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1 Introduction

In cosmology one is interested in computing the probability measure for different classical

configurations of geometry and fields on a spacelike surface Σ. This measure is given by

the universe’s quantum state. In a series of papers [1–3] we have calculated the tree level

measure predicted by the no-boundary wave function (NBWF) [4] for gravity coupled to a
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positive cosmological constant and a scalar field with a positive potential. Predictions for

our observations are obtained by further conditioning on our observational situation and

its possible location in each history, and then summing over what is unobserved [5].

The formal sum over geometries usually used to specify the NBWF [4] is difficult to

define precisely. Further, the indefiniteness of the Euclidean gravitational action requires a

conformal factor rotation [6] of the sum whose exact nature has not been specified beyond

the semiclassical level [7]. It is therefore of interest to find a mathematically more precise

formulation of the NBWF that allows one to reliably calculate the probability measure

beyond the saddle point approximation.

In this paper we initiate a novel approach to this problem that aims to formulate the

NBWF in string theory. In particular we show that one can use the Euclidean AdS/CFT

correspondence1 [8–10] to derive a dual formulation of the semiclassical2 NBWF in terms of

the partition function of a Euclidean field theory defined on the future boundary conformal

to Σ. In the spirit of AdS/CFT we conjecture that the duality extends beyond the leading

order approximation. The dual field theory description would then give a precise meaning

(in a certain limit) to the notion of a wave function of the universe in the context of string

theory and provide a new method to compute the string and quantum corrections to the

tree level no-boundary measure.3

In its current form the NBWF is defined by a sum over regular complex four-geometries

and four-dimensional matter field configurations on a four-disk M with boundary Σ. The

configurations are weighted by exp(−2I/~) where I is the Euclidean action of geometry

and field. In this paper we take this to be the action of Einstein gravity coupled to a positive

cosmological constant and scalar matter fields with a positive potential.4 In the semiclassi-

cal approximation the NBWF predicts an ensemble of classical, Lorentzian universes. Each

member in this ensemble is associated with a complex saddle point geometry, which is an

extremum of I that is regular on M and matches onto the classical configuration on Σ.

To leading order in ~ the probabilities of different classical configurations are propor-

tional to exp(−2IR/~), where IR is the real part of the action of the corresponding saddle

point. These probabilities are conserved along a classical trajectory as a consequence of

the Wheeler-DeWitt equation [1, 2] and therefore constitute the tree-level no-boundary

probability measure on an ensemble of coarse-grained5 classical histories.

The action of a saddle point is an integral of its complex geometry and fields that

includes an integral over time. Different complex contours for this time integral give differ-

ent representations of the saddle point, each giving the same probability for the classical

configuration the saddle point corresponds to. This freedom in the choice of contour gives

1See [11–13] for discussions of AdS/CFT in the context of the wave function of the universe for Λ < 0.
2By ‘semiclassical’ we mean leading order in ~ and α′.
3This can also be viewed as a novel application of AdS/CFT to cosmology, or as a realization of dS/CFT.
4The same results can be established starting from a negative cosmological constant and a negative

scalar potential [14].
5In the expanding branch of the NBWF one finds that the ensemble of classical histories predicted by the

NBWF on a surface Σ is a coarse-graining of the ensemble predicted on a larger surface Σ′. This is expected

on general grounds, because the wave function at Σ automatically coarse-grains over all bifurcations of

histories to the future of Σ.
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physical meaning to a process of analytic continuation — not of the Lorentzian classical

histories themselves — but of the saddle points that define their probabilities.

Using this freedom of choice of contour, we identify two different useful representations

of a saddle point corresponding to an asymptotically de Sitter, classical, Lorentzian his-

tory. In one representation (dS) the interior geometry behaves as though the cosmological

constant and the scalar potential were positive. In the other (AdS) the Euclidean part of

the interior geometry behaves as though these quantities were negative, defining a regular,

asympotically AdS domain wall. Asymptotically Lorentzian de Sitter (dS) universes and

Euclidean anti-de Sitter (AdS) spaces are thereby connected by the NBWF.

We find that the action I of the saddle points can be expressed schematically as

I = IdS = Ireg
DW + iSct. (1.1)

Here IdS is the action in the de Sitter representation and Ireg
DW is the regularized action of the

Euclidean domain wall. Sct is a real surface term. Eq (1.1) (expressed precisely in (6.7))

is our core result. It implies that the requirement that a configuration on Σ behaves

classically, with constant IR, automatically regulates the volume divergences associated

with the action of the Euclidean AdS regime of the saddle point. Furthermore, it implies

that the leading order in ~ probabilities of classical, Lorentzian, asymptotically de Sitter

histories can be calculated either from the dS representation of the saddle points or from

their representation as Euclidean, asymptotically AdS, domain walls.

In a rather large class of models one can use the Euclidean AdS/CFT duality to replace

the AdS domain wall factor Ireg
DW by minus the logarithm of the partition function of a dual

field theory. This leads to a dual formulation of the semiclassical NBWF — and hence a

concrete realization of a dS/CFT duality — in terms of one of the known, unitary dual

field theories familiar from AdS/CFT defined on the boundary conformal to Σ. In this

dual description, the argument of the wave function (modulo the scale factor) enters as an

external source in the dual partition function. The dependence of the partition function on

the values of these gives a dual no-boundary probability measure on the space of classical,

inflationary histories.

The resulting dS/CFT duality has several properties that have been conjectured or

studied elsewhere (see e.g. [11, 13, 15–21]). In particular evolution in time of the universe,

which corresponds to radial evolution in the saddle points, emerges in our framework

as inverse RG flow in the dual as originally conjectured in [15]. On the other hand,

an important distinction between our approach and most of the previous discussions of

dS/CFT is that the gauge/gravity duality established here involves the quantum state of the

universe. In particular, our setup relies neither on the analytic continuation of Lorentzian

solutions in the complex plane, nor on a correspondence between (Lorentzian) dS and

(Euclidean) AdS theories that involves the continuation of the dS radius and the time

coordinate (or an analogous continuation in the dual parameters). Instead the connection

between AdS and dS emerges at the level of the quantum state. This also means that

even though the dual field theory lives on the future boundary of de Sitter, it encodes

the ‘initial’ state of the universe and is thus closely connected to the resolution of the

singularity problem in cosmology.6

6See the discussion of singularity resolution in the NBWF context in [1, 2].
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The paper is organized as follows: section 2 reviews very briefly the NBWF and how it

predicts Lorentzian histories. The details can be found in the series of papers cited above,

especially [1, 2]. Section 3 discusses the different possible representations of the complex

saddle points of the NBWF, in particular the representation in which the Euclidean region

exhibits an AdS geometry. Section 4 illustrates this explicitly in the simplest possible case

— empty de Sitter space. Section 5 considers the ensemble of homogeneous saddle points

predicted by the NBWF for gravity coupled to a scalar field with a positive potential.

These correspond to inflating asymptotically dS universes. Section 6 discusses general,

inhomogeneous saddle point configurations and their AdS representation. Finally in sec-

tion 7 we derive a dual formulation of the NBWF by applying AdS/CFT to the general

bulk geometries.

2 Classical predictions of the no-boundary quantum state

2.1 The no-boundary wave function of the universe

A quantum state of the universe is specified by a wave function Ψ on the superspace of

3-geometries and matter field configurations on a closed spacelike surface Σ. Representing

3-geometries by metrics hij(~x), and taking a single scalar field χ(~x) for the matter, we

write (schematically) Ψ = Ψ[h, χ].

