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ABSTRACT 

The aim of  this note is twofold. First to show the existence of  genus five curves having exactly twenty 
four Weierstrass points, which constitute the set of  fixed points of  three distinct elliptic involutions on 
them. Second to characterize these curves, in fact we prove that all such curves are bielliptic double 
cover of  Fermat's quartic. 

1. INTRODUCTION 

The plane quartic F defined by x 4 + y4 + Z 4 = 0,  known as Fermat's quartic, and 
that defined by x 4 + y4 -I- z 4 + 3(x2y 2 + y2z2 + x2z 2) = 0 are, up to isomorphisms, 

the only two curves of genus three having exactly twelve Weierstrass points, or, 
equivalently, the only non-hyperelliptic genus three curves whose Weierstrass points 
are all of  maximal weight [12]. Between these two curves, the quartic of  Fermat has 
the peculiar property of  having its twelve Weierstrass points lying, by fours, onto the 
three coordinates axis and these sets of  four points are the loci of  fixed points of  the 
three elliptic involutions on F [5]. Are there non-hyperelliptic curves X of  genus 
g > 3 with the property (,)  of  having their Weierstrass points all of  maximal weight 
and each of  them fixed point of  some elliptic involutions? Since a curve with g ~> 6 
may carry at most one elliptic involution, an easy computation shows that numbers 
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fit well only if  g = 5: when the maximal weight is 5 [11] and X carries exactly 
three elliptic involutions (see [4, Question 5.11 ]). Here, after some preliminaries, in 
Section 3 we prove the existence of  curves o f  genus five satisfying ( ,)  by showing 
that the curve X0 defined by the following equations 

[ 4 =0, 
X2 2 2 2 q -X 4 - - X  5 = 0 ,  

I x  2 3 -I'- X4X5 = O, 

where [Xl . . . . .  xs] are projective coordinates in 17 4, is an explicit example of  such 
curves. Then, in Section 4, we prove our main result: 

Theorem 1.1. Ira curve of  genus five satisfies property (,), then it is a bielliptic 
double cover of  Fermat's quartic. 

Then it follows that there are three non-isomorphic curves of  genus five with the 
requested property (,): the three (unbranched) double covers of F associated to the 
three half-periods on F which are lifting of  the three nonzero half-periods on E. 

Notations. As usual we denote by wc the canonical sheaf of  the irreducible, 
smooth projective curve C. For each invertible sheaf 3 on C we denote by 131 the 
projectivization of  H°(C, 3) and by 131 v its dual. If  al . . . . .  ak are elements of  a 
certain group G, we denote (al . . . . .  ak) the subgroup of  G generated by them. For 
all other notations we refer to [9]. 

2. PRELIMINARIES 

In this section we shortly explain the geometry of  bielliptic curves of  genus five (see 
for instance [7] for details) and we recall some results that we need in the following 
sections. 

Let X be an irreducible, smooth, projective curve of genus 5 defined over the 
complex field C, and suppose X bielliptic, i.e., suppose that it admits a degree 
two morphism ~o : X -+ E onto an elliptic curve; to such morphism corresponds an 
elliptic involution t : X --+ X so that X/(t) ~_ E. To the cover ~o one can associate its 
ramification locus B on E (the image under q~ of  the points fixed by L) and a half 
fj of  the divisor class of  B. From the datum (E; B,~j) one can reconstruct X up 
to isomorphisms. By Castelnuovo-Severi inequality (see for instance [1, p. 21]) X 
cannot be either hyperelliptic nor trigonal and its canonical model X is the complete 
intersection of  a net of  quadrics N" = {ul Q1 -1- u2Q2 + u 3 Q 3  = 0} in the canonical 
174 = [O)x iv.  The linear series of  degree four and dimension one on X are cut out by 
the rulings of rank 4 quadrics of  N'. Moreover i~ lies on the elliptic normal cone 

F = U p' tP C I~oxI v, 
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where P, tP denotes the line joining P and its conjugated tP under t. From the 
natural decomposition 

H°(X, wx) ~-- H°(E,  o~e) ~ H°(E, ~),  

it follows that I~oel v and lS~l v are the two linear subspaces of fixed points of  the 
involutory homology of 1? 4 = IwxJ v inducing t on X. So F has vertex V = Icoel v 
and its section by [/}l v is the elliptic normal curve b: which is the embedding of  E 
via the map associated with the linear series Ig[- 

Remark  2.1. The fixed points of t  are the eight distinct points of~" f3 I,gl v. 

