Periodic Solutions for Second Order Systems with Not Uniformly Coercive Potential1

Chun-Lei Tang and Xing-Ping Wu

Department of Mathematics, Southwest Normal University, Chongqing 400715, People’s Republic of China

Submitted by J. Mawhin

Received July 28, 2000

The existence and multiplicity of periodic solutions are obtained for the nonautonomous second order systems with locally coercive potential; that is, $F(t, x) \to +\infty$ as $|x| \to \infty$ for a.e. t in some positive-measure subset of $[0, T]$, by using an analogy of Egorov’s Theorem, the properties of subadditive functions, the least action principle, and a three-critical-point theorem proposed by Brezis and Nirenberg.

Key Words: periodic solution; second order system; subadditivity; coercivity; Sobolev’s inequality; critical point.

1. INTRODUCTION AND MAIN RESULTS

Consider the second order systems

\[
\begin{align*}
\ddot{u}(t) &= \nabla F(t, u(t)) & \text{a.e. } t \in [0, T] \\
\dot{u}(0) - u(T) &= \dot{u}(0) - \dot{u}(T) = 0,
\end{align*}
\]

where $T > 0$ and $F : [0, T] \times \mathbb{R}^N \to \mathbb{R}$ satisfies the following assumption:

(A) $F(t, x)$ is measurable in t for every $x \in \mathbb{R}^N$ and continuously differentiable in x for a.e. $t \in [0, T]$, and there exist $a \in C(R^+, R^+)$, $b \in L^1(0, T; R^+)$ such that

\[
|F(t, x)| \leq a(|x|)b(t), \quad |
\nabla F(t, x)| \leq a(|x|)b(t)
\]

for all $x \in \mathbb{R}^N$ and a.e. $t \in [0, T]$.

1 Project 19871067 supported by National Natural Science Foundation of China.
The corresponding functional φ on H^1_T given by

$$\varphi(u) = \frac{1}{2} \int_0^T |\dot{u}(t)|^2 \, dt + \int_0^T (F(t, u(t)) - F(t, 0)) \, dt$$

is continuously differentiable and weakly lower semicontinuous on H^1_T (see [1]), where

$$H^1_T = \left\{ u : [0, T] \to \mathbb{R}^N \left| \begin{array}{l}
\text{ } u \text{ is absolutely continuous, } \\
\text{ } u(0) = u(T) \text{ and } \dot{u} \in L^2(0, T; \mathbb{R}^N)
\end{array} \right. \right\}$$

is a Hilbert space with the norm defined by

$$\|u\| = \left(\int_0^T |u(t)|^2 \, dt + \int_0^T |\dot{u}(t)|^2 \, dt \right)^{\frac{1}{2}}$$

for $u \in H^1_T$. It is well known that the solutions of problem (1) correspond to the critical points of φ.

It has been proved that problem (1) has at least one solution which minimizes φ on H^1_T by the least action principle (see [1–8]). Many solvability conditions are given, such as the coercivity condition (see [2]), the periodicity condition (see [3]), the convexity condition (see [4]), the boundedness condition (see [1]), the subadditive condition (see [5]), and the sublinear condition (see [6]). Specifically, under the condition that $F(t, x) \to +\infty$ as $|x| \to \infty$ uniformly for a.e. $t \in [0, T]$, Berger and Schechter [2] proved the existence of solutions for problem (1) (see Theorem 4.9 in [2]). On one hand, being based on [2], Mawhin and Willem [1] obtained the same result for the perturbation problem

$$\begin{cases}
\ddot{u}(t) = \nabla F(t, u(t)) + e(t) & \text{a.e. } t \in [0, T] \\
u(0) - u(T) = \dot{u}(0) - \dot{u}(T) = 0
\end{cases}$$

in the case that $\tilde{e} \triangleq (1/T) \int_0^T e(t) \, dt = 0$. Recently Tang [8] generalized the results mentioned above. On the other hand, Brezis and Nirenberg [9] obtained three distinct solutions for problem (1) under some additional conditions, and Tang [10] made some extension.