We assume the no-boundary wave function (NBWF) as a model of the state [4]. The

NBWF is given by a sum over geometries g and fields φ on a four-manifold M with one

boundary Σ. The contributing histories match the values (h, χ) on Σ and are otherwise reg-

ular. They are weighted by exp(−I/~) where I[g, φ] is the Euclidean action. Schematically,

Ψ[h(~x), χ(~x)] ≡
∫
C
δgδφ exp(−I[g(x), φ(x)]/~). (2.1)

Here, g(x) (short for gαβ(xγ)) and φ(x) are the histories of the 4-geometry and matter

field. We take the Euclidean action I[g(x), φ(x)] to be a sum of the Einstein-Hilbert action

(in Planck units where ~ = c = G = 1)

IC [g] = − 1

16π

∫
M
d4x(g)1/2(R− 2Λ)− 1

8π

∫
M
d4x(h)1/2K (2.2)

and the matter action

Iφ[g,Φ] =
3

4π

∫
M
d4x(g)1/2[(∇φ)2 + V (φ)] (2.3)

(where the normalization of the scalar field φ has been chosen to simplify subsequent

equations and maintain consistency with our earlier papers.) The integration in (2.1) is

carried out along a suitable complex contour which ensures the convergence of (2.1) and

the reality of the result [7].

In this paper we concentrate on models in which the cosmological constant Λ and

the potential V in the action (2.2)–(2.3) are positive. This means that with a positive

signature convention for the metric the Euclidean action I = IC + Iφ in (2.1) is that of
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Einstein gravity coupled to a positive cosmological constant and a positive potential. With

a negative signature convention this is minus the action7 of Einstein gravity coupled to a

negative cosmological constant −Λ and a negative potential −V . Any notion of signature is

of course meaningless for the complex metrics contributing to (2.1). However the signature

of the real boundary metrics h is well-defined and a convention for it should be specified.

We take this to be positive in this paper. On the boundary Σ, g(x) must induce h(x). Hence

the signature adopted for the boundary metrics determines which metrics g(x) contribute

to (2.1), hereby completing the definition of the NBWF.

2.2 Prediction of an ensemble of classical histories

In some regions of superspace the path integral (2.1) defining the NBWF can be approxi-

mated by the method of steepest descents. Then the NBWF will be approximately given

by a sum of terms of the form

Ψ[h, χ] ≈ exp{(−IR[h, χ] + iS[h, χ])/~}, (2.4)

one term for each complex saddle point (extremum). Here IR[h, χ] and −S[h, χ] are the

real and imaginary parts of the Euclidean action, evaluated at the saddle point.

In regions of superspace where, with an appropriate coarse-graining, S varies rapidly

compared to IR (as measured by quantitative classicality conditions [1, 2]) the NBWF

predicts that coarse-grained histories of geometry and fields behave classically. That is,

with high probability they exhibit patterns of correlations in time summarized by classi-

cal deterministic laws. This is analogous to the prediction of the classical behavior of a

particle in a WKB state in non-relativistic quantum mechanics. We therefore call points

in superspace where the classicality conditions are satisfied ‘classical configurations’. More

specifically the NBWF predicts an ensemble of spatially closed, classical Lorentzian cosmo-

logical histories that are the integral curves of S in superspace. Integral curves are defined

by integrating the classical relations relating momenta πij(~x) and πχ(~x) to derivatives of

the action

πij(~x) = δS/δhij(~x), πχ(~x) = δS/δχ(~x). (2.5)

The momenta are proportional to the time derivatives of hij and χ so that equations (2.5)

become differential equations for classical trajectories. The solutions hij(~x, t) and χ(~x, t)

define field histories φ̂(x, t) ≡ χ(x, t) and Lorentzian four-geometries ĝαβ(x, t) by

ds2 = −dt2 + hij(x, t)dx
idxj ≡ ĝαβ(x, t)dxαdxβ (2.6)

7The simple relation under a change of signature between the action of dS gravity and AdS gravity

coupled to scalar matter extends to four-dimensional supergravity, where the dS theory inherits a pseudo-

supersymmetry from the supersymmetry of the AdS theory [22, 23]. It is sometimes referred to as a

domain wall/cosmology correspondence. We note, however, that in our framework this does not arise as a

correspondence between (solutions of) different theories, but rather as a property of the quantum state of

a given theory.
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in a simple choice of gauge.8 The real Lorentzian histories are therefore not the same as the

complex saddle points that determine their probabilities. Further, the relations between

superspace coordinates and momenta (2.5) mean that to leading order in ~, and at any one

time, the predicted classical histories do not fill classical phase space. Rather, they lie on

a surface within classical phase space of half its dimension.

Classicality in general requires appropriate coarse graining, that is, summing ampli-

tudes over a bundle of nearby histories [24–26]. That is necessary both for decoherence

and to enable the destructive interference that suppresses amplitudes for non-classical

coarse-grained histories. The validity of the WKB prescription given here depends on

that coarse graining. The functions hij(t, ~x) and χ(t, ~x) should be understood as labels

for coarse grained histories. Only their structure on scales larger than the coarse graining

scale ζ is classically predicted and relevant for distinguishing one coarse-grained history

from another.

It turns out that in the inflationary universes predicted by the NBWF, the coarse-

graining scale required for classicality on a surface Σ is essentially its horizon size. Hence

the coarse-graining scale on Σ is larger than the coarse-graining scale on a surface Σ′ at a

larger scale factor. Thus the ensemble of classical histories obtained from the set of classical

configurations on Σ by integrating (2.5) will be a coarse graining of the classical ensemble

predicted by the NBWF evaluated on Σ′.

Each individual coarse-grained classical history of a classical ensemble has a

probability9 proportional to exp[−2IR(h, χ)/~] to leading order in ~. The probabilities

exp[−2IR(h, χ)/~] are constant along the integral curves given by (2.5) as a consequence

of the Wheeler-DeWitt equation (cf [1, 2]). Hence these give the tree level no-boundary

measure of different possible universes in a classical ensemble predicted by the NBWF.

3 Representations of complex saddle points

3.1 Homogeneous and isotropic saddle points

We begin by considering O(4) invariant saddle points of the NBWF for Einstein gravity

coupled to a single scalar field φ moving in a positive potential V (φ). We assume that

the cosmological constant term Λ ≡ 3H2 is positive. In section 6 we will generalize our

analysis to general inhomogeneous configurations on Σ.

The line element of a homogeneous and isotropic closed three-geomety is

dΣ2 = hijdx
idxj = b2γij(x

k)dxidxj (3.1)

8We follow the notation introduced in [1, 2] that the complex extrema are denoted by (gαβ(x, t), φ(x, t))

and the real four-dimensional Lorentzian histories by (ĝαβ(x, t), φ̂(x, t)). Occasionally, as above, when we

want to emphasize that the Lorentzian histories are integral curves in superspace we will use the notation

(hij(x, t), χ(x, t)) for them.
9In the terminology used in our other papers these were called bottom-up probabilities to distinguish

them from top-down probabilities that are conditioned on (part of) our data. Top-down probabilities are

relevant for predicting our observations. Bottom-up probabilities are relevant for discussing the probabilities

of features of the universe whether or not there are any observers. All probabilities here are bottom-up.
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where b is a constant (positive) scale factor and γij is the metric on a unit round three

sphere. Homogeneous and isotropic minisuperspace is therefore spanned by b and the

homogeneous value of the scalar field χ. Thus Ψ = Ψ(b, χ).

The line element of homogeneous and isotropic four-geometries on the manifold M

with one boundary that are summed over in (2.1) can be written

ds2 = N2(λ)dλ2 + a2(λ)dΩ2
3 (3.2)

where (λ, xi) are four real coordinates on the real manifold M . Conventionally we take

λ = 0 to locate the center of O(4) symmetry (the South Pole (SP)) and λ = 1 to locate the

boundary of M where histories match (b, χ). Saddle points may be represented by complex

metrics — complex N and a — but the coordinates (λ, xi) are always real. The Euclidean

action is then10

I[a(λ), φ(λ)] =
3π

4

∫ 1

0
dλN

{
− a

(
a′

N

)2

− a+H2a3 + a3

[(
φ′

N

)2

+ 2V (φ)

]}
. (3.3)

Equations sufficient for calculating the saddle points of the action I are(
a′

N

)2

− 1 +H2a2 + a2

[
−
(
φ′

N

)2

+ 2V (φ)

]
= 0, (3.4a)

1

a3N

(
a3 φ

′

N

)′
− dV

dφ
= 0, (3.4b)

where a ′ denotes a derivative with respect to λ. The pair of functions (a(λ), φ(λ)) defining

saddle points contributing to the semiclassical wave function (2.4) must be regular at

λ = 0 and match the real values (b, χ) at λ = 1. They will generally be complex —

fuzzy instantons.