Let N denote the projective plane, with homogeneous coordinates [ul, u2, us], 
parametrizing the quadrics of N'. In N is defined the discriminant curve A of the 
net Af, i.e., the locus of points P ~ N corresponding to singular quadrics of N'. 
Clearly A is a quintic, possibly reducible. From [6, 6.1, 6.2 and Proposition 1.2], it 
follows 

Proposition 2.2. The discriminant curve A has at most ordinary double points as 
singularities. Moreover P ~ A is singular i f  and only i f  it corresponds to a rank 3 
quadric of  N'. 

Any line contained in A corresponds to a pencil of singular quadrics through ~" 
with a common vertex [6, Lemma 6.8 and proof], say V. By projecting X from V, 
we obtain the complete intersection E of two quadrics in ~3 (projection of  any two 
quadrics of the pencil). Since ,~ has degree eight and does not pass through V, it 
follows that X projects 2:1 onto the elliptic curve E and so X is bielliptic. By [3, 
p. 272] we have 

Proposition 2.3. There is a one-to-one correspondence between the lines con- 
mined in A and the bielliptic involutions on X. 

Suppose X carries exactly three elliptic involutions, then A contains three lines 
and a non-singular conic y. In this case, see [14, p. 7], the points of  g correspond 
to a family of quadrics in N" whose set of vertices is a line L, any plane through L 
contains exactly two points of X and the following holds: 

Proposition 2.4. The projection from L gives a degree two unramified morphism 
from J( onto a non singular plane quartic curve Y. 

Notice that in this case we also have the following natural decomposition 

H°(x, •x) - u°(Y, mr) +/4°(Y, at(o)), 

where a is the half-period on Y associated to r and L = l e r ( a ) l  v is the Prym- 
canonical space. 
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Since an elliptic involution on a curve of  genus five has more then 4 fixed points 
by [13, Theorem 6] we have that they are all Weierstrass points. These points P have 
gap-sequences (1, 2, 3, 5, 9) or (1, 2, 3, 5, 7) according if  9(P) is or not a point of 
order four on E (i.e., 4q)(P) = 0 in the group law on E) [4, Proposition 5.7]. In the 
first case the weight of P achieves the maximum possible for a non-hyperelliptic 
Weierstrass point on a curve of genus five. We like to remark the existence of 
bielliptic curves of genus five whose Weierstrass points are all of the second type 
and each of them is fixed point of  an elliptic involution (see [4, 5.14]). 

We end this section with a result concerning elliptic normal quartics in 173 (see 
[10, pp. 27-29]. Any such curve if; is the complete intersection of a pencil of 
quadrics. In each pencil there are four quadric cones En, n = 1 . . . . .  4, and the 
sixteen points p of order four on/~ are divided into four set of four points so that 
each set belongs to one, and only one, of such En. I fp  6 Zn, then the tangent line to 
if2 at p passes through the vertex of Nn so that the projection of  fix from that vertex 
gives a 2 : 1 map onto 171. In particular we have: 

Proposition 2.5. I f  the tangent line at a point p of  E passes through the vertex of  
a cone ~n, then p is apoint o f  order four of  E. 

3. THE EXAMPLE X 0 

Let us put QO:=xl  2 + x 4  2 + x  2, QO 2 : =  x2 2 + x4 2 - x5 2 and QO := x 2 + X 4 X 5  ° The 
discriminant locus of  the net N "° = {ul Q° 1 + u2Q°2 + u3 QO = 0} is the quintic a 
defined by: 

, l , 2U3(U21- -u2 - -  (U3/2)2) =O. 

Clearly A is the union of the coordinate lines and an irreducible conic. Thus, 
according what we said in the previous section, X0 carries three elliptic involutions 
ti, i = 1, 2, 3. These involutions are induced by the following involutory homologies 
ofI~ 4 (that we also denote by ti): 

X i ~ - - X  i and xj = Xj if  j # i; for i = 1, 2, 3. 

The homology t i has center Oi, the point whose coordinates are all zero except the 
ith which is 1, and axis the hyperplane Hi = {xi = 0}. It is easy to determine the 
coordinates of all fixed points of  X0 under the involution ti, i = 1 . . . . .  3, and we list 
them here below: 

t l :  

Og.l: Xl ~ X4 "-]- ix5 =0 ,  
AI,1 = (0, iv/'2, ~---7, 1, i), 

A1,2 ---- (0, -i.v/2,-v/T/, 1, i), 

A1,3 = (0, - i~/2,  -.~/-~-{, 1, i), 

A1,4 = (0, iv/2, - - ~ - / ,  1, i), 

0~: X 1 =X4  - i x 5  =0 ,  
a], 1 = (0, iv'2, ~-ZT, 1, - i ) ,  

A'I. 2 = (0 , - ivY,  ~L--{, 1 , - i ) ,  

A], 3 = (0,- i~/2,  - . ~ - ,  1, - i ) ,  

a'l, 4 = (0, ivY, -v/-Zi, 1, - i ) ,  

342 



/2: 

t3: 

