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When the crack surfaces are traction-free, there is only one constant term T in the near-tip stress field,
which contributes uniformly to the stress component acting in the direction parallel to the crack flank.
As to pressurized cracks, the non-singular part of the asymptotic stresses appears to be more complicated
and is no longer characterized only by the constant T. In this work, an effective numerical approach is
developed for calculation of the non-singular parts of the asymptotic near-tip stresses under the action
of nonuniform crack surface pressures. With this approach, the near-tip non-singular stress field can be
accurately evaluated by direct use of regular numerical methods such as finite elements.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The asymptotic stress field in the immediate neighborhood of a
crack tip consists of the singular and the non-singular (i.e., finite-
valued) parts. In many engineering applications, nonuniform pres-
sures along the crack surfaces—which may be due to pressurized
fluids, contact pressure, etc.—are of special interest. In such cases,
the near-tip stress depends significantly on the pressurized condi-
tion. On one hand, the singular stress field is characterized by a
pair of stress intensity factors (SIFs), which can be effectively
determined by using a number of well-developed approaches (as
reviewed by, e.g., Chang and Wu (2007)). On the other hand, direct
evaluation of the non-singular part of stresses appears to be diffi-
cult due to the singular-dominant feature around the crack tip.
More investigations on proper approaches for calculation of the
asymptotic non-singular stresses are therefore in need.

When the crack surfaces are traction-free, the asymptotic non-
singular stress field is characterized by one constant term, i.e., the
T-stress T. The T-stress acts uniformly in the direction parallel to
the crack flank and is crucial to engineering fracture analysis. A
variety of approaches have thus been performed for determination
of the T-stress. For problems under specific geometric and loading
conditions, the contribution of T-stress can be determined by using
analytical approaches such as singular integral equations (e.g.,
Wang, 2003; Broberg, 2005), weight functions (Sham, 1991; Fett
and Rizzi, 2005). and specific closed form equations (e.g., Chen
et al., 2010), etc. Also, the T-stress can be numerically evaluated
ll rights reserved.
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by using the near-tip displacement and/or stress fields extracted
directly from finite element solutions (e.g., Eischen, 1987; Wang
and Parks, 1992, etc.). Alternatively, the T-stress can be evaluated
by using various types of interaction contour integrals (e.g.,
Nakamura and Parks, 1991; Moon and Earmme, 1998; Sladek et
al., 1997), In addition, numerical approaches in conjunction with
finite element method have been presented for calculation of T
(e.g., Jogdand and Murthy, 2010).

For the condition of pressurized cracks, the non-singular part of
the asymptotic stresses appears to be more complicated and is no
longer characterized only by the constant T. As a matter of fact,
when the crack surfaces are subjected to nonuniformly-distributed
pressures, the corresponding asymptotic non-singular stresses are
also anticipated to be nonunifiormly distributed in the near-tip
area due to the influence of the higher order terms. Nevertheless,
to the authors’ best knowledge, while study on evaluation of the
T-stress for pressurized cracks has been preformed (e.g.,, Wang,
2002), very few discussions in the literature have been devoted
to calculation of these higher order terms and more relevant stud-
ies are still in need.

In this paper, an effective numerical procedure is developed for
calculating the non-singular part of the asymptotic near-tip
stresses due to the action of nonuniform pressures along the crack
surfaces. Through proper definition of auxiliary stress fields, the
non-singular stress field can be directly extracted from ‘regular’
finite element solutions, with no need of special treatment. Since
the auxiliary stress fields can be easily constructed by using finite
elements. this presented approach thus appears to be applicable
for problems with arbitrary spatial distribution of crack surface
pressures. No particular singular elements are used in the study.

http://dx.doi.org/10.1016/j.ijsolstr.2012.06.015
mailto:t320001@cc.ncu.edu.tw
http://dx.doi.org/10.1016/j.ijsolstr.2012.06.015
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


Fig. 1. A pressurized crack in a 2D elastic body with a local coordinate system.

Fig. 2. The crack surface pressures are replaced by tp on Spu and Spl

Fig. 3. The crack surface pressures are replaced by CV at points SVu and SVl.