3.2 Different representations of complex saddle points

The equations (3.4) can be solved for a(λ), φ(λ) for any complex N(λ) that is specified.

Different choices of N(λ) therefore give different representations of the same saddle point.

(For real metrics of the form (3.2) different choices of N(λ) are connected by coordinate

transformations.) A convenient way to exhibit these different representations is to introduce

the function τ(λ) defined by

τ(λ) ≡
∫ λ

0
dλ′N(λ′). (3.5)

Different choices of N(λ) correspond to different contours in the complex τ -plane. Contours

start from the SP at λ = τ = 0 and end at the boundary λ = 1 with τ(1) ≡ υ. Conversely,

for any contour τ(λ) there is an N(λ) ≡ dτ(λ)/dλ. Each contour connecting τ = 0 to

τ = υ is therefore a different representation of the same complex saddle point.

10The scalar field has been rescaled from a conventional value by a factor to simplify the expression for

the action as in [1, 2]. However we have not rescaled the metic by a factor of H2 as in that paper so that

the cosmological constant is represented explicitly.
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By using dτ = N(λ)dλ the saddle point equations (3.4) can be written in the more

compact form

ȧ2 − 1 +H2a2 + a2
(
−φ̇2 + 2V (φ)

)
= 0, (3.6a)

φ̈+ 3(ȧ/a)φ̇− dV

dφ
= 0, (3.6b)

where a dot denotes a derivative with respect to τ . Solutions define functions a(τ) and

φ(τ) in the complex τ -plane. A contour C(0, υ) representing a saddle point connects the

SP at τ = 0 to a point υ where a(υ) and φ(υ) take the real values b and χ respectively.

For any such contour the action is given by

I(b, χ) =
3π

4

∫
C(0,υ)

dτ
[
− aȧ2 − a+H2a3 + a3

(
φ̇2 + 2V (φ)

) ]
. (3.7)

Assuming analyticity the result will be the same for any contour connecting the two points.

Substituting (3.6a) in this expression we find a useful alternative expression of the action.

I(b, χ) =
3π

2

∫
C(0,υ)

dτa
[
a2
(
H2 + 2V (φ)

)
− 1
]
. (3.8)

We will refer to any solution (a(τ), φ(τ)) of the equations (3.6) satisfying the NBWF

conditions of regularity at the SP as a ‘saddle point’. Particular saddle points have partic-

ular uses. The saddle points contributing to the semiclassical approximation of the NBWF

evaluated at (b, χ) have points τ = υ where (a(υ), φ(υ)) take the real values (b, χ). A

saddle point that has a curve in the complex τ -plane along which (a(υ), φ(υ)) have real

values is associated with a real history. A saddle point where the classicality conditions

are satisfied in addition corresponds to a real Lorentzian history. Thus when we refer to

a de Sitter saddle point we mean one where there is such a curve with the geometry of

de Sitter space, etc.

Distorting one contour representing a saddle point into another representing the same

saddle point provides a natural and general notion of analytic continuation. We emphasize

this is not a continuation of the Lorentzian histories into the complex plane. Neither is it

a continuation between solutions of one theory to solutions of a different theory.11 Rather

it is a continuation of the complex saddle points that represent the Lorentzian histories

in the NBWF and supply their probabilities for one given theory. It is thus not a further

assumption but a connection that is automatically available in this framework. We now

illustrate this in a simple model.

4 A simple model

4.1 The no-matter model

The case of no-matter field provides an example that is oversimplified but nevertheless

instructive because it is explicitly soluble. When φ = 0, or when the matter fields are absent

from the Lagrangian altogether, the unique solution of (3.6a) that is regular at τ = 0 is

a(τ) =
1

H
sin(Hτ) . (4.1)

11In particular this does not involve a change in the contour defining the path integral (2.1).

– 8 –



J
H
E
P
0
5
(
2
0
1
2
)
0
9
5

Since a(τ) is an entire function, the action at an endpoint υ can be evaluated by doing

the integral (3.7) along any contour C(0, υ) connecting τ = 0 to τ = υ. The result is

I(υ) = − π

2H2
[1− cos3(Hυ)] . (4.2)

4.2 The de Sitter saddle point

Saddle points contributing to the semiclassical approximation of the NBWF have an end-

point υ where a(υ) takes a real, positive value b(υ) [cf. (3.1)]. The most relevant case12

is when the endpoint is located along the line x = π/2H. Along this line a(y) takes the

real values (1/H) cosh(Hy). The action (4.2) at an endpoint υ = π/2H + iyυ has real and

imaginary parts

I(υ) = IR(υ)− iS(υ) , (4.3a)

with

IR(υ) = − π

2H2
, S(υ) = − π

2H2
sinh3(Hyυ). (4.3b)

For large yυ the classicality condition is satisfied for this saddle point. The action S

varies rapidly when compared with IR because IR does not vary at all. A classical ensemble

is predicted with one classical history which is Lorentzian de Sitter space. A discussion of

probability is trivial when there is only one history in the sample space. But the weight

exp(−2IR/~) that will play this role in the more general context discussed below is the

usual one for de Sitter space. We call this the de Sitter (dS) saddle point.

By choosing a particular contour connecting τ = 0 to τ = υ = π/2H + iyυ we obtain

a concrete representation of the geometry of the de Sitter saddle point. The contour CD
in figure 1 gives its familiar representation. Along the part of CD from x = 0 to π/2H the

geometry is the real Euclidean geometry of half a three-sphere. Along the part of CD from

(π/2H, 0) to (π/2H, yυ) the geometry is half of Lorentzian de Sitter space,

ds2 = −dy2 +
1

H2
cosh2(Hy)dΩ2

3. (4.4)

The geometry along CD is often pictured by the iconic image in figure 2 (left).

4.3 An AdS representation of a dS saddle point

The contour CD is not the only useful representation of the dS saddle point. Consider

the contour CA shown in the right panel of figure 1. This has the same endpoint υ, the

same action, and makes the same prediction for Lorentzian de Sitter space as CD. But

the geometry is different. The contour can be divided into a part (a) vertically along the

imaginary τ -axis to an intermediate point υa = iyh, a part (h) along the horizontal branch

connecting υa to υb = π/2H + iyh, and finally a part (d) vertically along that line to the

endpoint at υ.

12The solution to the saddle point equations a(τ) = H−1 sin(Hτ) = H−1 sin[H(x + iy)] is real analytic,

symmetric under τ → −τ , and periodic in x with period 2π/H. There are therefore other values of υ where

a(τ) is real besides those on the curve x = π/2H analyzed above. These were discussed in appendix A.1

of [1, 2]. They are either solutions that are not regular on M , endpoints for which the classicality conditions

are not satisfied, or ones where the classical history is the time reversed of the one discussed here.

– 9 –



J
H
E
P
0
5
(
2
0
1
2
)
0
9
5

2SP

Hy

Hx

H

SP

y

2

y

a

h
d

h

Hx

Figure 1. Left panel: the contour CD in the complex τ -plane. The horizontal part is the geometry

of half a Euclidean three-sphere. The vertical part is Lorentzian de Sitter space (cf. figure 2). Right

panel: the contour CA. The part (a) along the imaginary axis x = 0 is AdS. The part (d) along the

x = π/2H line is Lorentzian de Sitter space. The part (h) is a complex geometry that transitions

between them.

The geometry along part (a) is especially interesting. Evaluating the scale factor along

τ = iy we get from (3.2) the line element

ds2 = −dy2 − 1

H2
sinh2(Hy)dΩ2

3. (4.5)

This is a negative signature representation of the geometry of Euclidean anti-de Sitter

space with a cosmological constant Λ̃ = −Λ = −3H2. The geometry along the horizontal

branch (h) is complex. Finally along the x = π/2H axis (d) it is real Lorentzian de Sitter

space as in (4.4).

