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Optimal Drift Correction for Superresolution Localization Microscopy with
Bayesian Inference
Ahmed Elmokadem1 and Ji Yu1,*
1Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut
ABSTRACT Single-molecule-localization-based superresolution microscopy requires accurate sample drift correction to
achieve good results. Common approaches for drift compensation include using fiducial markers and direct drift estimation
by image correlation. The former increases the experimental complexity and the latter estimates drift at a reduced temporal res-
olution. Here, we present, to our knowledge, a new approach for drift correction based on the Bayesian statistical framework.
The technique has the advantage of being able to calculate the drifts for every image frame of the data set directly from the sin-
gle-molecule coordinates. We present the theoretical foundation of the algorithm and an implementation that achieves signifi-
cantly higher accuracy than image-correlation-based estimations.
INTRODUCTION
Single-molecule-localization-based superresolution micro-
scopy has revolutionized the optical microscopy field by
pushing spatial resolution to the scale of nanometers
(1–3). The remarkable improvement in spatial resolution
comes at the cost of a more complicated imaging procedure:
instead of taking simple snapshots of the sample, tens of
thousands of images are taken from the same sample, in
which random subsets of the target molecules are turned
on to be imaged and localized. The final image from the pro-
cess is in the form of a histogram describing the frequency
of the molecules being localized to certain spatial pixels.
Sample drift during the data collection process can be mini-
mized, but is generally unavoidable. The popularity of this
imaging method has resulted in extensive research on local-
ization algorithms to process single-molecule imaging data,
and the efficiency and accuracy of various algorithms have
been discussed in significant detail (4,5). However, without
accurate sample drift correction, the spatial resolution in the
final reconstructed image will be poor even with the best
localization accuracy.

Current sample drift-correction techniques can be catego-
rized into two groups. The first group attempt to directly
measure the drift with hardware implementations. A popular
technique is to add bright fiducial markers into the sample,
which are coimaged with the target molecules (1,6). Other
related techniques include the use of a secondary image of
the sample (7,8). These techniques introduce extra complex-
ities into the experimental procedure and are not always
straightforward to implement. For example, fiducial
markers often themselves photobleach gradually, which
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could result in shifting of their centroid positions and thus
in errors in the drift measurements. The second group of
techniques are based on the idea of estimating drift directly
from the single-molecule data using image correlation
(3,9–11). In general, drift compensation of this type in-
volves computing coarse superresolution images based on
substacks of the total data set and computing sample drift
of those substacks using image correlation. Although simple
to implement, the technique has the disadvantage that the
drift is estimated at a coarse time resolution. Furthermore,
although the technique works well for drifts that are smooth,
it could be problematic if mechanical creeps, which are sud-
den and large jumps in sample positions due to build-up of
mechanical strain, existed in the drift.

To offer a better approach for drift compensation, we treat
it as a statistical inference problem. According to the
Bayesian statistics framework, the estimation of the drift,
d, from the single-molecule data set, o, is the problem of ob-
taining a maximum a posteriori (MAP) estimation:

bdMAP ¼ argmax
d

PðojdÞPðdÞ: (1)

Here, the data set o˛NW�H�N is a three-dimensional ma-
trix representing all N frames of individual superresolution
images. The size of each image is W � H pixels. For raw
experimental data, the intensity values of each pixel can
really only be either 0 or 1, depending on whether a mole-
cule is detected at that pixel or not. However, here we will
deal with a slightly more general case, in which the inten-
sity can be any natural number, i.e., 0, 1, 2 .. This al-
lows us to deal with special cases where the raw frames
were binned every few frames before drift inference,
which is useful for reducing computational time for
extremely large data sets. The drift, d˛ZN�2, is a matrix
http://dx.doi.org/10.1016/j.bpj.2015.09.017

https://core.ac.uk/display/81215272?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jyu@uchc.edu
http://dx.doi.org/10.1016/j.bpj.2015.09.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bpj.2015.09.017&domain=pdf
http://dx.doi.org/10.1016/j.bpj.2015.09.017


Drift Correction in Localization Microscopy 1773
representing time-dependent sample positions of all image
frames. Although this article focuses on two-dimensional
imaging, extension to the three-dimensional case should
be straightforward. Furthermore, since the final con-
structed images are in pixelized form, it is unnecessary
to compute drifts at unlimited resolution. Thus, we model
drift in the integer domain, assuming they are in units of
pixels.