Fig. 4. The crack surface pressures are replaced by CR at interior points SRu,1, SRu,2,
SRl,1, and SRl,2.
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2. Asymptotic near-tip stresses

Consider a crack in a 2-D homogeneous elastic body (Fig. 1). We
introduce a local coordinate system originating at the crack tip O,
with the crack line lying along the negative x1-axis. The body is
subjected to a system of loads and reaches a deformed state. We
assume that the loadings are by surface tractions t on a portion
of boundary St and concentrated force CQ at point SQ, by imposed
displacements uo on another portion of boundary Su and, particu-
larly, by nonuniform pressure pc(x1) on the crack surfaces Sc.
2.1. Traction-free crack surfaces

For the special condition when the crack surfaces are traction-
free, i.e., pc(x1) = 0, the asymptotic mixed-mode stress field in the
immediate neighborhood of the crack tip can be expressed (Wil-
liams, 1957) as

rijðr; hÞ ¼
1

ð2prÞ1=2 ½K IfI;ijðhÞ þ K IIfII;ijðhÞ� þ Tdi1dj1 þ Oijðr1=2Þ ð1Þ

where rij are the Cartesian components of the stress tensor, (r,h)
denote the polar components of the local coordinate, KI and KII are
the SIFs associated with modes I and II respectively, T is the T-
stress, dij is the Kronecker delta, and Oij(r1/2) indicates the higher
order term of r1/2. Also, the dimensionless angular coefficients
fI,ij(h) and fII,ij(h) are universal functions of h.



Fig. 5. In this de-singularized loading system, the crack surfaces Sc are subjected to
the pc(x1), along with the pair of boundary tractions –tp.

Fig. 6. (a) A central crack subjected to constant crack surface pressure po. (b) The Mode I
the de-singularized loading system (Problem 1.1).
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As shown in Eq. (1), there is only one constant term T in the
asymptotic stress field. The T-stress contributes uniformly to the
stress component r11, which acts parallel to the plane of the crack.
It is also indicated by Eq. (1) that the near-tip stress field is domi-
nated by the leading term r–1/2, which accounts for the singular
part of the stresses. As a consequence, the contribution of T, which
leads the non-singular part of the asymptotic stress field, is rela-
tively small in comparison with the singular part and tends to be
neglected numerically.
2.2. Pressurized crack

For problems under the action of prescribed pressures on the
crack surfaces, the asymptotic near-tip stress field becomes

rijðr; hÞ ¼
1

ð2prÞ1=2 ½K IfI;ijðhÞ þ K IIfII;ijðhÞ� þ rijpðr; hÞ ð2Þ

where the finite-valued rp(r,h) represents the asymptotic non-
singular part of stresses due to the action of all the prescribed loads
including t, CQ, and pc(x1). Mathematically, in order to establish the
above expression, we need to consider the boundary value prob-
lem (BVP) formulated in terms of the Airy stress function with, par-
ticularly, the prescribed pressure boundary conditions pc(x1). This
leads to a solution for KI, KII, and rp consisting of two parts, which
stress field under a far-field uniform tensile load po. (c) The specimen is subjected to
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are the particular solution associated with pc(x1) and the homoge-
neous solution associated with the traction-free boundary condi-
tion. As a result, rp(r,h) represents the convergent series of
higher order terms of functions of r and h in Williams’ expansion
(starting from the constant terms) and needs to be determined
by solving the corresponding BVP. In particular, the T-stress in such
a case is defined as (Sham, 1991)

T � r11pðr; hÞjr¼0 þ pcðx1Þjx1¼0 ð3Þ

For the special condition when the crack surfaces are traction-
free, rij

p(r, h) reduces to Tdi1dj1 (i.e., the constant T-stress), as previ-
ously described. For the other special condition when the crack tip
is locally unloaded (i.e., pc(0) = 0), T = r11

p(0, h). For another special
condition when the crack is embedded in an infinite medium and
subjected only to uniformly distributed pressures along the crack
surfaces (i.e., with pc(x1) = po), rij

p(r, h) then appears to be equal
to �podij (as shown in the Appendix) and, consequently, T = 0. This
indicates that, in such a uniformly pressurized case, the non-singu-
lar stress field is dominated by the constant term �po. This con-
stant term contributes uniformly to both the stress components
r11 and r22, which act parallel and perpendicular to the plane of
the crack respectively.