The fact that the dS saddle point has a representation in which the Euclidean regime

is a negative signature AdS space with cosmological constant −Λ follows immediately from

the action (2.2)–(2.3). Indeed with a negative signature convention, this is minus the action

of Einstein gravity coupled to a negative cosmological constant −Λ and a negative potential

−V . At this point we remind the reader that we adopted a positive signature convention

on the configuration space13 (h, χ) of the NBWF. However this final boundary condition

does not determine whether the interior metric of the complex saddle points is positive or

negative. Indeed a notion of signature is meaningless for complex metrics. By going along

the imaginary axis with the contour CA the representation of the saddle point given here

13This means in particular that the AdS saddle points with endpoint υ on the imaginary axis, where

the boundary three-metrics are hij = −(1/H2) sinh2(Hyh)γij , do not contribute to the NBWF as defined

in (2.1).
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Figure 2. Two embedding diagrams showing the different geometries representing the same de Sit-

ter saddle point. The generally complex geometries are embedded using the real metrics defined by

the modulus of the scale factor |a|. The two figures show the representation of a two dimensional

slice of the same saddle point corresponding to an equator of the three-sphere in terms of the con-

tours CD and CA in figure 1. The slices along the vertical parts of these contours are embedded

in a flat Lorentz signatured three-dimensional space. They are shaded in red. The slices along

the horizontal parts of the contours are embedded in a Euclidean three dimensional flat space and

shaded blue. The left figure is the NBWF de Sitter saddle point as half a Euclidean three sphere

joined to half a Lorentzian de Sitter space across an equator. The next figure corresponds to the

contour CA and consists of Euclidean AdS space joined (moving upwards) to the geometry of the

horizontal branch, and then to de Sitter space. Both representations give the same action and, in

the more general case discussed below, the same predictions for the ensemble of classical histories.

exhibits a negative signature Euclidean interior which, therefore, obeys the Euclidean AdS

equations of motion following from (2.2)–(2.3).

The Euclidean AdS regime of the saddle point is joined smoothly to a complex tran-

sition region. This represents the transition from a Euclidean to a Lorentzian geometry

which in this representation involves a change in the signature of the boundary three-

geometry rather than the gττ component of the metric. The saddle point geometry along

CD is pictured in figure 2 (right). The actions from the three parts of CA can be evaluated

from the integral (3.7). The three contributions are:

Ia(υa) = − π

2H2
[1− cosh3(Hyh)], (4.6a)

Ih(υa, υb) = − π

2H2
[cosh3(Hyh)− i sinh3(Hyh)], (4.6b)

Id(υb, υ) = − π

2H2
[i sinh3(Hyh)− i sinh3(Hyυ)]. (4.6c)

Evidently

I(υ) = Ia(υa) + Ih(υa, υb) + Id(υb, υ) . (4.7)

As expected from the discussion above the contribution Ia equals minus the usual action

for Euclidean AdS bounded by a three-sphere of radius yh or, equivalently, a scale factor

(1/H) sinh(Hyh).

4.4 Regulation by classicality

We have seen that the real part of the action IR(y) remains constant as y is increased

along the x = π/2H line [cf (4.3b)]. In general classical evolution requires that IR be

constant along a Lorentzian history that is an integral curve of S. That is necessary so

that exp(−2IR)/~ can be the leading order probability of the history. In the present case,

the Lorentzian history is at x = π/2H so that IR(y) is constant [cf. (4.3b)].

– 11 –
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By contrast, the contribution Ia from along the vertical AdS part of the contour CA
in (4.6a) diverges with increasing yh. That divergence however is cancelled in the action I

by the contribution Ih from the horizontal part of the contour. In effect, classicality has

regulated the action Ia.

The divergence of the gravitational action in (asymptotically) Euclidean AdS spaces

has been much discussed in the context of the AdS/CFT correspondence. There one

considers AdS saddle points with endpoints on the imaginary axis in figure 1 and one adds

by hand a finite number of counterterms to the action in order to render it finite as the

boundary is moved off to infinity [27, 28]. These counterterms can be expressed solely

in terms of the boundary geometry hij . In four dimensions there are two gravitational

counterterms, given by (with signs appropriate for the negative signature in (4.5))

I1[h] ≡ H

4π

∫
d3x
√
−h =

π

2H2
sinh3(Hyh) , (4.8a)

I2[h] ≡ 1

16πH

∫
d3x
√
−h 3R(−h) =

3π

4H2
sinhHyh. (4.8b)

where the last term in each equation is the counterterm evaluated in the three-metric

of (4.5) at the value υa. In terms of these counterterms, the contribution Ia from along

the vertical part of the contour CA is given by

Ia(υa) = −Ireg
AdS + I1(υa) + I2(υa) +O(e−Hyh) (4.9)

where −Ireg
AdS is the limiting value of Ia − I1 − I2 for yh → ∞. For the dS saddle point

we consider here Ireg
AdS = π/2H2, which is the regularized action of Euclidean AdS space

bounded by a scale factor (1/H) sinhHyh.

As anticipated, Ia(yh) exhibits the usual volume divergences of the Euclidean AdS

action. However the real part of the horizontal contribution Ih(yh) is given by

Re[Ih(υa, υb)] = −I1(υa)− I2(υa) +O(e−Hyh) (4.10)

which supplies precisely the counterterms needed to regulate the volume divergences of Ia.

Furthermore it does not contribute to the finite real part IR(yυ) of the saddle point action.

Indeed, from (4.7), (4.9), and (4.6c) we have, up to terms of order ∼ e−Hyh ,

Re[I(υ)] ≡ IR(υ) = −Ireg
AdS(υa) . (4.11)

Thus we see that the probability of the Lorentzian de Sitter history is given by the regulated

action of the Euclidean AdS regime of the corresponding saddle point.

In the context of the AdS/CFT correspondence it has been argued that the coun-

terterms correspond to expected renormalizations in the dual field theories (see e.g. [9]).

However from a gravitational perspective their origin has remained somewhat obscure. In

our framework the counterterms are not added by hand. Instead they have a physical

interpretation and arise automatically as part of the saddle point action when the latter

corresponds to a Lorentzian history.
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The classicality condition also implies that the wave function has a large phase factor

exp(iS). This can be written in terms of the counterterms (4.8) evaluated in the three-

metric of (4.4) at the endpoint υ. Hence one has,

I(υ) = −Ireg
AdS + iSct(υ) +O(e−Hyh) (4.12)

where iSct ≡ I1(υ)+I2(υ). We note that Sct is real, since I1(υb)+I2(υb) = i(I1(υa)+I2(υa)).

5 Ensemble of homogeneous saddle points

In the previous section we obtained the following three results in the case of pure gravity

and no matter for the dS saddle point represented by the contour CA in figure 1: (1) The

geometry along the vertical part of the contour (a) is asymptotically AdS for large radius

y. (2) The real part of the action from the horizontal (h) part of the contour regulates the

divergences of the AdS action. The imaginary part supplies the complex phase necessary

for classicality. (3) The finite, non-divergent part of the action along the vertical part of

the contour (a) supplies the probability for the Lorentzian de Sitter history.

When matter represented by a single scalar field is included the NBWF predicts a

one-parameter family of saddle points that correspond to homogeneous isotropic classical

histories [1, 2]. In this section we show that these saddle points also admit a representation

with a Euclidean AdS regime for which the same three properties hold. The analysis is

qualitatively the same as in the previous section. The only difference is that we no longer

have analytic solutions for the saddle point metric in the complex τ -plane. However the

asymptotic expansions for the solutions to the differential equations (3.6) determining the

saddle point suffice to obtain these results.