Importantly, the term P(d) reflects our prior knowledge
about the drift. Incorporating prior knowledge is a powerful
way to achieve accurate inference from noisy data. In fact,
the success of the image-correlation method is at least in
part due to the fact that it implicitly incorporates a prior
knowledge—the drift should be smooth in time. We explic-
itly model the prior distribution (see Materials and Methods)
as a Markovian process; the displacements between adja-
cent frames were assumed to be approximately normally
distributed, which favors smooth drifting traces.

Direct optimization based on Eq 1 is, unfortunately, diffi-
cult, because the computation of the probability term in-
volves high dimensional integration. However, we noted
that if we had guessed a final superresolution image, q,
the probability distribution of the drift could be estimated
relatively easily according to the statistical modeling of
Pðdjo; qÞ � Pðojd; qÞPðdÞ. Based on this insight, we can
iteratively make a better estimation of d and q using the
so-called expectation maximization algorithm (12) and
finally reach cooptimization of both the most likely drift
trace and the compensated superresolution image, q. Details
of the statistical model and derivation of the convergence
formula are outlined in the next section. We call our method
Bayesian sample drift inference (BaSDI).
MATERIALS AND METHODS

BaSDI overview

Equation 1 is difficult to solve directly. However, we note that the difficulty

is because we do not know anything about how the molecules are spatially

distributed in the sample. In other words, we don’t have a good estimation

of the true final superresolution image, q˛RW�H , where qij is proportional

to the molecular density at the spatial coordinate (i, j). For convenience, we

can make sure that q is normalized:X
i;j

qij ¼ 1: (2)

If we know the value of q, the conditional probability

Pðdjo; qÞ � Pðojd; qÞPðdÞ can be expressed in relatively simple analytical
forms. To see that, we note first that since q is normalized, the probability

of observing a single localization event at pixel location (i, j) is simply qij. In

a single image frame, f˛NW�H , there are multiple molecules detected at

various coordinates. The joint probability of observing all these localization

events is therefore

Pðf j qÞ ¼ ðkf k 1Þ! �
Y

i;j

�
qi;j
�fi;j ; (3)

where kf k 1 denotes the total number of localization events in f and the

factorial term is to account for the permutations of all the sequences of
the molecules. Nevertheless, the expression ignores the effect of drift. If

the current image frame is captured with a drifted sample position

(x, y), then we need to shift the indices of the observed image. Further-

more, it is often convenient to compute probability distribution in log

terms:

log Pðf jq; x; yÞzlogðkf k 1Þ!þ
X
i;j

fi�x;j�y log qi;j: (4)

Here, we changed the equal sign to an approximate sign because the index

shifting may have moved some of the observed localization events outside
the reference frame, altering the total number of localization events consid-

ered. In practice, this approximation should not introduce large errors if we

simply add an empty border of a certain amount of pixels, s, to the images.

Then, as long as the maximum drift does not exceed s, we can still perform

the computation to obtain reasonable values of the a posteriori distribution.

In the real imaging experiment, data with too much drift (i.e.,>s) are going

to be problematic anyway. Therefore, the approximate approach should not

introduce extra limitations.

Finally, the likelihood of observing the whole data set is simply the joint

probability of all individual image frames:

log Pðojd; qÞz
X
k

X
i;j

oi0 ;j0 ;k log qi;j þ constant; (5)

where
i
0 ¼ i� dk;1; j

0 ¼ j � dk;2: (6)

Here, we dropped the explicit expression of the permutation terms because

they are independent of the parameters we are trying to optimize.

We propose that the optimization can be realized with an iterative

computational algorithm based on the framework of expectation maximiza-

tion (EM) (12).

E-Step: Given a guessed q matrix, compute the conditional distribution

of Pðdjo; bq½i�Þ, that is, what is the likelihood of certain drift traces if

we already guessed the final superresolution image? A reasonable

initial guess for the q½0� is simply the summed image of all frames

without drift correction.