Note that, as shown in Eqs. (1)/(2), the near-tip stress field is
dominated by the leading term r–1/2, which corresponds to the sin-
gular part of the stresses and can be accurately computed once the
SIFs being properly determined with any of the well-developed ap-
proaches. As to the non-singular stresses, their contributions in the
asymptotic stress field are negligibly small in comparison with the
singular part. Therefore, when T/rij

p are to be determined
Fig. 7. (a) Radial distributions of near-tip r11
p/po. (b) Radial d
numerically by directly subtracting the singular stress components
from the near-tip finite element solutions of left hand side quantity
rij(r,h) in Eqs. (1)/(2), their results may be relatively inaccurate due
to the inevitable truncation error and discretized inaccuracy in fi-
nite element calculations.

3. Auxiliary stress field

To avoid the inevitable inaccuracy in evaluation of the near-tip
non-singular stresses, we can have the singular part of stresses cir-
cumvented by introducing the following concept of auxiliary stress
fields. To this end, we take the original boundary value problem in
Fig. 1 and replace the crack surface pressures by, say, a pair of trac-
tions tp on the portions of boundary Spu and Spl, which are posi-
tioned on the upper and lower sides of the crack respectively, as
shown in Fig. 2. The magnitude of tp is properly specified so that
the resulting SIFs associated with tip O are of the same values as
those of the original BVP. The corresponding near-tip stress field
of this new problem in Fig. 2 is then defined as the auxiliary stress
field r(a) and written as

rðaÞij ðr; hÞ ¼
1

ð2prÞ1=2 ½K IfI;ijðhÞ þ K IIfII;ijðhÞ� þ TðaÞdi1dj1 þ OðaÞij ðr
1=2Þ ð4Þ

where T(a) is the T-stress and Oij
(a)(r1/2) is the higher order term of

r1/2, both corresponding to the auxiliary stress field.
In order to construct the auxiliary stress field, we need to eval-

uate the corresponding SIFs at the crack tip. This can be done by
using a variety of well-developed path-independent contour inte-
grals (e.g., Stern et al., 1976; Chang and Wu, 2007, etc.).
istributions of near-tip r22
p/po (l/w = 1/10, Problem 1.1).



Fig. 8. (a) A central crack subjected to linearly distributed pressure along its right half crack surfaces (Problem 1.2). (b) A typical finite element representation used for the
specimen.
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Fig. 9. Three finite element models in the near-tip region for the specimen in Fig 8(a).
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It is also noted that the auxiliary stress field can be constructed
differently, as long as the corresponding SIFs at tip O are of the same
values as those of the original BVP. For one example, instead of the
boundary surface tractions tp in Fig. 2, we can have the crack surface
pressures replaced by a pair of concentrated forces CV acting at
boundary points SVu and SVl (Fig. 3). Further, for another example,
the crack surface pressures can be replaced by a set of concentrated
forces CR applied at four interior points SRu,1, SRu,2, SRl,1, and SRl,2

(Fig. 4). In this sense, there can actually be numerous different
selections of auxiliary stress fields. We can therefore take any of
them, say, the i-th auxiliary stress field r(ai), and represented it as

rðaiÞ
ij ðr; hÞ ¼

1

ð2prÞ1=2 ½K IfI;ijðhÞ þ K IIfII;ijðhÞ� þ TðaiÞdi1dj1 þ OðaiÞ
ij ðr

1=2Þ

ð5Þ

where T(ai) and Oij
(ai)(r1/2) are the T-stress and the higher order term

of r1/2 corresponding to r(ai).

4. De-singularized loading system

By taking the ith auxiliary stress field r(ai), and combining Eqs.
(2) and (5), we can have the asymptotic non-singular stresses rp

represented as
rijpðr; hÞ ¼ rijðr; hÞ � rðaiÞ
ij ðr; hÞ þ TðaiÞdi1dj1 þ OðaiÞ

ij ðr
1=2Þ ð6Þ

Eq. (6) indicates that, once the original and the auxiliary stress
fields (i.e., r and r(ai)) are properly determined, the non-singular
stresses rp can then be calculated. Nevertheless, due to the pres-
ence of the near-tip singularity, it is rather difficult to have r and
r(ai) accurately evaluated. Therefore, instead of having r and r(ai)

calculated explicitly, an alternative approach by establishing a
‘de-singularized loading system’ is proposed as follows.