In this paper, we replace the uniform coercivity by the local coercivity, that is, replacing $F(t, x) \to +\infty$ as $|x| \to \infty$ uniformly for a.e. $t \in [0, T]$ by $F(t, x) \to +\infty$ as $|x| \to \infty$ for a.e. t in some positive-measure subset of $[0, T]$, and obtain some existence and multiplicity results of periodic solutions by using an analogy of Egorov's Theorem, the properties of subadditive functions, the least action principle, and a three-critical-point theorem proposed by Brezis and Nirenberg [9], which generalize some
well-known results in [1, 2, 8–10]. Our main results are the following theorems.

Theorem 1. Suppose that F satisfies assumption (A) and there exists $\beta \in L^1(0, T)$ such that

$$F(x, t) \geq \beta(t)$$ \hspace{1cm} (2)

for all $x \in \mathbb{R}^N$ and a.e. $t \in [0, T]$. Assume that there exists a subset E of $[0, T]$ with $\text{meas}(E) > 0$ such that

$$F(t, x) \to +\infty \quad \text{as} \quad |x| \to \infty$$ \hspace{1cm} (3)

for a.e. $t \in E$. Then problem (1) has at least one solution which minimizes φ on H^1_T.

Remark 1. Theorem 1 generalizes Theorem 4.9 in 2. On one hand, if $F(t, x) \to +\infty$ as $|x| \to \infty$ for a.e. $t \in [0, T]$, there exists $M > 0$ such that $F(x, t) \geq 0$ for all $|x| \geq M$ and a.e. $t \in [0, T]$. Furthermore from assumption (A), one obtains (2) with

$$\beta(t) = -\left(\max_{0 \leq x \leq M} a(s)\right)b(t).$$

On the other hand, there are functions $F(t, x)$ satisfying our Theorem 1 and not satisfying Theorem 4.9 in 2 and other theorems in [1–8]. For example,

$$F(t, x) = t\left[2 + \sin(2\pi|x|^2)\right]\ln(1 + |x|^2)$$

is not convex in x, not periodic in x, not γ-subadditive in x, not convergent to $+\infty$ as $|x| \to \infty$ uniformly for a.e. $t \in [0, T]$, and $\nabla F(t, x)$ is not bounded by a function $g \in L^1(0, T)$ for all $x \in \mathbb{R}^N$.

Theorem 2. Suppose that F satisfies assumption (A), (2), and (3). Assume that there exist $r > 0$ and an integer $k \geq 0$ such that

$$-\frac{1}{2}(k + 1)^2w^2|x|^2 \leq F(t, x) - F(t, 0) \leq -\frac{1}{2}k^2w^2|x|^2$$ \hspace{1cm} (4)

for all $|x| \leq r$ and a.e. $t \in [0, T]$, where $w = 2\pi/T$. Then problem (1) has at least three distinct solutions in H^1_T.

Remark 2. Theorem 2 generalizes Theorem 7 in [9] and Corollary 5 in [10]. There are functions $F(t, x)$ satisfying our Theorem 2 and not satisfying Theorem 7 in [9] and Corollary 5 in [10]. For example, let
\(F(t, x) \)
\[
\begin{cases}
 -\frac{1}{2}w^2|x|^2, & |x| \leq 1 \\
 t \left[2 + \sin(2\pi|x|^2) \right] \ln(1 + |x|^2) - \lambda \cos(2\pi|x|^2) - \mu \sin(2\pi|x|^2), & |x| \geq 1,
\end{cases}
\]

where
\[
\lambda = \frac{1}{2}w^2 + (2\ln 2)t \quad \text{and} \quad \mu = t \ln 2 + \frac{w^2 + 2t}{4\pi}
\]
are chosen such that \(F(t, x) \) is continuously differentiable in \(x \) for a.e. \(t \in [0, T] \).

We shall prove more general results than Theorems 1 and 2.