M-Step: Based on the computed distribution of Pðdjo; q½i�Þ, perform a

new optimization of q:

bq½iþ1� ¼ argmax
q

Ed˛D

h
log Pðojd; qÞjo; bq½i�i

; (7)

where E means the expectation value, and D is the set of all possible con-

figurations of d. It can be proven (12) that the new estimation, bq½iþ1�
, is guar-

anteed to be a better one than the older estimation, bq½i�
.

To perform the optimization shown in Eq. 6, we first expand it by plug-

ging in the result from Eq. 5.

bq½iþ1� ¼ argmax
q

Ed˛D

"X
k

X
i;j

oi0 ;j0 ;k log qi;j

þ constantjo; bq½i�
#

¼ argmax
q

Ed˛D

"X
k

X
i;j

oi0 ;j0 ;k log qi;jjo; bq½i�
#
; (8)
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where the definitions of i0 and j0 are the same as in Eq. 6. Next, we shift the

summation over image frames out of the expectation function and express

the expectation function as explicit summations:

bq½iþ1� ¼ argmax
q

X
k

Ed˛D

"X
i;j

oi0 ;j0 ;k log qi;jjo; bq½i�
#

¼ argmax
q

X
k

X
dk;1;dk;2

X
i;j

P
�
dk;1; dk:2jo; bq½i��

oi0 ;j0 ;k log qij:

(9)

Note that the optimization is constrained by the condition specified in Eq. 2.

To obtain the maximum value of this function, we use the standard
Lagrangian optimization technique, by solving for the root of the derivative

of the target function in addition to a Lagrangian term:

v

vqij

"X
k

X
dk;1;dk;2

X
i;j

P
�
dk;1; dk:2jo; bq½i��

oi0 ;j0 ;k logqij

þ l

 X
ij

qij � 1

!#
¼ 0

lþ q�1
ij

X
k

X
dk;1;dk;2

P
�
dk;1; dk:2jo; bq½i��

oi�dk;1;j�dk;2;k ¼ 0;

(10)

and it’s easy to see from there that

bq ½iþ1�
ij f

X
k

X
dk;1;dk;2

P
�
dk;1; dk:2jo; bq½i��

oi�dk;1;j�dk;2;k: (11)

Equation 11 now allows us to compute for the M-step. The E- and M-steps

iterate until the algorithm converges. The most updated source code for the
implementation is available to download from https://github.com/jiyuuchc/

BaSDI/releases/.
Prior distribution for the drift, d

To apply the EM algorithm, we need to compute Pðdk;1; dk:2jo; bq½i�Þ, which
is a marginal probability that can be calculated by integrating

Pðdjo; bq½i�Þ � Pðojd; bq½i�ÞPðdÞ over all frames that are not k. Note that

this integration depends on the choice of the prior probability, P(d). How-

ever, brute-force integration would be typically too time-consuming to be

practical, so the prior probability distribution needs to be designed carefully

to satisfy two requirements: a) it needs to enforce some level of smoothness

in the drift traces so as to agree with our physical intuitions about the drift,

and b) it should allow easier computation of the marginal probability. In our

case, we use a simple function based on the random-walk model, where the

stepping probability distribution is a truncated Gaussian distribution:

PðdÞ ¼ Pðd11ÞPðd12Þ
YN
k¼ 2

Pðdk;1; dk;2jdk�1;1; dk�1;2Þ

¼ Pðd11ÞPðd12Þ
YN
k¼ 2

tðdk;1 � dk�1;1; dk;2 � dk�1;2Þ

(12)

tðdx; dyÞ ¼ N �dx; 0; s2
�N �dy; 0; s2

�þ e; dx < s; dy < s;
(13)
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where N denotes normal distribution and s2 is a hyperparameter corre-

sponding to the speed of the drift. The value e> 0 is used to account for

the small probability of a creep—a rare, sudden jump with larger ampli-

tude—in the system. We kept ε at 1/N for all our calculations in this

article.

