncoupling. We examined the influence of iPLA2 on ETC-associated ROS generation in rat brain mitochondria (RBM). First, docosahexanoic acid (DHA), a major reaction product of iPLA2, was used to adjust mild-uncoupling in succinate-oxidizing RBM and, to impair reversed electron transport (RET) in ETC. Low DHA concentrations diminish RET-dependent ROS generation by mild-uncoupling. This was mostly due to the adenine nucleotide translocase. In contrast, when mitochondria oxidize gluta- mate plus malate and, thereby support the forward electron transport (FET), DHA enhanced mitochondrial ROS generation. In addition, to reduce the endogenous mitochondrial pool of FFA, mitochondria were treated with the iPLA2-inhibitor bromoenoil lactone (BEL). BEL-treated and succinate-oxidizing mitochondria show enhanced ROS generation, but are slightly depolarized in comparison to the untreated control. This finding contradicts the view that iPLA2 inhibition abolishes mild uncoupling and, consequently, enhances the mitochondrial membrane potential. On the contrary, we explain the increase of the ROS release by BEL-treated RBM with a diminished content of reduced glutathione. Thus, we disprove the view that iPLA2 attenuates oxidative stress in brain mitochondria. Further work should elucidate mecha- nisms of pathogenesis of neurodegenerative disorders based on the dysregulated iPLA2 [1].

Reference

doi:10.1016/j.bbabio.2014.05.244