5.1 Asymptotic expansions

We will be interested in the behavior of the saddle point geometries for large y = Im(τ),

which is large radius in the Euclidean AdS regime, and where the yh defining the horizontal

part of CA is appropriately located.14 To that end we set H = 1 just for this section,

and introduce

u ≡ eiτ = e−y+ix. (5.1)

In this variable the saddle point equations (3.6) become

− (ua′)2 − 1 + a2 + a2[(uφ′)2 + 2V (φ)] = 0 , (5.2a)

u(uφ′)′ + 3
ua′

a
(uφ′) +

dV

dφ
= 0 . (5.2b)

Here and elsewhere in this section f ′ ≡ df/du. The key point is that all the coefficients

in these equations are analytic in u. Therefore we can expect to find asymptotic ex-

pansions in powers of u for the small values of u when y becomes large. We verify this

by explicit construction. In making these expansions we will assume that for small φ,

14For certain applications to cosmology it may be convenient to locate the horizontal part of the contour

at reheating, and to evolve the universe classically from there onwards.
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V (φ) = (1/2)m2φ2 +O(φ4), thus defining m. At large scale factor the field will have rolled

down the hill and only this behavior of the potential near the minimum will be relevant for

the leading terms in the asymptotic behavior. To keep the discussion manageable we will

give explicit expressions for masses within the range 2 < m2 < 9/4. However we expect

our results to hold much more generally as we discuss below.

The general form of the asymptotic expansions has been worked out in [28] for Eu-

clidean AdS spaces. Here we provide a complex generalization of this. At large y (small

u) we expect the scale factor to be large and the field small. The leading behavior of the

scale factor will be determined by the cosmological constant. From (5.2a) we find

a(u) =
c

u

(
1 +

u2

4c2

)
+ · · · (5.3)

for some constant c. The constant c can be adjusted to any value by translating τ by an

appropriate amount [cf (5.1)], that is, by changing the location of the SP in the complex

τ -plane. In the previous section we assumed that the SP was located at τ = 0 with the

result that c = i/2 [cf. (4.1)]. However, we have no access to regions near the SP in

this asymptotic analysis. We therefore leave the constant c undetermined. It has trivial

physical content.

Assuming that (5.3) gives the leading asymptotic behavior for a(u), we can calculate

the form of the solution for φ(u) from (5.2b). The result is

φ(u) = uλ−(α+ α1u+ · · · ) + uλ+(β + β1u+ · · · ) (5.4)

where

λ+ ≡
3

2
[1 + q(m)], λ− ≡

3

2
[1− q(m)] (5.5)

with

q(m) ≡
√

1− (2m/3)2. (5.6)

Substituting the expansion (5.4) into (5.2a) confirms the consistency of the

ansatz (5.3)–(5.4) and determines the form of the next few terms in the asymptotic expan-

sion of a(u). We find

a(u) =
c

u

(
1 +

u2

4c2
+ c−u

2λ− + c3u
3 + · · ·

)
(5.7)

where c− and c3 are further constants.

Determination of all the coefficients in the expansions (5.4) and (5.7) would require

integrating the equations (3.6) from the SP. The results would depend on the detailed

physics of the matter (the shape of the potential) and on the NBWF conditions of regularity

at the SP. Such integrations were carried out numerically in [1, 2] for a quadratic potential.

However, it follows from the equations (5.2) that the next coefficient c− in (5.7) is fully

determined in terms of the leading behavior. In particular we find

c− = −(3/4)α2 (5.8)
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This is a generalization to complex geometries of a well-known result in asymptotically AdS

spaces that the asymptotic solutions are locally determined from the asymptotic equa-

tions in terms of the ‘boundary values’ c2γij and α, up to the u3 term in (5.7) and to

order uλ+ in (5.4).

Even though the next coefficients are not completely determined by the asymptotic

equations, (5.2) still determines relations between them. In particular we find that for (5.4)

and (5.7) to satisfy (5.2) up to order u3 the following relation must hold:

3c3 + 2m2αβ = 0 (5.9)

5.2 Asymptotic dS saddle points

The asymptotic expansions derived in the previous subsection provide analytic information

about the asymptotic form of the saddle points representing classical Lorentzian histories

and about their probabilities. We recall that Lorentzian histories correspond to curves in

the complex τ -plane along which both the scale factor and field are real and along which

the classicality condition is satisfied. This means that the real part of the action IR(υ)

varies slowly compared with the imaginary part −S along the curve.

We already know what these curves are because we computed them numerically in [1,

2]. They are curves that are asymptotic to certain values xr of constant Re(τ). We found

these curves by starting at the SP with a complex value of the scalar field φ(0). By tuning

the phase of φ(0) together with the value of xr it was possible to find asymptotically vertical

curves x = xr along which a and φ were both real and the classicality condition satisfied.

There was one such curve, defining one classical Lorentzian history, for each value within

a range of values of φ0 ≡ |φ(0)|. A one parameter family of homogeneous and isotropic,

asymptotically de Sitter, classical Lorentzian histories was thus predicted by the NBWF.

The asymptotic expansions allow us to identify the same curves partially analytically

at large scale factor. To leading order in u we have from (5.3) and (5.4)

a(u) =
c

u
= |c|eiθce−ixey, φ(u) = αuλ− = |α|eiθαeiλ−xe−λ−y (5.10)

where c and α are complex constants that are not determined by the asymptotic equations.

We are interested in solutions for which a and φ are both real in the large y limit along

a constant value xr. Hence for given xr the phases θc and θα of such a solution are

tuned so that

θc = xr, θα = −λ−xr. (5.11)

We emphasize it does not follow from the asymptotic analysis that such tuning is possible

with regularity conditions at the origin. However the numerical calculation15 shows that

it is for a range of φ0.

15We cannot determine the values of xr, θc, θα from the asymptotic analysis alone, but there is more

information about them from the numerical calculations that we can briefly describe using the notation

of [1, 2]. In particular we can check whether the relations (5.11) are satisfied for the values of µ consistent

with the real q assumed. For small φ0 we must have xr → π/2 because this is what it is in the no matter

case. That means that θα → −λ−π/2 in this limit. For µ = 3/4 this means tan θd → −.32, in agreement

with the small φ0 limit of figure 1(a) of [1, 2]. Essentially the above relations predict the curve X(φ0) in
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The asymptotic contribution to the saddle point action along the x = xr curves is given

by the integral (3.8) along the curve of constant x = xr. It is immediate that there will

be no contribution to the real part of the action IR. The integrand is real, but dτ = idy.

Thus

IR = const (5.12)

when x = xr and large y. The contribution from the asymptotic part of the contour is

purely imaginary and IR remains constant thus satisfying the classicality condition. The

curve x = xr is a Lorentzian history.

5.3 AdS domain wall representation of asymptotic dS saddle points

The action of the asymptotic dS saddle points is given by the integral (3.8) evaluated along

a contour C(0, υ) connecting the SP to a point υ = xr+ iyυ, with yυ large. We now discuss

the generalization of the contour CA employed in the AdS representation of the no-matter

dS saddle point considered in the previous section.

Consider the vertical part at x = xa ≡ xr − π/2 of the contour shown in figure 3.

Eq. (5.1) shows that the displacement from xr to xa replaces u by −iu. The leading

order behavior of a(u) is replaced by ia(u) [cf (5.10)]. Since a was real along xr it will be

imaginary along x = xa. The asymptotic form of the metric (3.2) along x = xa will then be

ds2 = −dy2 − (1/4)e2ydΩ2
3. (5.13)

This is negative signature, real, Euclidean AdS. The asymptotic form of the scalar field

along the x = xa curve is given by

φ(y) ≈ |α|e−iλ−π/2e−λ−y (5.14)

Hence the saddle point geometry along this part of the contour is that of an asymptotically

AdS, spherically symmetric domain wall with a generally complex scalar field profile in the

radial direction y. As before, since the domain wall has negative signature in our conven-

tions it is clear from the action (2.2)–(2.3) that it is a solution of Einstein gravity coupled to

a negative cosmological constant −Λ and a negative potential −V . The asymptotic phase

of the scalar along the vertical part of the contour is locally (asymptotically) determined

by the condition that it is asymptotically real along the x = xr curve. This means the

phase factor in (5.14) is universal, in the sense that it is independent of the dynamics and

the regularity conditions in the interior.