Because of the Markovian characteristics of p(d), the marginal probabil-

ity can be computed using the well-known forward-backward algorithm,

P
�
dk;1; dk:2jo; bq½i�� � aðx; y; kÞbðx; y; kÞ; (14)

where both the a and the b functions are calculated iteratively, which is

much more efficient than the brute-force integration. The a values are
computed from the first frame to the last frame:

aðx; y; 1Þ � P
�
f 1jbqðiÞ

; x; y
�

aðx; y; kÞ � P
�
f kjbqðiÞ

; x; y
�X
dx;dy

aðx; y; k�1Þtðx�dx; y�dyÞ;

(15)

and the b values are calculated in reverse, starting from the last image

frame:
bðx; y;NÞ ¼ 1

bðx; y; kÞ�
X
dx;dy

P
�
f kjbqðiÞ

; dx; dy
�
bðx; y; kþ1Þtðdx�x; dy�yÞ:

(16)

In both Eqs. 15 and 16, f k denotes the observed data in the kth image frame.

Its probability calculation follows Eq. 4.
Efficiency of convergence

Although the EM algorithm guarantees the increase of the likelihood with

each iteration, it does not guarantee convergence to the global maximum

(i.e., it can converge to a local maximum). We found that although the al-

gorithm performs very efficiently when the estimated bqðiÞ
image is smooth

across most pixels, it tends to be trapped at a local maximumwhen bqðiÞ
con-

tains many pixels of zero value. This suggests that for a data set of low sam-

pling rate—i.e., when the total number of detected molecules is too low to

construct a smooth final photoactivated localization microscopy (PALM)

image—it is more efficient to compute bqðiÞ
at lower resolution (or use a

larger pixel size), which has the effect of smoothing out the global-

search-space function, allowing more efficient convergence to the global

optimum. To accommodate all data-set scenarios, we designed the EM iter-

ations to follow a multiround optimization schedule: The initial rounds

reduce the effective resolution of bqðiÞ
by applying a smoothing filter. The

size of the filter is gradually reduced in the later rounds, which iteratively

refine the drift estimation until at the final round, no smoothing filter is

applied.

The default optimization schedule we implemented in the accompa-

nying software performs very well for all varieties of data set and has

not failed once in all the simulated data sets we have generated for testing

so far. Alternatively, to save computational time, one could skip earlier

rounds of iteration if the data-set sampling rate is high, and can skip later

rounds if the sampling rate is low. In all the testing cases, we found that

the convergence of the BaSDI algorithm was typically reached in 5–10 it-

erations. For estimating 1000 drift frames from a data set of 1000 � 1000

pixels, each iteration takes less than 30 s to finish on a laptop personal

computer. The computational time scales linearly with respect to the

https://github.com/jiyuuchc/BaSDI/releases/
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number of image frames and quadratically with respect to image size (Fig

S1 in the Supporting Material), indicating good scalability to different

sizes of data sets.
Simulation and algorithm validation

PALM data sets for algorithm validation were generated with Monte Carlo

simulation. To do that, we first produce a ground-truth image with certain

characteristic features. Molecules of interest are assumed to be concen-

trated within these features and much less abundant outside (the back-

ground). The values of the ground-truth image were assumed to represent

the concentration of molecules within the area of each image pixel. To

generate individual frames of localization images, we simply produced Ber-

noulli samples for each pixel position, for which the Bernoulli probabilities

are assumed to be proportional to the intensity of the ground-truth image.

Bernoulli sampling ensures that each pixel can have no more than one mole-

cule in the localization image, similar to real experiments where molecules

are localized individually. After a stack of multiple images was generated,

each image was shifted according to a drift trace, also produced fromMonte

Carlo simulation (see below). The Bernoulli probabilities are assumed to be

unchanged for all image frames. It should be noted that based on this gen-

eration process, all images were produced independent of each other. In

other words, in our simulation, the detected molecules will generally not

persist over multiple image frames. In real experiments, the switching off

of a single molecule is not instantaneous; thus, signal from a single mole-

cule sometimes persists over consecutive frames. This type of temporally

correlated data provides extra information about the drift represented in

the lateral translocations of those individual molecules. However, experi-

mentally, it is also desirable to switch off any detected molecules as quickly

as possible to increase data acquisition speed. Therefore, we opted to not

utilize this extra temporal information, and the simulation is designed to

test the validity of the algorithm in the most general case possible.