To this end, we take the difference of the original and the i-th
auxiliary stress fields, denoted as rdi, and represent it as
rdi
ij ðr; hÞ � rijðr; hÞ � rðaiÞ

ij ðr; hÞ ð7Þ

For illustration, we consider the original BVP in Fig. 1 and take
the auxiliary stress field in Fig. 2 as an example. It is observed that,
by superposition theory, rdi appears to be equivalent to the stress
field resulting from the loading system due to the combined action
of the crack surface pressure pc(x1) and the pair of boundary trac-
tions –tp (Fig. 5), which is constructed by taking the difference of
the two loading systems in Figs. 1 and 2. Since both the original
and auxiliary stress fields possess the same values of SIFs, the sin-
gular part of rdi at tip O are thus eliminated. It is therefore antici-
pated that, under the application of such a de-singularized loading



Fig. 10. Four auxiliary stress fields for Problem 1.2.
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system in Fig. 5, no singular behavior is involved in rdi at tip O. This
de-singular feature implies that rdi can be accurately evaluated by
direct use of regular finite element solutions, even in the elements
directly adjacent to crack tip O.

Substituting Eq. (7) into Eq. (6) results in

rp
ijðr; hÞ ¼ rdi

ij ðr; hÞ þ T ðaiÞdi1dj1 þ OðaiÞ
ij ðr

1=2Þ ð8Þ
As indicated by Eq. (8), in addition to rdi, we need to evaluate

the T-stress corresponding to the auxiliary stress field in order to
determine rp. This can be done by using a well-developed interac-
tion contour integrals reported in the literature (e.g., Nakamura
and Parks, 1991; Sladek et al., 1997; Moon and Earmme, 1998,
etc.). In the present investigation the integral provided by ABAQUS
version 6.7 has been employed for computation of T-stress. Since
the integration is path-independent, accurate values of T can al-
ways be obtained without use of singular elements when the first
layer of elements adjacent to the crack tip are not selected in the
integration contour.

It is also noted that, in addition to rdi and T(ai), an undetermined
higher order term associated with the auxiliary stress field Oij

(ai)(r1/

2) is also included in Eq. (8). It is therefore necessary to investigate
the effect of this higher order term. This can be done by taking dif-
ferent selections of auxiliary stress fields and cautiously examining
the corresponding numerical solutions. As a matter of fact, it is ob-
served that Oij

(a)(r1/2) makes rather insignificant contributions to
the calculation of rp in the near-tip area. Details of this numerical
examination will be illustrated in the following numerical
examples.



Fig. 11. Radial distributions along the upper crack surface from different FE meshes: (a) near-tip r11
p/po, (b) near-tip r22

p/po (l/w = 1/10, Problem 1.2).

Table 1
The locations of the loadings (auxiliary stresses, Problem 1.2).

Loading type Locations

Fig 10(a) Distributed tractions Upper and lower boundaries from (�0.183W,-L/2) to (0.067W,�L/2), from (�0.183W, L/2) to (0.067W, L/2)
Fig 10(b) Distributed tractions

Fig 10(c) Concentrated forces (0.1W,�L/2), (0.1W,L/2)
Fig 10(d) Concentrated forces (-0.05W,-0.213L), (0.067W, �0.213L), (�0.05W,0.213L), (0.067W, 0.213L)
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5. Numerical examples

Two sets of numerical example problems are presented in the
following two subsections. In the first subsection, a specimen sub-
jected only to crack surface pressures is considered. In the second
subsection, specimens subjected to both external loads and crack
surface pressures are considered. The problems are analyzed using
finite elements. Quadratic elements are used for displacement
interpolation in the calculation. No particular singular element is
used throughout the study.
5.1. Crack surface pressures

5.1.1. Problem 1.1—constant pressure
This problem is presented to demonstrate the validity of our

numerical scheme and verify the accuracy of the calculation. We
consider a plane stress specimen with a central crack of length 2l
subjected to constant crack surface pressure po, as shown in
Fig. 6(a). The specimen is modeled with E = 10 MPa and m = 0.25.
When the values of both l/w and l/L are small, analytic solutions
for the near-tip non-singular stresses can be written (Appendix) as



Fig. 12. Radial distributions along the upper crack surface by using different auxiliary solutions: (a) near-tip r11
p/po, (b) near-tip r22

p/po (l/w = 1/10, Problem 1.2).