The generalization of the contour CA to include matter is therefore the one illustrated

in figure 3. There is a part (a) up the curve x = xa ≡ xr − π/2 to υa = xa + iyh. There is

a horizontal part (h) connecting this to υb = xr + iyh and then there is the part (d) up the

x = xr axis to the endpoint υ. (We continue to call this shifted contour CA.)

figure 1(b) of that paper once we know γ(φ0). Given that figure 1(b) shows that xr is significantly less

than π/2 when φ0 is not small, this indicates xa decreases for increasing φ0. The consequence is that in

the large φ0 limit in which θα → 0 the Lorentzian slow roll vertical line approaches the imaginary axis and

the AdS representation of the saddle point shifts to xa = −π/2.
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Figure 3. The contour CA when matter is included. The scale factor a and field φ are real along

an asymptotically vertical contour (d) but one which is displaced from x = π/2H to x = xr. The

vertical part (a) of the contour along which the saddle point is asymptotically AdS is shifted by an

amount π/2H in x from that. The horizontal part of the contour (h) connects these two vertical

parts — relating AdS to dS.

Of the results we obtained in the no-matter case mentioned at the start of this section,

two generalizations to include scalar matter are immediate. (1) The vertical part of the

contour (a) is along a curve where the geometry is asymptotically AdS. That was the

content of (5.13). The contribution to the action from this part of the contour is equal to

minus the Euclidean AdS action of the domain wall solution and therefore exhibits the usual

volume divergences of the AdS action. (2) The contribution to the saddle point action from

the horizontal part (h) regulates the divergences from (a). This follows immediately from

the fact that the real part of the action along (d) is constant [cf (5.12)]. The contribution

from (h) therefore must cancel the divergences in (a).

There remains the relation between the finite ‘regulated’ action Ireg
a = −Ireg

DW on (a),

where Ireg
DW is the regulated Euclidean AdS action of the domain walls, and the saddle point

action I at υ on (d). This connection is supplied by the action integral (3.8) along (h). In

the next section we show that for general, asymptotically inhomogeneous saddle points the

horizontal branch (h) does not contribute to the finite part of the action at υ.
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6 General saddle points

6.1 Asymptotic expansions

The results of the previous sections are not limited to homogeneous and isotropic models.

They can be extended to more general saddle points without these symmetries. These are

described by complex metrics

ds2 = N2(λ)dλ2 + gij(λ, ~x)dxidxj (6.1)

where we use ~x to indicate dependence on the three coordinates (x1, x2, x3) locating points

on the compact spatial manifold. The complex variables τ and u can be introduced as

in (3.5) and (5.1) respectively. A saddle point is a complex solution of the Einstein equations

that is regular at the SP located by convention at τ = 0. Appendix A gives a summary of

the action and extremum equations in terms of the variables in (6.1).

The asymptotic form of the general solutions of the Einstein equations for large y

(small u) has been worked out in detail (see e.g. [28]). Using these results, we write for the

expansion of the metric

gij(u, ~x) =
c2

u2
[h̃ij(~x) + h̃

(2)
ij (~x)u2 + h̃

(−)
ij (~x)uλ− + h̃

(3)
ij (~x)u3 + · · · ]. (6.2a)

where h̃ij(~x) is real and normalized to have unit volume thus determining the constant c.

Then for the field

φ(u, ~x) = uλ−(α(~x) + α1(~x)u+ · · · ) + uλ+(β(~x) + β1(~x)u+ · · · ). (6.2b)

As in the homogeneous case, the asymptotic solutions are locally determined from the

asymptotic equations in terms of the ‘boundary values’ c2h̃ij and α, up to the u3 term

in (6.2a) and to order uλ+ in (6.2b). Beyond this order the interior dynamics and the

boundary condition of regularity on M become important.

We assume that along the contour CA in figure 3 the phases at the origin can be tuned

so that gij and φ are real along the vertical16 part (d) for small u. Otherwise the saddle

point does not correspond to a Lorentzian history and is suppressed in the path integral.

Since the expansions are analytic functions of u that means that there is a parallel contour

(a) at xa = xr − π/2H along which the metric gij is also real but with the opposite

signature. Thus we recover more generally the same story as in the homogeneous and

isotropic example.

6.2 Regulation by classicality

It remains to establish the connection between the contribution to the finite part of the

action from the vertical part of the contour CA and the saddle point action at the endpoint

υ. To this end we calculate the action integral along the horizontal branch (h) of the

16It follows directly from the expansions (6.2a) and (6.2b) that if a given saddle point corresponds to a

Lorentzian history the latter must lie on an asymptotically vertical curve in the complex τ -plane.

– 18 –



J
H
E
P
0
5
(
2
0
1
2
)
0
9
5

contour connecting (a) to (d) order by order in u. Using the expansions (6.2a) and (6.2b)

we find

Ih(υa, υb) =
1

8π

∫ xr

xa

dx

∫
d3x g

1
2

[
6H2 − 3R+ 2V (φ) + 6(~∇φ)2

]
(6.3)

where 3R is the scalar three curvature of gij . In appendix A we show that this does not

contribute to the finite part of the action in the large yh limit as a consequence of the

asymptotic Einstein equations. This means Ih only regulates the divergences of the action

from (a) and supplies phase17 necessary for classicality on (d). In particular we obtain

Ih(υa, υb) = (i− 1)(I1 + I2 + I3)(υa) +O(e−yh) (6.4)

where I1 and I2 are the familiar (real) gravitational counterterms and I3 ∼
∫ √

hφ2 is an

additional (complex) scalar field counterterm [28] which cancels the e3q divergence arising

from the slow fall-off of φ for large yh. This is the complete series of counterterms in the

range 0 < q < 1/3. For other values of q there are additional scalar counterterms [29].

Hence for sufficiently large yh the combination

Ia(υa)− (I1 + I2 + I3)(υa) (6.5)

approaches a finite asymptotic limit which is the so-called regulated Euclidean AdS action

of the domain wall, −Ireg
DW. Finally, the contribution from the (d) part of the contour is

purely imaginary and given by

Id(υ, υb) = i(I1 + I2 + I3)(υ)− i(I1 + I2 + I3)(υb) +O(e−yh) (6.6)

Hence the sum of the actions from the three parts of the contour CA express the action

of a general, inhomogeneous saddle point of the NBWF at υ = xr+iyυ for sufficiently large

yh and yυ in terms of the regulated domain wall action and a sum of purely imaginary

surface terms,

I[υ, h̃ij(~x), χ(~x)] = −Ireg
DW[h̃ij(~x), α(~x)] + iSct[υ, h̃ij(~x), α(~x)] +O(e−yυ) (6.7)

where iSct ≡ (I1 + I2 + I3)(υ).

In these equations α is locally (asymptotically) determined by the argument of the

wave function as described in section 5. Thus we find that in the limit of large scale factor

the probabilities for general perturbed, Lorentzian, asymptotically de Sitter histories with

scalar matter can be found from the Euclidean AdS domain wall regime of the saddle point.

6.3 Generalizations

We derived (6.7) for (anti-)de Sitter gravity coupled to a scalar field with mass in the

range 2 < m2 < 9/4. This is technically the simplest case. For scalars with smaller masses

there are additional counterterms [28], and for larger masses the asymptotic scalar profile

17It does not supply all of the phase as it did in the no-matter example because the field is generally

complex along (a) which renders Irega complex.
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exhibits an oscillatory behavior. In the latter case the requirement that the scalar field be

real at the boundary implies α∗ = β.

We expect that the fundamental connection between Euclidean AdS and de Sitter ex-

hibited in (6.7) holds much more generally. Specifically we expect that it will be possible to

extend our analysis to include all fields in supergravity, such as scalars with different masses

and gauge fields. At a general level this is suggested by the AdS domain wall/cosmology

correspondence in supergravity [22, 23] which is essentially what is realized here at the

level of the quantum state.

At a more technical level, our results can be expected to generalize because other fields

exhibit asymptotic expansions similar in form to (6.2) in which the leading terms are uni-

versal. Further, the counterterm procedure in AdS/CFT works in a similar manner for

other scalars and gauge fields (see e.g. [28]). In fact, the universality of the asymptotic

Einstein equations can be viewed as a consequence of the universal behavior of all semi-

classical wave functions in asymptotic Euclidean AdS and de Sitter spaces [14]. Behind

this universality lies the physical de Sitter no-hair property which is very general indeed.