Drifts were generated according to a random-walk model, i.e.,

dtþ1 ¼ dt þNð0; s2Þ. Values of s2 were chosen randomly from 0.05 to 0.5,

unlessotherwise specified, to simulatevarious rates of drift, although thisvalue

does not changewithin the same drift trace. To generate persistent drift traces,

wemodel the velocity as a randomwalk, _dtþ1 ¼ _dt þNð0; s2vÞ. Regardless of
theways the driftsweregenerated, for all simulations, the inferences byBaSDI

were performed with the fixed prior hyperparameter of s2 ¼ 0:1.

For image correlation analysis, the data were grouped into various

numbers (4–20) of substacks and the best groupings were empirically cho-

sen by comparing the results to the known input drift traces. This is of

course impossible for real experimental data, where the true drift is un-

known. Thus, for real experimental data, we used the grouping that per-

formed best based on our simulations.
BaSDI application to experimental PALM
microscopy data

The human Crk cDNA sequence, a gift from Dr. Bruce Mayer (University

of Connecticut Health Center, Farmington, CT), was subcloned into a

mammalian expression vector carrying mEos3, producing the mEos3-Crk

fusion construct. MCF-7 or MEF cells were transfected with 500 ng of

DNA using 1.5 mL of Lipofectamine 2000 (Invitrogen, Carlsbad, CA) for

6 h, before being replated on plasma-cleaned glass-bottom dishes (MatTek,

El Segundo, CA) overnight. Cells were then fixed with 4% paraformalde-

hyde, washed twice with phosphate-buffered saline, and imaged with

PALM with 561-nm total-internal-reflection laser illumination and

405-nm photoactivation. Data acquisition was essentially the same as pre-

viously described (13). Image processing and single-molecule localization

were performed using the octane software (13). The localization data were

then used as input to BaSDI, which computed the optimized drift traces, as

well as the final constructed superresolution image, in an unsupervised

manner.
RESULTS AND DISCUSSION

Algorithm validation with simulated image data

To validate the BaSDI algorithm, we used Monte Carlo
simulation to generate various testing data sets and tested
whether BaSDI correctly estimated drift from those data
sets (Fig. 1). The ground-truth image is designed so that
the features (central squares) represent ~10% of the total
probability mass; thus, ~90% of the detected molecules
will be in the background. To mimic the localization micro-
scopy data, frame-by-frame molecular coordinates were
simulated by random sampling of single-molecule coordi-
nates from a ground-truth image (Fig. 1 a), assuming that
50 molecules were detected on average for each image
and 1000 total images were acquired. Each image was
shifted according to a two-dimensional drift trace according
to the random-walk model to mimic experimental sample
drifts. We then reconstructed the superresolution image
(Fig. 1 b) either without any drift correction, or performing
drift correction by feeding the simulated imaging data to
BaSDI. To estimate statistical error, the test was repeated
30 times by resampling the same ground-truth image to pro-
duce new randomized data sets. It can be seen that the recon-
structed PALM image without drift compensation is
distorted and differs significantly from the ground truth im-
age (Fig. 1 b). However, BaSDI was able to correctly esti-
mate the drift traces (Fig. 1, c and d) and, after drift
correction, produce a high-resolution image matching the
ground-truth image (Fig. 1 b).

Real biological samples can exhibit many different types
of spatial features. For example, cytoskeletal structures are
made of mostly linear elements, and cell surface receptor
clusters are spotty structures. Thus, we next tested how
the underlying image features affect BaSDI performance
(Fig. 2). Besides the blocky image shown in Fig. 1, we
also generated two new ground-truth images, one with pre-
dominately linear features (Fig. 2 c) and the other with
spotty features (Fig. 2 e). All ground truth images have
the same integrated signal/background ratio, i.e., 10% of
the total molecules residing within the features. We found,
again with the simulated localization image data, that
BaSDI was able to significantly improve the quality of the
reconstructed image by correcting the drift in the data set.
To quantitatively compare the performances in all three
cases, we used the Pearson correlation coefficient to eval-
uate the similarity between the reconstructed images and
the ground-truth image (Fig. 2, b, d, and f). Unsurprisingly,
the uncorrected images had very low correlation with the
ground-truth images, and BaSDI correction significantly
improved the results. Interestingly, since we knew the exact
drift used to produce the data, we could also construct im-
ages with perfect drift correction (Fig. 2, a, c, and e) and
compute their correlation with the ground-truth images.
Even with no residue drift, these images do not exhibit
Biophysical Journal 109(9) 1772–1780