0 t2:X2 = X4 q- X5 = 0,  

A2,t = (i~,/2, 0, 1, 1, - 1 ) ,  

A2,2 = ( - i v /2 ,  0, 1, 1, - 1 ) ,  

A2,3 = ( i~ /2 ,  0 , - - 1 ,  1 , - 1 ) ,  

A2,4 = (i~¢/~, 0, - 1 ,  1, - 1 ) ,  

Or3:X3 = X4 = 0, 

A3,1 = (i, 1, 0, 0, 1), 
A3,2 = (i, - 1 ,  0, 0, 1), 
A3,3 = ( - i ,  1, 0, 0, 1), 
A3,4 = ( - i ,  - 1 ,  0, 0, 1), 

I °  
0/2. X2 -~ X4 --  X5 ---= 0, 

A~, 1 = (i~/2, 0, i, 1, 1), 

A~, 2 = (i~/2, 0, - i ,  1, 1), 

A~, 3 = ( - i~ /2 ,  0, i, 1, 1), 

A~, 4 = (--i~'2, 0, --i, 1, 1), 

0~: X3 ~ X 5  ~ - 0 ,  

A;,a = (i, i, 0, 1, 0), 
A~, 2 = (i, - i ,  0, 1, 0), 
A~, 3 = ( - i ,  i, 0, 1, 0), 
A;, 4 = ( - i ,  - i ,  0, 1, 0). 

For convenience we have divided each set o f  eight fixed points in sets o f  four, 
according if  they are contained in the plane oei or oe~ (defined by  the equations 
written beside). 

Let us observe that X0 lies on the three elliptic normal cones defined respectively 
by the equations: 

2 2 2 _ _  
X 2 -t- x 4 - -  X 5 - -  0, 

I~l : x 2 -Jr X4x5 = O, 

2 2 2 
X 1 -3r-X4--I-X5 = 0 ,  

F2: X 2 -Jr- X4X5 ~- 0, 

2 X 2 -1- X 4 - -  X 2 ~-- 0, 
F3: 2 2 

X 2 q- X 4 - -  X~ 0,  

with vertex V1 = (1, 0, 0, 0, 0), 1/2 = (0, 1, 0, 0, 0) and V3 = (0, 0, 1, 0, 0) respec- 
tively. The equations o f  Fi also define the elliptic normal curve i~i C Hi. In the 
pencil of  quadrics through ff;'i there are four quadric cones: those defined by  the 
pairs o f  equations above, those defining the l-'i's and the following pairs for each Ei: 

(bSa) -4-ix 2 q- 2x 2 - t - ix2qzix  2 q- 2x4x5 = 0, 

' = (0, 0,0,  1, i); with vertices vl = (0, 0, 0, 1, - i )  and v a 

(ff72) 4-x 2 + 2x 2 ±x42zF x 2 + 2X4X5 = 0, 

' = (0 ,0 ,0 ,  1, 1); with vertices v2 = (0, 0, 0, 1, - 1 )  and v 2 

(/~3) x 2 + x  2 + 2 x  2 = 0 ;  - x ~ + x  2 - 2 x  2 = 0 ,  

with vertices V3 = (0, 0, 0, 0, l )  and v~ = (0, 0, 0, 1, 0). 
One can easily verify that the tangent lines to Ei at Ai,1, Ai,2,  Ai,3 and Ai,4 all 

pass through vi, while the tangent lines to ffSi at A'i, p A'i, 2, Ari,3 and Ai, 4'  all pass 
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through v~, i = 1, 2, 3. This, by Proposition 2.5, proves that all ramification points 
of  the three elliptic involutions Li, i = 1, 2, 3, are Weierstrass points of  weight 5. 

Let us denote by ~b the projection o f P  4 from the line l = {Xl = x2 = x3 = 0} onto 

the plane 1-I = {x4 = x5 = 0}, ~b restricted to X0 gives a 2 : 1 map of  X0 onto the 

quartic curve Co defined by the equation: 

x 4 _ x  4 _ 4 x 4 = 0 ,  

that we get by eliminating the variables x4 and x5 from the equations of  Xo. This 
curve Co is isomorphic to the quotient of  Xo by group generated by the involution 
(of genus three) induced by the homology of  I? 4 that changes x4 with -x4,  xs 
with - x s  and leaves fixed the others (notice that this involution is exactly the 

composition of  the three li). Under ~b, the planes O~ i and ce; are both mapped onto 
the line in H defined by xi = 0, this for i = 1, 2, 3. We also have qb(Ai,j) = ~b(A~,j), 
j = 1, 2, 3, 4 and i = 1, 2, 3. Moreover for each i = 1, 2, 3, the hyperosculation 

planes Hi,j ,  l-If, j to /7i at the points Ai, j  and AI,j ,  are both projected onto the 
tangent line li,j t o  C0 at the qb(Ai, j) for j = 1,2,3,4,  and all the four lines 
li,j, j = 1, 2,  3, 4 ,  pass through the point Vi, i = 1, 2, 3, 4. Finally we see that 

li,j • Co = 4(b(Ai,j) for j = 1, 2, 3, 4 and i = 1, 2, 3, so all the twelve O(Ai , j )  on 
Co are Weierstrass points of  weight 2. 