Fig. 13. (a) Radial distributions of near-tip r11
p/po, (b) radial distributions of near-tip r22

p/po (l/w = 1/10, Problem 1.2).
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Fig. 14. A centrally cracked specimen subjected to linearly distributed crack surface
pressure and external loads (r, s) (Problem 2.1).

Fig. 15. (a) Radial distributions of near-tip r11
p/po, (b) radial distribut
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rp
ijðr; hÞ ¼ �porij ð9Þ

In the following calculation, an auxiliary stress field is con-
structed by applying uniform tension po along the upper and lower
boundaries (Fig. 6(b)). This leads to a de-singularized loading sys-
tem shown in Fig. 6(c). By solving the problem under this de-singu-
larized loading system using finite elements and then substituting
the solutions into Eq. (8), the near-tip non-singular stresses can
thus be determined. The results of rp versus the scaled local radial
distance r/2l are shown in Fig. 7(a) and (b). In the figures, radial
distributions of the normalized stress components r11

p/po and
r22

p/po sampled at the integration points of each element are de-
picted with respect to various circumferential angles h. More de-
tails about the computation procedure for rp will be illustrated
in the next example problem. Also shown in the figures are the
analytic solutions shown in Eq. (9). The FE results under different
angles appear to be almost indistinguishable and all very closed
to the analytical solutions. This indicates that the asymptotic
behavior of rp is accurately simulated in the singular-dominant
area (which is in the range within 10% of the crack length, as sug-
gested by Chang and Wu (2007)), even at those points located in
the elements directly adjacent to the crack tip.

5.1.2. Problem 1.2—linearly-distributed pressure
In this example, we consider a plane stress specimen with a

central crack of length 2l subjected to linearly distributed pressure
applied along the right half part of the crack surfaces, with the
magnitude at tip O equal to po, as shown in Fig. 8(a). Still, The spec-
imen is modeled with E = 10 MPa and m = 0.25. Also, the specimen
ions of near-tip r22
p/po (l/w = 1/10, (r, s) = (1,2)po, Problem 2.1).
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is analyzed by using a typical finite element representation shown
in Fig. 8(b). More discussions on the discretized model in the near-
tip region will be presented later. Note that both the auxiliary and
de-singularized configurations can be analyzed by using the same
discretized finite element model, with two different loading condi-
tions. In view of this, the discretization process needs to be carried
out for only once in each problem.

The study in this problem is organized as follows. First, the ef-
fect of the local near-tip finite element approximation is investi-
gated. Subsequently, the influence due to different selections of
auxiliary stress field is examined. Finally, the spatial variation of
the resulting rp is observed.

To investigate the effect of local mesh refinement around the
near-tip area, three finite element models (each with totally 296,
472, and 764 elements, respectively) are defined. Details of the
meshes in the vicinity of the crack tip are shown in Fig. 9(a)–(c).
The first discretized model mesh(a) is rather coarse and with very
Fig. 16. A single edge notched specimen with a crack of length l subjected to a far-field m
partially loaded in the range of length lp, (b) a pair of concentrated loads po located at a di
edge of the crack, (d) constant crack surface pressure po on the crack surface, (r, s) = (0
different near-tip local element structure from the other two
meshes. On the other hand, mesh(b) and the finer mesh(c) are both
progressively refined with 12 and 36 layers of elements respec-
tively within the scaled radial range r/2l = 0.333. By choosing an
auxiliary stress field as shown in, say, Fig. 10(a), the near-tip
non-singular stresses rp evaluated from the three FE meshes are
shown in Fig. 11(a) and (b), where radial distributions of r11