FIGURE 1 Assessing BaSDI’s performance with simulated single-molecule localization data. (a) The ground-truth image of 500 � 500 pixels (left) and a

zoom-in view of its key feature (four squares at the center) (right). (b) Simulated PALM images before (left) and after (right) drift correction by BaSDI. The

input drift traces were simulated according to a random-walk model. Single-molecule coordinates are generated by randomly sampling the ground-true image

in (a), assuming detection of 50 molecules per frame on average and 1000 frames per data set. (c) The input drift traces (left) and the corresponding BaSDI

estimated drift traces (right). Sampling noise in the BaSDI calculation, represented by the line width (right), were estimated by rerunning the simulation and

the corresponding drift recalculation 30 times. (d) Error residues obtained from the differences between the traces in (c) in the y and x directions.
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perfect correlation due to noise rising from sampling.
More importantly, we observed no significant differences
between their correlation values and the values of the
BaSDI-corrected images, indicating that in these simula-
tions, the BaSDI-corrected images are not statistically
distinguishable from images with no drift. By comparing re-
sults from different ground-truth images, we found that the
best results were obtained from the spotty images, whereas
results from the blocky and linear images were similar. This
is also not surprising, as intuitively one would expect that
higher spatial frequency would allow higher confidence in
FIGURE 2 Assessing BaSDI’s performance for drift correction given differen

(c and d) linear, and (e and f) spotty ground-truth images. Images in (a), (c), an

images with perfect drift correction, no drift correction, and BaSDI drift correctio

reconstructed images with their respective ground-truth images. Error bars repr

Biophysical Journal 109(9) 1772–1780
reconstructing drift-corrected images. The blocky image
likely represented the hardest problem; all the subsequent
simulation tests will be performed on this particular
ground-truth image.

In our statistical model, we assumed a Markovian-type
prior-distribution function for the drift. However, different
microscopes may have very different drift characteristics
due to differences in their mechanical properties. There-
fore, we further tested whether the BaSDI algorithm can
handle drift traces generated with other drift models
(Fig. 3). In addition to the random-walk model (Fig. 3
t types of image features. Simulations were performed on (a and b) blocky,

d (e) are, from left to right, the ground-truth images and the reconstructed

n. Images in (b), (d), and (f) show the correlation coefficients for each of the

esent the mean 5 SE, n ¼ 30.



FIGURE 3 Assessing BaSDI’s drift estimation

of different drift types. BaSDI was tested against

(a) random-walk drift, (b) smooth drift, (c) drift

with mechanical creep, and (d) drift from fluores-

cent bead trajectories. The input drift traces in

both the y (vertical) and x (horizontal) directions

are shown on the left (a–d), and the BaSDI esti-

mated output drift traces for each type are shown

on the right. (e) Normalized root mean-square error

for BaSDI estimates drift for each type of input

drift. Error bars are represented as the mean 5

SE, n ¼ 30.
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a), similar to data shown earlier, we further examined two
additional drift-generation models, a model in which the
drift velocity (instead of drift position) undergoes random
walk (Fig. 3 b), which results in a more persistent drift
trace, and a model in which random mechanical creeps
(sudden jumps of large amplitude due to the release of
built-up stress) were introduced in a random-walk drift
(Fig. 3 c). Finally, realistic drift characteristics can only
be obtained by examining the drift from a real microscope.
Therefore, we also obtained real experimental drift traces
by tracking fluorescent beads from our own PALM micro-
scope (Fig. 3 d), and we produced a simulated PALM data
set using these experimentally obtained drift traces. We
found that in all of these scenarios, BaSDI was able to es-
timate the drifts incorporated into the data set (Fig. 3). To
quantify BaSDI’s performance in estimating drift traces
from all different drift input scenarios, we calculated the
root mean-square (RMS) error of the estimated drifts
normalized to the standard deviation of the input drifts
(Fig. 3 e). As expected, the largest error was observed in
the case of persistent drift, probably because it deviated
the most from our model assumptions. We found no signif-
icant differences in the RMS errors of the remaining three
drift inputs.
Algorithm validation with experimental image
data