To our knowledge Xo appeared for the first time in [15, p. 38] has an example of  
genus five curve having automorphisms group of  order 192. 

4. PROOF OF THEOREM t.1 

By hypothesis X carries exactly three elliptic involutions ti, i = 1, 2, 3. We denote 

Lij = L i 0 tj the composition of  two of  them, since Li, Lj always commute (e.g., [8] or 
[1, Lemma 5.13]) and do not have common couples, we have, by [2, p. 56] and [1, 
Theorem 5.9] three commutative diagrams of  curves and morphisms of  degree two 
of  the following type: 

X 

Ei Ej Yij 

I? 1 

where Yij : =  X/(Lij} is a curve of  genus three, I~ 1 ~ X/(L1, L2} (we stress the fact 
that each Yij is hyperelliptic). Let us remark that the composition r = tl o t2 o t3 
is also an involution without fixed points, so the quotient Y := X/(r> is a curve of  
genus three. Since the involutions ti, Ljk and r are pair-wise commuting [2, p. 56] 
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and [1, Theorem 5.9] again yield the following commutative diagram of  curves and 
morphisms of  degree two: 

X 

Ei Yjk Y 

Ei 

In particular: Yjk and Y are bielliptie and the latter one, as we will see, is also non- 
hyperelliptic. Let denote the morphisms: zr j~ : X ~ Yjk, e jk : Yjk -+ El,  ei : Y -+ El.  

We notice that the uuramified map E i --+ Ei is associated to a nonzero half-period 
t/i (or 2-torsion point) on Ei so that the maps zrjk and r are associated to the half- 
periods e~(r l i )  and e*(tli) on Yjk and Y respectively. 

By recalling what we said in section two, it follows that A contains three lines 
li, i = 1, 2, 3, and that we can choose, without loss of  generality, homogeneous 

coordinates (ul, u2, us) in N so that li = {ui = 0}, i = 1, 2, 3. Then we can suppose 
Qi given by: 

X 2 + J~ (X4, X5) = 0, 

where ~ (x4, xs) = aix24 + bix4x5 -}- cix 2, for i = 1, 2, 3. 
The involutory homology of  1? 4 that changes xi ~ - x i  and leaves the others 

coordinates unchanged, induces on X = f~i=1,2,3 Qi the elliptic involutions ti, this 
for each i --- 1, 2, 3. A simple computation yields to the following equation for y: 

4 ( a l U l  -k- a2u2 + a3u3)(ClUl q- c2u2 q- c3u3) --  ( b l U l  q- b2u2 + b3u3) 2 = 0. 

Clearly for general j~ 's 3/is nonsingular. Moreover it is not difficult to see that the 
set of  vertices of  the singular quadrics of  N" corresponding to the points of  3/is the 
line L = {Xl = xz ---- xs = 0}. Now let us consider the three pencils of  quadrics: 

.T'i : = { )~ Q j -q- Q k = O } , i -74 j • k , 

in {xi = 0}, i = 1, 2, 3. Each pencil .T) contains four quadric c o n e s :  Q j,  Qk and 
the other two corresponding to values of  )~ 7~ 0, co. These two latter cones, say z'k- i 

and Ati, have vertex on L. The line L and the plane 11 := {x4 = x5 = 0} are the 
linear subspaces of  1?4 fixed by the involutory homology that changes xi -+ - x i  for 
i = 4, 5 and fixes the other coordinates. This homology induces the involution t123 

on X. 
Now suppose that all Weierstrass points of  X are of  weight 5, then the branch 

points of  t i are fourth order points o n  Ei, i = 1, 2, 3. Recalling Proposition 2.4, this 
implies that in the projection from L the curve X is mapped 2 : 1 onto a nonsingular 
quartic curve C whose Weierstrass points are all of  weight 2 and lie, by fours, 
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onto the three lines x i = 0 of 1-I. Thus, by what we said in the introduction, C is 
isomorphic to F and this ends the proof. 

From above we get immediately the following: 

Corollary 4.1. There are three non-isomorphic curves of genus five with the 
requested property (,): the three (unbranched) double covers of F corresponding 
to the three half-periods on F which are lifting of the three nonzero half periods 
on E. 
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