p/po

and r22
p/po along the upper crack surface (i.e., h = p) are illustrated

respectively. The results appear to be very insensitive to the local
finite element mesh even in the element directly adjacent to the
crack tip. The property of mesh insensitivity for the calculation is
thus verified. Also plotted in Fig. 11(b) for comparison is the ap-
plied pressure along the upper crack surface. The results show that
the FE results of r22

p are well consistent with the imposed pc(x1)
and so the asymptotic behavior is well simulated by the proposed
scheme. It is interesting to note that, although r11

p and r22
p in

Fig. 11 both look like remaining almost constant versus log(r/2l)
ixed-mode loading system (r, s) (Problem 2.2): (a) uniform crack surface pressure po

stance lp away from the tip O, (c) a pair of concentrated loads po located at the corner
,0), (e) linearly distributed crack surface pressure, (r, s) = (0,0).
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up to r/2l = 0.01, they actually appear to vary linearly with r/2l.
Such linear feature can be illustrated by comparing with the im-
posed pc(x1) shown in Fig. 8(a).

To examine the influence due to different selections of auxiliary
stress fields, four auxiliary stresses as shown in Fig. 10(a)–(d) are
defined for the calculation. These auxiliary stresses are constructed
by imposing either distributed tractions or concentrated forces,
which can be located either along the boundary or inside the body.
The locations of these loadings are listed in Table 1. Note that the
magnitude of the loads for these auxiliary stresses can be easily
determined since they are directly proportional to the SIFs. The
near-tip non-singular stresses are then evaluated by using these
four auxiliary stresses and the results along the upper crack surface
are shown in Fig. 12(a) and (b). It is observed that all the auxiliary
stresses yield almost indistinguishable results for both r11

p and
r22

p in the singular-dominant region. Such independent feature
indicates that the undetermined higher order term Oij

(ai)(r1/2) in
Eq. (8) makes rather insignificant contributions to the calculation
of rp in the singular-dominant region and so can be neglected.

Since the concept of evaluation of rp is originally presented in
this paper, there is no analytical or numerical solution for this
problem with which direct test of the above computation scheme
can be carried out. Nevertheless, the numerical results show that
the calculations are rather insensitive to the near-tip FE mesh. Also,
the computed values from different auxiliary stress fields appear to
be well consistent with each other within the singular-dominant
region. Further, the imposed crack surface pressures are observed
to be well simulated in the calculation. The feasibility of the pro-
posed scheme can thus be appropriately demonstrated by the
above observations and comparisons.
Fig. 17. (a) Radial distributions of near-tip r11
p/po, (b) radial distributions of ne
As an aside, the radial distributions of rp corresponding to dif-
ferent circumferential angles h are plotted in Fig. 13(a) and (b). It is
observed that the absolute magnitudes of both r11

p and r22
p are

peaked at the crack tip, with their values reach up to po and then
decrease gradually as the radial distance increases. Such spatially
varying behavior of rp is actually due to the influence of the higher
order terms. Under the action of nonuniform crack surface pres-
sures, some of the non-singular coefficients in William’s expansion
may be relatively larger than the constant terms so that their influ-
ence becomes rather significant even though the radial distance at
which the stress components estimated is very small. This appears
to be different from the behavior of constant T-stress, contributed
only to the component of r11, for the condition of traction-free
cracks.

5.2. External Loads and Crack Surface Pressures

5.2.1. Problem 2.1—central-cracked specimen
We have a plane stress specimen with a central crack of length

2l subjected to linearly distributed pressure, as well as a far-field
mixed-mode loading system (r, s), as shown in Fig. 14.

Since the specimen is subjected to the same crack surface pres-
sure as that in Problem 1.2, both problems can thus be solved by
using the same auxiliary stresses and, consequently, the same
de-singularized loading system. Hence, the near-tip non-singular
stresses rp can then be determined by taking the results of Prob-
lem 1.2 and superposing with the T-stress due to the far-field load-
ing system (r, s), By comparing the results of the present problem
(Fig. 15(a) and (b)) with those of Problem 1.2 (Fig. 13(a) and (b), it
is observed that the values of r11

p for the two problems are
ar-tip r22
p/po (l/w = 1/10, lp/2l = 0.024, (r, s) = (1,2)po, Case I, Problem 2.2).
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different by a constant –r, which appears to depend on the far-
field load. On the other hand, r22

p remains unchanged as long as
the crack surface pressure remains the same.