A true test of the algorithm has to be based on its perfor-
mance on real PALM experimental data. We performed
PALM imaging experiments on MCF-7 cells expressing
mEos3-Crk. Crk is an adaptor protein molecule that can
induce cell transformation (14,15). It contains an Src homol-
ogy 2 (SH2) domain that allows it to bind to various tyro-
sine-phosphorylated proteins in cells. In mammalian cells,
Crk is known to localize to focal adhesions (FAs) (15),
which typically contain concentrated phosphotyrosines,
but also to cell-surface receptor tyrosine kinases (16), which
can be phosphorylated as well. The competition between the
two and the difference in phosphorylation dynamics
Biophysical Journal 109(9) 1772–1780
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between them result in complicated Crk-localization varia-
tions. The Crk localization is further complicated by the
fact that the majority of Crk localizes to cytosol, which com-
plicates PALM imaging. Even with total internal reflection
imaging, the high amount of cytosolic background reduces
the effective sampling rate of membrane-localized Crk, in-
creases the data collection time, and makes it more chal-
lenging to estimate drift directly from the single-molecule
data.

To validate the BaSDI algorithm with an experimental
Crk PALM data set, we added fluorescent-bead-based fidu-
cial markers into the cell samples during the PALM data
collection and experimentally measured the drift of the
sample stage during data collection using the positions of
the fluorescent beads. The drift is then also estimated
with BaSDI using the single-molecule coordinates,
excluding any information from the fluorescent beads.
The comparison between the experimentally measured drift
and the BaSDI-estimated drift (Fig. 4) showed that they are
highly consistent with each other. The effective difference
between the two, measured in the RMS sense, is 25 nm,
which is roughly equal to the expected single-molecule
localization accuracy for these experiments. Thus, we
conclude that BaSDI is able to correctly estimate drift
from an experimental PALM data set.
Performance of BaSDI algorithm

Next we tested whether BaSDI achieves better accuracy
over the existing image-correlation methods. For compar-
isons, we generated 100 sets of simulated drift traces
and the accompanying PALM data sets, each including
1000 individual image frames, based on the ground-truth
image in Fig. 1. We then estimated the drift using either
BaSDI or the image correlation method (Figs. 5 and 6).
The accuracy of the methods was evaluated by computing
the error of the estimated drift (by comparing to the input
drift) in the mean-square error sense. Furthermore, to ac-
Biophysical Journal 109(9) 1772–1780
count for different image conditions, we generated simu-
lated data in two different scenarios, a low-sampling-rate
scenario, in which an average of 50 molecules were de-
tected in each frame, and a high-sampling-rate scenario,
where 200 molecules per frame were detected. Because
image correlation only directly computes drift for a subset
of key frames, we computationally generated the rest of
the drift traces using linear interpolation (Figs. 5 a and 6
a). Another factor that we needed to consider when car-
rying out the image correlation was deciding how many
substacks the whole data set should be divided into. Using
too many substacks will cause high error in drift estima-
tion between substacks, whereas too few substacks will
lead to fewer data points and a worse temporal resolution
(9). For real experimental data, the optimal number can be
difficult to determine objectively. For our simulation, we
computed the error for four different image-correlation
groupings (50, 100, 200, and 250 frames). The groupings
with the lowest error were selected to be compared with
BaSDI, for both the low-sampling-rate (Fig. 5) and the
high-sampling-rate scenarios (Fig. 6). As expected, the
high sampling rate is correlated with lower error for
both methods (Figs. 5 c and 6 c). Nevertheless, in both
cases, we found that BaSDI outperforms image correlation
by about three- to fourfold (Figs. 5 b and 6 b). Interest-
ingly, BaSDI also seems to have a more stable perfor-
mance, as indicated by the narrow distribution of errors
in the histograms (Figs. 5 b and 6 b) in comparison to
the image-correlation method.