THEOREM 3. Suppose that \(F = F_1 + F_2 \), \(F_1 \), and \(F_2 \) satisfy assumption (A), and there exist a function \(\beta \in L^1(0, T) \) and a subset \(E \) of \([0, T] \) with \(\text{meas}(E) > 0 \) such that
\[
F_1(x, t) \geq \beta(t) \tag{5}
\]
for all \(x \in \mathbb{R}^N \) and a.e. \(t \in [0, T] \), and
\[
F_1(t, x) \to +\infty \quad \text{as} \quad |x| \to \infty \tag{6}
\]
for a.e. \(t \in E \). Assume that there exist \(g \in L^1(0, T; \mathbb{R}^+) \) and \(C_0 \in \mathbb{R} \) such that
\[
|\nabla F_2(t, x)| \leq g(t) \tag{7}
\]
for all \(x \in \mathbb{R}^N \) and a.e. \(t \in [0, T] \), and
\[
\int_0^T F_2(t, x) \, dt \geq C_0 \tag{8}
\]
for all \(x \in \mathbb{R}^N \). Then problem (1) has at least one solution which minimizes \(\varphi \) on \(H^1_0 \).

Remark 3. Theorem 3 generalizes a result in [8]. There are functions \(F(t, x) \) satisfying our Theorem 1 and not satisfying the theorem and its corollaries in [8] and others in [1–7]. For example, let
\[
F(t, x) = t \left[2 + \sin(2\pi|x|^2) \right] \ln(1 + |x|^2) + (x, e(t)),
\]
where \(e \in L^1(0, T; \mathbb{R}^N) \) satisfies \(\int_0^T e(t) \, dt = 0 \). The reason is similar to that in Remark 1.
Theorem 4. Assume that (4) and the condition of Theorem 3 hold. Then problem (1) has at least three distinct solutions in H^1_γ.

2. PROOF OF THEOREMS

We first give analogies of Egorov’s Theorem: Lemmas 1 and 2. Lemma 1 treats the sequence case and Lemma 2 does the continuous variant case. They all deal with tending to $+\infty$.

Lemma 1. Suppose that E is a Lebesgue measurable subset of \mathbb{R}^1 with $\text{meas} E < \infty$ and $f_n(t)$ is a sequence of Lebesgue measurable functions such that $f_n(t) \to +\infty$ as $n \to \infty$ for a.e. $t \in E$. Then there exists, for every $\delta > 0$, a subset E_δ with $\text{meas}(E \setminus E_\delta) < \delta$ such that $f_n(t) \to +\infty$ as $n \to \infty$ uniformly for all $t \in E_\delta$.

Proof. Without loss of generality, we may assume that $f_n(t) \to +\infty$ as $n \to \infty$ for all $t \in E$.

For every $M > 0$ and every positive integer n, define

$$E[n, M] = \bigcap_{k=n+1}^{\infty} \{ t \in E | f_n(t) > M \}.$$

Then $E[n, M]$ is measurable and

$$E[n, M] \subset E[k, M] \quad \text{if } n < k.$$

Hence we have

$$E = \bigcup_{n=1}^{\infty} E[n, M]$$

because that $f_n(t) \to +\infty$ as $n \to \infty$ for all $t \in E$. By the properties of Lebesgue’s measure one has

$$\text{meas } E = \lim_{n \to \infty} \text{meas } E[n, M],$$

which implies that

$$\lim_{n \to \infty} \text{meas}(E \setminus E[n, M]) = 0.$$

Hence for every i there exists n_i such that

$$\text{meas}(E \setminus E[n, M]) < \frac{\delta}{2^i}.$$
Set

\[E_\delta = \bigcap_{i=1}^{\infty} E[n_i, i]. \]

Then one has

\[
\text{meas}(E \setminus E_\delta) = \text{meas}\left(\bigcap_{i=1}^{\infty} E[n_i, i]\right) \\
= \text{meas} \bigcup_{i=1}^{\infty} (E \setminus E[n_i, i]) \\
\leq \sum_{i=1}^{\infty} \text{meas}(E \setminus E[n_i, i]) \\
< \sum_{i=1}^{\infty} \frac{\delta}{2^i} = \delta.
\]

Furthermore, \(f_n(t) \to +\infty \) as \(n \to \infty \) uniformly for all \(t \in E_\delta \). In fact, for every \(M > 0 \), choose \(i_0 \geq M \). Then we have \(E_\delta \subset E[n_{i_0}, i_0] \), which implies that

\[f_n(t) \geq i_0 \geq M \]

for all \(n \geq n_{i_0} \) and all \(t \in E_\delta \).