5.2.2. Problem 2.2—single edge notched specimen
We have a single edge notched specimen with a crack of length l

subjected to a far-field mixed-mode loading system (r, s). In the
following calculations, five instances of crack surface pressures
are considered.

In the first instance (Case I), the crack surfaces are subjected to
the uniform pressure po that is partially loaded within the range of
length lp, as shown in Fig. 16(a). The radial distributions of rp cor-
responding to different circumferential angles h are calculated with
our proposed scheme and shown in Fig. 17(a) and (b). The results
show that, along the upper crack surface (i.e., h = 180o), both r11

p

and r22
p remain constant within the range of length lp under this

partially-loaded constant pressure, then increase abruptly by an
amount of po and stay (almost) invariant as the radial distance in-
creases. In particular, the FE results of r22

p are well consistent with
the imposed pc(x1) in the whole range of singular-dominant area,
even in the element directly adjacent to the crack tip. It is also ob-
served that, as h decreases (i.e., away from the crack surface), the
stresses appear to distribute more smoothly in the radial direction,
as anticipated.

In the second loading instance (Case II), the crack surfaces are
subjected to a pair of concentrated loads po that is located at a dis-
tance lp away from the crack tip, as shown in Fig. 16(b). A compar-
ison of the FE results for rp corresponding to different
circumferential angles h is made and shown in Fig. 18(a) and (b).
Fig. 18. (a) Radial distributions of near-tip r11
p/po, (b) radial distributions of ne
It is shown in the figures that both r11
p and r22

p remain constant
along the upper crack surface (i.e., h = 180o), except in the neigh-
borhood of r = lp. where an abrupt increase to a relatively large va-
lue (analytically approaching to infinity) is observed due to the
presence of the concentrated load. Moreover, the radial distribu-
tion of rp appears to be more and more smooth as h decreases. This
result indicates that, although the concentrated load leads to sin-
gular stresses at r = lp, the non-singular stress field elsewhere can
be properly determined with the presented approach.

In the third loading instance (Case III), the crack surfaces are
subjected to a pair of concentrated loads po located at the corner
edge of the crack, as shown in Fig. 16(c). The FE results for rp cor-
responding to different circumferential angles h are plotted in
Fig. 19(a) and (b). It is shown in Fig. 19(a) that the values of r11

p

remain almost constant within the range of r/2l < 0.01 for all an-
gles. Also, the results of r22

p are observed to be vanishingly small
within almost the same range. It is therefore indicated that, when
the load is away enough from the crack tip, the feature exhibited
by the non-singular stresses appear to be very similar to that of
the T-stress. The feasibility of our presented approach is thus fur-
ther demonstrated in this problem.

The results of rp can also be used to calculate the T-stress. In the
fourth instance (Case IV), the crack surfaces are subjected to the
constant pressure po, as shown in Fig. 16(d). As illustrated in Eq.
(3), the T-stress can be evaluated by taking the FE result of r11

p

at the crack tip (in this instance, r is taken as 10�4 l and considered
along the upper crack surface, i.e., h = 180o, and then added by
pc(0) = po. The results of r11

p(10�4l,180o)+po corresponding to dif-
ferent ratios of l/w are tabulated in Table 2. Also listed in the table
ar-tip r22
p/po (l/w = 1/10, lp/2l = 0.024, (r, s) = (1,2)po, Case II, Problem 2.2).



Fig. 19. (a) Radial distributions of near-tip r11
p/po, (b) radial distributions of near-tip r22

p/po (l/w = 1/10, (r, s) = (0.5,1)po, Case III, Problem 2.2).