Finally, we evaluated the relative performance of
BaSDI and image correlation by comparing the image
quality from real PALM experimental data (Fig. 7). To
do so, we imaged mEos3-Crk in propagating mouse em-
bryonic fibroblast cells. In this condition, Crk localizes to
the classical strip pattern typical of FA structure. We then
applied either BaSDI or image correlation to carry out the
drift compensation (Fig. 7) based on estimating drift
traces of 18,000 points. Both methods improved the
FIGURE 4 Comparison of BaSDI estimated

drifts with experimentally measured drifts.

(a) PALM images of mEos3-Crk in an MCF-7

cell before (left) and after (right) drift correction

by BaSDI. Scale bars are 2 mm. (b) Drift traces

measured by imbedded fluorescent beads (left) or

estimated by BaSDI (right).



FIGURE 5 Comparing drift estimations by BaSDI and image correlation at a low sampling rate (50 molecules/frame). (a) Simulated input drift (left) and

drift traces estimated by either BaSDI (middle) or image correlation using the optimal frame grouping with the least error (right). (b) Histograms comparing

the root mean-square error distributions of BaSDI and image correlation. The distributions of error were computed from 100 independent runs with randomly

generated drifts. (c) Comparing the averaged errors of BaSDI and image correlation given the different frame groupings. Error bars are represented as the

mean 5 SE, n ¼ 100.
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PALM image sharpness in comparison to the uncompen-
sated result (Fig. 7). To choose a hyperparameter, s2,
we utilized the existing fluorescent-bead tracking data
measured separately on the same microscope and calcu-
lated the variance of position drifts between frames. We
note that for small s2 values, the accuracy of the drift
calculation is insensitive to its exact value (Fig S2).
Therefore, the variance measurement does not need to
be very accurate, and the day-to-day variations in the drift
characteristics of the microscope are expected to have lit-
tle impact on the inference results. Thus, we did not
perform recalibration for PALM data acquired on
different dates. Comparison between the estimated drift
from BaSDI and from the correlation method showed
that the two methods generally agree with each other,
except that BaSDI generated not only estimation of key
FIGURE 6 Comparing drift estimations by BaSDI and image correlation at a h

drift traces estimated by either BaSDI (middle) or image correlation using the op

the root mean-square error distributions of BaSDI and image correlation. The dis

generated drifts. (c) Comparing the averaged errors of BaSDI and image correl

mean 5 SE, n ¼ 100.
frames but also detailed traces between key frames, re-
sulting in better-resolved image features in the final con-
structed PALM images (Fig. 7 c).

In conclusion, we have devised an algorithm to estimate
sample drift from single-molecule-based superresolution
imaging methods. The algorithm is validated by both com-
puter simulation and experimental data. The algorithm out-
performs previous analysis methods and, more importantly,
is based on a statistical principle, not on heuristics. We
believe that it will become a useful addition to the tool set
for researchers working on superresolution imaging.
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Two figures are available at http://www.biophysj.org/biophysj/supplemental/
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igh sampling rate (200 molecules/frame). (a) Simulated input drift (left) and

timal frame grouping with the least error (right). (b) Histograms comparing

tributions of error were computed from 100 independent runs with randomly

ation given the different frame groupings. Error bars are represented as the
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FIGURE 7 Comparing the performances of

the BaSDI and image-correlation methods on

experimental PALM data. (a) Uncorrected (left),

image-correlation-corrected (middle), and BaSDI-

corrected (right) PALM images of mEos3-Crk

in a mouse embryonic fibroblast cell. Data

showed aggregated localization patterns consistent

with focal adhesions. Scale bars are 5 mm.

(b) Zoomed-in view of the corresponding PALM

images at the top, giving a detailed view of the

focal adhesion structure outlined by the white box

in (a). Scale bars are 1 mm. (c) Intensity line scans

from (b) showing the improved image sharpness of

the PALM images after drift corrections.
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