Lemma 2. Suppose that \(F \) satisfies assumption (A) and \(E \) is a measurable subset of \([0, T]\). Assume that

\[F(x, t) \to +\infty \quad \text{as } |x| \to \infty \]

for a.e. \(t \in E \). Then for every \(\delta > 0 \) there exists subset \(E_\delta \) of \(E \) with \(\text{meas}(E \setminus E_\delta) < \delta \) such that

\[F(x, t) \to +\infty \quad \text{as } |x| \to \infty \]

uniformly for all \(t \in E_\delta \).

Proof. Set

\[f_n(t) = \inf_{|x| \geq n} F(x, t) \]
for all n and a.e. $t \in E$. By the continuity of $F(x, t)$ in x for a.e. $t \in E$ one has
\[
 f_n(t) = \inf \left\{ F(x, t) \left| \begin{array}{c}
 |x| \geq n, x = (\xi_1, \xi_2, \ldots, \xi_N), \\
 \xi_i (i = 1, 2, \ldots, N) \text{ is rational number}
\end{array} \right. \right.
\]
for all n and a.e. $t \in E$, which implies that $f_n(t)$ is measurable for all n.

Now the fact
\[
f_n(t) \to +\infty \quad \text{as } n \to \infty
\]
for a.e. $t \in E$ follows from the same property of $F(x, t)$. By Lemma 1 there exists, for every $\delta > 0$, a subset E_δ with $\text{meas}(E \setminus E_\delta) < \delta$ such that $f_n(t) \to +\infty$ as $n \to \infty$ uniformly for all $t \in E_\delta$, which implies the desired property of $F(x, t)$.

Next, we give a relation between the uniform coercivity and the subadditivity.

Lemma 3. Suppose that F satisfies assumption (A) and E is a measurable subset of $[0, T]$. Assume that
\[
 F(x, t) \to +\infty \quad \text{as } |x| \to \infty
\]
uniformly for all $t \in E$. Then there exist a real function $\gamma \in L^1(E)$, and $G \in C(R^N, R)$ which is subadditive, that is,
\[
 G(x + y) \leq G(x) + G(y)
\]
for all $x, y \in R^N$, and coercive, that is,
\[
 G(x) \to +\infty
\]
as $|x| \to \infty$, and satisfies that
\[
 G(x) \leq |x| + 4
\]
for all $x \in R^N$, such that
\[
 F(x, t) \geq G(x) + \gamma(t)
\]
for all $x \in R^N$ and a.e. $t \in E$.

Proof. Since $F(x, t) \to +\infty$ as $|x| \to \infty$ uniformly for all $t \in E$, there exists a sequence of positive integers (n_k) with $n_{k+1} > 2n_k$ for all positive integers k such that
\[
 F(x, t) \geq k
\]
for all $|x| \geq n_k$ and all $t \in E$. Let $n_0 = 0$ and define
\begin{equation}
G(x) = k + 2 + \frac{|x| - n_{k-1}}{n_k - n_{k-1}} \tag{14}
\end{equation}
for $n_{k-1} \leq |x| < n_k$, where $k \in N$.

By the definition of G we have
\begin{equation}
k + 2 \leq G(x) \leq k + 3 \tag{15}
\end{equation}
for $n_{k-1} \leq |x| < n_k$. It follows that
\[F(x, t) \geq G(x) + \gamma(t)\]
for all $t \in \mathbb{R}^N$ and a.e. $t \in E$, where
\[\gamma(t) = -\left(\max_{0 \leq s \leq n_1} a(s)\right)b(t) - 4.\]

In fact, when $n_{k-1} \leq |x| < n_k$ for some $k \geq 2$, one has, by (13) and (15),
\[F(x, t) \geq k - 1 \geq G(x) - 4 \geq G(x) + \gamma(t)\]
for a.e. $t \in E$. When $|x| < n_1$, we have, by assumption (A) and (15),
\[F(x, t) \geq -\left(\max_{0 \leq s \leq n_1} a(s)\right)b(t) = 4 + \gamma(t) \geq G(x) + \gamma(t)\]
for a.e. $t \in E$.