In particular we expect that in more general models, the horizontal (asymptotic) branch

of the contours in our analysis is universal and accounts only for the regularization of

the AdS action and the phase. (That it regularizes the AdS action follows immediately

from the finiteness of the de Sitter action.) We plan to work this out in more detail in a

subsequent paper [14].

6.4 A remark on coarse-graining

Equation (6.7) holds for general boundary values (h̃ij(~x), α(~x)) in the asymptotic limit

u → 0. In cosmology one is interested in the amplitude of classical configurations on a

surface Σ at finite scale factor. This can be obtained from (6.7) by an appropriate coarse-

graining over the small-scale structure of the boundary data, as we now explain.

We first consider the NBWF for linear fluctuations18 around homogeneous inflationary

backgrounds. This was calculated in [3] using the saddle points of the action. In line with

other results it was found that subhorizon modes do not behave classically whereas super-

horizon scale modes do. The latter are governed by a Gaussian probability distribution

with the characteristic slow-roll width.

Eq. (6.7) means that the wave function of fluctuations can also be obtained from a

Euclidean AdS calculation. In this approach, the regularized AdS action of fluctuations

around a homogeneous AdS domain wall yields the relative probabilities of different clas-

sical, perturbed histories. When the boundary is at finite scale factor, the regularized

action of sufficiently long wavelength modes with wavenumber n ≤ bH will be constant

near the boundary and determine their relative probabilities. By contrast, the regularized

AdS action of perturbation modes with larger wavenumber oscillates near the boundary,

reflecting the fact they do not behave classically near the final surface. These modes are

usually coarse grained over in cosmology.

18We refer the reader to [3, 11, 20] for a more detailed discussion of the wave function of linear fluctuations

around empty de Sitter space and Euclidean AdS space in the context of dS/CFT.
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In general, classical behavior requires a certain coarse-graining over the fine details of

the geometry and matter field configuration when the boundary is at finite scale factor. This

introduces a length scale ζ. Below we will see that in the context of AdS/CFT ζ shows up as

a UV cutoff in the dual. The saddle point action of a coarse-grained configuration generally

depends on ζ. Hence the generalization of (6.7) to boundary surfaces at finite b reads

I[b, h̃ij(~x), χ(~x)] = −Ireg
DW[h̃ij(~x), α(~x), ζ(b)] + iSct[b, h̃ij(~x), α(~x)] +O(e−yυ) (6.8)

where the functions h̃ij(~x), χ(~x) and α(~x) should be understood as labels for coarse-grained

configurations that satisfy the classicality conditions on Σ.

In the case of perturbation theory one coarse grains over the sub-horizon modes to

get the probabilities for different classical configurations on Σ [3]. The coarse-graining

scale ζ ∼ 1/bH is thus associated with the horizon size H−1. Given that H−1 remains

approximately constant during inflation, it follows that ζ is inversely proportional to b.

The classical ensemble of the NBWF at smaller values of the scale factor emerges thus as

a coarse graining of the ensemble at larger values of b. In the limit b→∞ one obtains the

maximally refined ensemble of histories consistent with classicality.

7 Holographic no-boundary measure

The AdS domain wall representation of the saddle points provides a natural connection

between the no-boundary amplitude of coarse-grained classical configurations and the Eu-

clidean AdS/CFT duality. This leads to a dual formulation of the semiclassical NBWF in

this regime and a novel approach to a dS/CFT duality that we now describe.

7.1 AdS/CFT

The Euclidean AdS/CFT correspondence [8–10] postulates a relation between the semi-

classical supergravity partition function ZSG[ξ] in asymptotically AdS spaces and the large

N limit of the partition function ZCFT [ξ] of a dual conformal field theory defined on the

conformal boundary. The boundary conditions ξ on the dynamical fields in the gravity

theory enter as sources in the dual partition function.

The AdS/CFT duality is a strong/weak coupling duality, in the sense that the relation

between the parameters in both theories is such that when the low energy gravity approx-

imation can be trusted the CFT is strongly coupled (and at large N) and vice versa. The

duality therefore provides a powerful alternative way to compute CFT correlation functions

using AdS gravity. To do this, one differentiates ZCFT ≈ exp(−Ireg
SG/~) with respect to ξ,

where Ireg
SG is the regularized Euclidean action of a solution of the classical supergravity

equations with asymptotic boundary conditions ξ and smooth ‘no-boundary’ conditions

in the interior.

An interesting class of supergravity solutions for which the duality has been explored

in great detail concerns the real versions of the Euclidean AdS domain walls discussed

above. These are regular Euclidean solutions, involving only gravity and a scalar field with

a negative potential −V , in which the scalar field has a nontrivial profile in the radial AdS
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direction.19 Explicit examples were found e.g. in the consistent truncations of N = 8 gauge

supergravity in four dimensions obtained in [35], for which the dual theory is known [36].

In these models, the scalar potential −V has a negative maximum around which the scalars

have mass M2 ≡ −m2 = −2H2.

The metric and scalar field in general AdS domain wall solutions behave asymptotically

as (6.2a) and (6.2b), with λ± given by (5.5). In the supergravity limit the AdS/CFT

dictionary then states that

exp(−Ireg
DW[h̃ij , α]/~) = ZQFT[h̃ij , α] = 〈exp

∫
d3x
√
h̃αO〉QFT (7.1)

where the dual QFT lives on the conformal boundary of AdS represented here by the three-

metric h̃ij . On the right hand side the brackets 〈· · · 〉 denote the functional integral average

involving the boundary field theory action minimally coupled to the metric conformal

structure represented by h̃ij . For radial domain walls this is the round three-sphere, but

in general α, β and h̃ij are functions of the boundary coordinates x.

The AdS/CFT duality (7.1) relates the asymptotic AdS factor exp(−Ireg
DW/~) to the

partition function of a dual field theory. The duality on a surface at finite radius a emerges

as a particular coarse-graining of (7.1) over short scale degrees of freedom on both sides.

This introduces a scale ζ ∼ 1/a as discussed in section 6.4. The regularized AdS action

Ireg
DW[h̃ij , α, ζ] that enters in the duality at finite radius is the asymptotic limit of the action

of the coarse-grained configurations on the boundary and generally depends on ζ.

On the field theory side the coarse-graining scale ζ defines a UV cutoff ε ∼ 1/a that

specifies the range of high-energy modes that should be integrated out. This yields a

new partition function ZQFT[h̃ij , α, ε]. Thus the dependence of the bulk wave function

for coarse-grained configurations on the radius of the boundary emerges from the energy

scale at which one considers the dual field theory. However, the precise mapping between

the radius a of the boundary and the UV cutoff ε in the dual has yet to be identified

(see e.g. [33, 34] for recent work on this). Also the question whether and how structure

in the boundary configuration on scales smaller than ζ is described in the dual requires

further work.

It follows from (7.1) that AdS/CFT relates the ensemble of domain wall solutions of the

action of a given (super)gravity theory to an ensemble of dual QFTs that are deformations

of a given CFT. The additions to the field theory action are relevant deformations of the

form αO, where the dual operator O has dimension ∆ = λ+. The deformation leads to a

vev for O that can be computed from the gravity theory and that is given by the coefficient

β in (6.2b). The precise relation between the strength of the deformation α and the vev β

depends on the details of the theory and on the regularity condition in the interior [30, 31].

For example for the consistent truncations of [35] mentioned earlier the dual operator has

dimension ∆ = 2, and radial domain walls are associated with relevant deformations of

ABJM theory [36] defined on the unit three sphere.

19The Lorentzian continuation of domain walls of this kind describe collapsing cosmologies that produce

a big crunch singularity in AdS [30, 31].
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Figure 4. The saddle point representation that serves as a guide in the derivation of a dual formu-

lation of the NBWF in terms of a field theory defined on the conformal boundary geometry at υ.

The connection exhibited in (7.1) between bulk boundary conditions ξ and deforma-

tions of the dual field theory is a general feature of AdS/CFT that applies to all bulk fields.