Table 2
The T-stress (Case IV, Problem 2.2).

l/w 0.2 0.4 0.6 0.8

[r11
p (10�4l,180o) + po]/po 0.4078 0.4154 1.0278 6.9754

T/po (Wang, 2002) 0.4050 0.4217 1.0405 6.8297

Table 3
The T-stress (Case V, Problem 2.2).

l/w 0.2 0.4 0.6 0.8

[r11
p (10�4l,180o)]/po 0.2799 0.2889 0.6981 4.4538

T/po (Wang, 2002) 0.2831 0.2953 0.7019 4.5876
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are the results of T from Wang (2002), where an interaction inte-
gral (Nakamura and Parks, 1991) is used for the calculation. The
numerical results from both approaches are observed to be well
consistent with each other, with maximum deviation under 3%.

In Case V, linearly distributed crack surface pressure is
considered, as shown in Fig. 16(e). Similarly, the T-stress can be
evaluated by taking the FE result of r11

p at the crack tip (still,
r = 10�4 l and h = 180o, and then added by pc(0) = 0. The results of
r11

p(10�4l,180o) corresponding to different ratios of l/w are tabu-
lated in Table 3. Also listed in the table for comparison are the re-
sults of T from Wang (2002). The maximum deviation from both
approaches are observed to be under 3%. The feasibility of this pro-
posed approach is thus further demonstrated from the comparison
study.

It is well acknowledged that the T-stress has significant effects
on various aspects of fracture of engineering components and such
effects have been experimentally evident in the literature when
the crack surfaces are traction-free. Nevertheless, for nonuniformly
pressurized cracks, in addition to T, pc(x1) and the higher order
terms also contribute to both r11

p and r11
p, as observed from the

above numerical results. It is therefore important to investigate
whether the relations between T and the fracture of engineering
components are still valid under such conditions. However, we
can hardly make any conclusions on this subject from currently
available experimental data since most of them were calibrated
under the traction-free conditions. Therefore, in order to examine
the significance of T and/or rp on the fracture of engineering com-
ponents, further information from experiments in this field is obvi-
ously required in future study.
6. Conclusion

When the crack surfaces are traction-free, there is only one con-
stant term T that contributes uniformly to the stress r11 in the
near-tip stress field. For pressurized cracks, the non-singular parts
of the near-tip stresses appear to be more complicated and is no
longer characterized only by the constant T. In this work, a numer-
ical approach is developed for calculation of the non-singular parts
of the asymptotic near-tip stresses under the action of nonuniform
crack surface pressures. By introducing the concept of auxiliary
stress fields, a de-singularized loading system can be established.
With this de-singularized loading system, the near-tip non-singu-
lar stress field for pressurized cracks can then be directly extracted
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from regular numerical solutions such as finite elements. The aux-
iliary stress fields can be easily constructed and this presented
scheme is applicable for problems with arbitrary spatial distribu-
tion of crack surface pressures. No particular singular elements
are required in the calculation.
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Appendix A

We consider a plane stress specimen with a central crack of
length 2l subjected to constant crack surface pressure po, as shown
in Fig. 6(a). When the values of both l/w and l/L are small, this cor-
responds to the condition with a crack embedded in an infinite
medium and subjected only to uniformly distributed pressure
along the crack surfaces.

The non-singular part of stresses at tip O can be determined by
using the concept of superposition theory. With this theory, we can
have the stress field due to the action of the crack surface pressure
replaced by the sum of those shown in Fig. 6(b) and (c). In Fig. 6(b),
the specimen is subjected to the far-field uniform tensile load po,
which corresponds to a Mode I stress field and the asymptotic
stresses near crack tip O can be expressed as (Broek, 1986)

rijðr; hÞ ¼
l

2r

� �1=2

pof I;ijðhÞ � podi1dj1 þ Oðr1=2Þ ðA:1Þ

As to the specimen in Fig. 6(c), the crack is inactivated due to
the combined action of the far-field –po and the crack surface pres-
sure po. The specimen is then stressed homogeneously by the com-
pressive load –po in the x2-direction, i.e.,

rijðr; hÞ ¼ �podi2dj2: ðA:2Þ
As a result, by taking the summation of Eqs. (A.1) and (A.2), we
then have the asymptotic stresses for the uniformly pressurized
crack in Fig. 6(a) be expressed as

rijðr; hÞ ¼
l

2r

� �1=2

pofI;ijðhÞ � podij þ Oðr1=2Þ ðA:3Þ
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