It is obvious that G is continuous and coercive. Moreover one has
\[G(x) \leq |x| + 4\]
for all $x \in \mathbb{R}^N$. In fact, for every $x \in \mathbb{R}^N$ there exists $k \in N$ such that
\[n_{k-1} \leq |x| < n_k\]
which implies that
\[G(x) \leq (k - 1) + 4 \leq n_{k-1} + 4 \leq |x| + 4\]
for all $x \in \mathbb{R}^N$ by (15) and the fact that $n_k \geq k$ for all integers $k \geq 0$.

Now we only need to prove the subadditivity of G. Let
\[n_{k-1} \leq |x| < n_k, \quad n_{j-1} \leq |y| < n_j\]
and $m = \max(k, j)$. Then we have
\[|x + y| \leq |x| + |y| < n_k + n_j \leq 2n_m < n_{m+1}\]
Hence we obtain, by (15),
\[G(x + y) \leq m + 4 \leq k + 2 + j + 2 \leq G(x) + G(y), \]
which shows that \(G \) is subadditive.

At last, we prove our main results.

Proof of Theorem 3. By Lemma 2, for \(\delta = (1/2)\text{meas}(E) > 0 \), there exists subset \(E_{\delta} \) of \(E \) with \(\text{meas}(E \setminus E_{\delta}) < \delta \) such that
\[F(x, t) \to +\infty \quad \text{as } |x| \to \infty \]
uniformly for all \(t \in E_{\delta} \), which implies that
\[\text{meas } E_{\delta} = \text{meas } E - \text{meas}(E \setminus E_{\delta}) = \delta > 0. \]
Set \(\widetilde{u} = (1/T) \int_0^T u(t) \, dt \) and \(\tilde{u}(t) = u(t) - \widetilde{u} \). Then one has
\[\|\tilde{u}\|_* \leq \left(\frac{T}{12}\right)^{\frac{1}{2}} \|\tilde{u}\|_{L^2}; \]
for all \(u \in H^1 \) (Sobolev's inequality). From (2), (12), and (9), one obtains
\[
\int_0^T F_1(t, u(t)) \, dt \\
\geq \int_{E_{\delta}} F_1(t, u(t)) \, dt + \int_{[0, T] \setminus E_{\delta}} B(t) \, dt \\
\geq \int_{E_{\delta}} G(u(t)) \, dt + \int_{E_{\delta}} \gamma(t) \, dt + \int_{[0, T] \setminus E_{\delta}} B(t) \, dt \\
\geq \int_{E_{\delta}} (G(\widetilde{u}) - G(-\tilde{u}(t))) \, dt + \int_{E_{\delta}} \gamma(t) \, dt + \int_{[0, T] \setminus E_{\delta}} B(t) \, dt \\
\geq G(\widetilde{u}) \text{meas } E_{\delta} - (\|\tilde{u}\|_* + 4) \text{meas } E_{\delta} \\
+ \int_{E_{\delta}} \gamma(t) \, dt + \int_{[0, T] \setminus E_{\delta}} B(t) \, dt
\]
for all \(u \in H^1 \). It follows from (7) that
\[
\int_0^T F_2(t, u(t)) \, dt = \int_0^T F_2(t, \widetilde{u}) \, dt + \int_0^T \int_0^1 (\nabla F_2(t, \widetilde{u} + s\tilde{u}(t)), \tilde{u}(t)) \, ds \, dt \\
\geq \int_0^T F_2(t, \widetilde{u}) \, dt - \|\tilde{u}\|_* \int_0^T g(t) \, dt
\]
for all \(u \in H^1_t \). Thus by Sobolev’s inequality we have

\[
\varphi(u) \geq \frac{1}{2} \int_0^T \dot{u}(t)^2 \, dt + G(\bar{u}) \text{meas } E_\delta - (\|\bar{u}\|_u + 4) \text{meas } E_\delta \\
+ \int_{E_\delta} \gamma(t) \, dt + \int_{[0,T] \setminus E_\delta} \beta(t) \, dt + \int_0^T F_2(t, \bar{u}) \, dt \\
- \|\bar{u}\| \int_0^T g(t) \, dt - \int_0^T F(t, 0) \, dt \\
\geq G(\bar{u}) \text{meas } E_\delta + C_0 + \frac{1}{2} \int_0^T \dot{u}(t)^2 \, dt \\
- \left(\text{meas } E_\delta + \int_0^T g(t) \, dt \right) \left(\frac{T}{12} \right)^{\frac{1}{2}} \left(\int_0^T \dot{u}(t)^2 \, dt \right)^{\frac{1}{2}} \\
+ \int_{E_\delta} \gamma(t) \, dt + \int_{[0,T] \setminus E_\delta} \beta(t) \, dt - \int_0^T F(t, 0) \, dt - 4 \text{meas } E_\delta
\]