In the application of the correspondence to cosmology that we are about to describe we

will regard the partition function ZQFT[ξ] of the boundary theory as a function of these

boundary values ξ = (α, h̃, . . .).

7.2 dS/CFT

Finally we turn to our proposal for a dual formulation of the semiclassical NBWF. To do

so we consider a representation of the saddle points along contours of the kind shown in

figure 4.

Equation (6.8)) shows that the leading order NBWF of coarse-grained classical con-

figurations (b, h̃, χ) is given by the product of an AdS factor exp(+Ireg
DW), multiplied by a

surface term that is the exponential of a phase factor iSct. The AdS factor governs the

probabilities of different configurations on Σ whereas the phase factor is important in pre-

dicting the classical evolution of the configuration. The action Ireg
DW is the regularized action

of coarse-grained Euclidean AdS domain walls with boundary conditions (h̃, α) where α is

locally related to χ. Applying the finite radius (or coarse-grained) version of the AdS/CFT

relation (7.1) in the (super)gravity limit to (6.8) yields20

Ψ[b, h̃, χ] =
1

ZQFT[h̃, α, ε]
exp(iSct[b, χ, h̃]/~) (7.2)

where ε ∼ 1/Hb is the UV cutoff in the dual field theory mentioned earlier. The sources

(h̃, α) of ZQFT are associated with the asymptotic behavior along the AdS part of the

20This formula depends on the number of dimensions. See also [13].
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contour in figure 4 but they are locally related21 to the argument (b, h̃, χ) of the wave

function at the dS endpoint υ.

The dependence of the field theory partition function on the argument of the wave

function gives a measure on different classical configurations on Σ. For sufficiently small

values of the matter sources and sufficiently mild deformation of the round three sphere

geometry one expects the integral defining the partition function to converge. Thus (7.2)

gives a dual formulation in which the semiclassical no-boundary measure on classical con-

figurations is given in terms of partition functions of field theories on the final boundary

that are relevant deformations of the CFTs that occur in AdS/CFT. In models where the

AdS/CFT dual is known explicitly, the relation (7.2) thus yields a concrete realization of a

dS/CFT duality. For instance, for N = 8 gauge supergravity in four dimensions, one has

that ABJM theory provides in principle an alternative way to compute the cosmological

probability measure in the no-boundary state.22

In (7.2) the evolution in time of the universe (as represented by changes in the scale

factor) emerges as inverse RG flow in the dual theory as originally conjectured in [15] and

more recently discussed in a different context in [19, 32]. Here this is because the scale factor

b on Σ specifies the radius of the boundary of the AdS regime of the corresponding saddle

point, which via AdS/CFT is related to a cutoff energy scale ε−1 in the dual field theory.

This also means that high energy modes in the dual field theory are coarse-grained over

on boundaries Σ at finite scale factor b. We have argued this is just what one expects, not

only from the holographic principle in general but also from the classicality conditions on Σ

in particular, which require a similar coarse-graining in the bulk.23 The coarse graining can

be made explicit for perturbations around homogeneous inflationary backgrounds where

classicality on Σ requires a coarse-graining over subhorizon modes with wavenumber n >

ε−1. When the scale factor increases, more modes contribute to the classical ensemble both

in the bulk and in the boundary theory. In the asymptotic limit one obtains the maximally

refined ensemble of histories consistent with classicality.

Finally we emphasize that a dS/CFT duality emerged in our analysis as a generaliza-

tion of AdS/CFT to complex saddle points. Specifically we have not derived a dS/CFT

correspondence starting from a string theory or a supergravity theory in asymptotic de

Sitter space. Instead our results indicate that Euclidean AdS and Lorentzian de Sitter

space are intimately connected at the level of the universe’s quantum state, whether or not

a separate construction of a de Sitter space in string theory exist. Our results can thus be

viewed as a novel approach to dS/CFT in which a semiclassical AdS wave function pre-

dicts Lorentzian de Sitter universes with an effective positive cosmological constant. This

viewpoint will be developed further in [14].

21That is, by the asymptotic equations only.
22The complete dual field theory lives on the future conformal boundary h̃. Nevertheless it takes into

account the initial state of the universe, because AdS/CFT implements a regularity condition in the interior

of the saddle point. Indeed the Euclidean AdS/CFT correspondence is perfectly consistent with the notion

of a unique no-boundary quantum state of the universe [12].
23Even though from a cosmological point of view it is natural to consider the amplitude of coarse-grained

classical configurations, it remains an interesting open question whether this is a necessary restriction in

AdS/CFT. This may not be unrelated to the problem of resolving small objects in AdS in the dual.
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It is natural to conjecture that the dS/CFT duality (7.2) extends beyond the leading

order approximation. This would place the no-boundary wave function on firm footing and

identify a regime in which it has a precise meaning. It would also open up the possibility to

use the dual partition function at finite N to compute the string and quantum corrections to

the no-boundary measure. In fact, the higher spin realization of dS/CFT found recently [21]

provides some support for an exact duality of the form proposed in (7.2). It would be

interesting to explore this further e.g. by comparing the next order in ~ corrections on

both sides of (7.2).
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A The action on the horizontal branch (h) of contour CA

This appendix gives a few more details on the derivation of the form of the action

Ih(yh) (6.3) on the horizontal branch (h) of the contour CA. In particular we sketch a

derivation of the key result that the finite contribution vanishes in an expansion of Ih(yh)

for large yh.

We begin by writing the total action I[g, φ] ≡ IC [g]+Iφ[g, φ] [cf (2.2), (2.3)] in standard

3+1 form for metrics of the form

ds2 = N2(λ, ~x)dλ2 + gij(λ, ~x)dxidxj . (A.1)

We find

I =
1

16π

∫
d4x

(
1

N
K +NP

)
. (A.2)

Here, PN is the ‘potential’ part of the Lagrangian

NP ≡ Ng1/2
(

6H2 − 3R+ 12V + 6(~∇φ)2
)

(A.3)

and K/N is the ‘kinetic’ part

1

N
K ≡ Ng1/2

[
KijK

ij −K2 + 6

(
φ′

N

)2
]

(A.4)
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with the extrinsic curvature defined by (no shift in (A.1))

Kij ≡
1

2N

∂gij
∂λ

. (A.5)

Varying the action with respect fo N(t, ~x) gives the (Hamiltonian) constraint equation

1

N
K = NP. (A.6)

The value of the action on any solution of this constraint can be written

I =
1

16π

∫
d4x 2NP =

1

16π

∫
d4x 2K/N. (A.7)

In these expressions d4x = dλd3x. But by restricting to N ’s that are a function of λ only as

assumed in (6.1) we can rewrite our equations in terms of the complex parameter τ = x+iy

introduced by (3.5). Then on the horizontal branch (h) of CA we have24

Ih(yh) =
1

8π

∫ xr

xa

dx

∫
d3xP =

1

8π

∫ xr

xa

dx

∫
d3xK (A.8)

where now Kij ≡ (1/2)(∂gij/∂τ). The first of these expressions was quoted in (6.3) because

there is a more direct connection with the standard counter terms in [27]. But we could

have used the K form.

The asymptotic form of Ih(yh) for large yh can be found by expanding P and K for

large y using the variable u defined in (5.1) and the expansions (6.2a) and (6.2b) derived

in [27]. There are terms that diverge for small u. But for the finite part independent of u,

we find

[P]finite =
1

16π

√
c6h̃

(
3h̃ij h̃

(3)
ij − 12m2α(~x)β(~x)

)
= −[K]finite (A.9)

The constraint equation (A.6) can also be expanded in powers of u with the result that

[P]finite = [K]finite. (A.10)

The implication of (A.10) and (A.9) is that the finite part of the expansion of the action

vanishes.

[P]finite = [K]finite = 0 (A.11)

It might seem that the vanishing of the finite part of the action on the horizontal contour

is a consequence of the constraint equation (A.6) alone. But, in fact, the form of the

expansions (6.2a) and (6.2b) rely on the other field equations as well, and the scalar field

equation in particular.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.

24We apologize for having used ‘x’ for so many different things.
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