for all \(u \in H^1_t \). As \(\|u\| \to \infty \) if and only if \((\|\bar{u}\| + \int_0^T \dot{u}(t)^2 \, dt)^{\frac{1}{2}} \to \infty \), it follows from (10) that \(\varphi \) is coercive. By Theorem 1.1 and Corollary 1.1 in [1] we complete our proof.

Now we prove Theorem 4. For convenience to quote we state a three-critical-point theorem proposed by Brezis and Nirenberg (see Theorem 4 in [9]).

Lemma 4 [9]. Let \(X \) be a Banach space with a direct sum decomposition

\[
X = X_1 \oplus X_2
\]

with \(\dim X_2 < \infty \) and let \(\varphi \) be a \(C^1 \) function on \(X \) with \(\varphi(0) = 0 \), satisfying the (PS) condition. Assume that for some \(\delta_0 > 0 \)

\[
\varphi(v) \geq 0 \quad \text{for } v \in X_1 \text{ with } \|v\| \leq \delta_0
\]

and

\[
\varphi(v) \leq 0 \quad \text{for } v \in X_2 \text{ with } \|v\| \leq \delta_0.
\]

Assume also that \(\varphi \) is bounded from below and \(\inf_X \varphi < 0 \). Then \(\varphi \) has at least two nonzero critical points.

Proof of Theorem 4. From the proof of Theorem 3 we know that \(\varphi \) is coercive, which implies that \(\varphi \) satisfies the (PS) condition. Let \(X_2 \) be a finite-dimensional subspace of \(X = H^1_t \) given by

\[
X_2 = \left\{ \sum_{j=0}^k \left(a_j \cos jwt + b_j \sin jwt \right) \mid a_j, b_j \in \mathbb{R}^N, j = 0, \ldots, k \right\}
\]
and let $X_1 = X_2^+$. Then from (4) we obtain

$$\varphi(u) \leq \frac{1}{2} \int_0^T |\dot{u}(t)|^2 \, dt - \frac{1}{2} k^2 w^2 \int_0^T |u(t)|^2 \, dt \leq 0$$

(16)

for all $u \in X_2$ with $\|u\| \leq C^{-1}r$, and

$$\varphi(u) \geq \frac{1}{2} \int_0^T |\dot{u}(t)|^2 \, dt - \frac{1}{2} (k + 1)^2 w^2 \int_0^T |u(t)|^2 \, dt \geq 0$$

for all $u \in X_1$ with $\|u\| \leq C^{-1}r$, where C is a positive constant such that $\|u\|_\infty \leq C\|u\|$ for all $u \in H^1_T$. The existence of the constant C follows from the inequality

$$\|u\|_\infty \leq |\bar{u}| + \|\bar{u}\|_\infty \leq \int_0^T |u(t)| \, dt + \|\bar{u}\|_\infty$$

$$\leq T^\frac{1}{2}\|u\|_{L^2} + \left(\frac{T}{12} \right)^{\frac{1}{2}} \|\dot{u}\|_{L^2} \leq 2T^{\frac{1}{2}}\|u\|$$

for all $u \in H^1_T$, where we have used the H"older inequality and the Sobolev inequality.

In the case that $\inf_X \varphi < 0$, Theorem 4 follows from Lemma 4.

In the case that $\inf_X \varphi \geq 0$, by (16) we have

$$\varphi(v) = \inf_X \varphi = 0$$

for all $v \in X_2$ with $\|v\| \leq C^{-1}r$, which implies that all $v \in X_2$ with $\|v\| \leq C^{-1}r$ are minimum points of φ. Hence all $v \in X_2$ with $\|v\| \leq C^{-1}r$ are solutions of problem (1), and problem (1) has infinite solutions in H^1_T. Therefore Theorem 4 is proved.

REFERENCES