A slight improvement to Korenblum's constant

Chun-Yen Shen
Department of Mathematics, Indiana University, Bloomington, IN 47403, USA
Received 2 February 2007
Available online 18 April 2007
Submitted by M. Putinar

Abstract

Let $A^{2}(D)$ be the Bergman space over the open unit disk D in the complex plane. Korenblum conjectured that there is an absolute constant $c \in(0,1)$ such that whenever $|f(z)| \leqslant|g(z)|$ in the annulus $c<|z|<1$, then $\|f(z)\| \leqslant\|g(z)\|$. This conjecture had been solved by Hayman [W.K. Hayman, On a conjecture of Korenblum, Analysis (Munich) 19 (1999) 195-205. [1]], but the constant c in that paper is not optimal. Since then, there are many papers dealing with improving the upper and lower bounds for the best constant c. For example, in 2004 C . Wang gave an upper bound on c, that is, $c<0.67795$, and in 2006 A . Schuster gave a lower bound, $c>0.21$. In this paper we slightly improve the upper bound for c.

© 2007 Elsevier Inc. All rights reserved.
Keywords: Bergman space; Korenblum's constant

1. Introduction

Let D be the open unit disk in the complex plane C. The Bergman space $A^{2}(D)$ consists of analytic functions f in D such that

$$
\|f\|=\left[\int_{D}|f(z)|^{2} d A(z)\right]^{1 / 2}<\infty
$$

where

$$
d A(z)=\frac{1}{\pi} d x d y=\frac{1}{\pi} r d r d \theta, \quad z=x+i y=r e^{i \theta}
$$

is the normalized Lebesgue area measure on D. Korenblum conjectured that there is an absolute constant $c, 0<c<1$, such that whenever $|f(z)| \leqslant|g(z)|$ in the annulus $c<|z|<1$, then $\|f(z)\| \leqslant\|g(z)\|$. This conjecture is very natural and inspired many work. The answer to this conjecture was obtained by Hayman. He proved that the constant c exists and is greater than 0.04 . But we can ask whether this bound is optimal, and many papers have been done to find the better upper and lower bounds for the constant c (see [2,3] and [4]). The best upper bound for c until now is $0.67795 \ldots$ in [4], and the best lower bound for this constant is 0.21 in [3]. In this paper we use Wang's example in a slightly more sophisticated way to improve the upper bound to 0.677905 .

[^0]
2. Results

The following theorem shows that $c<0.677905$.
Theorem 2.1. Let

$$
f(z)=\frac{a+z^{n}}{2-a z^{n}}, \quad g(z)=\frac{z\left(1+a z^{n}\right)}{2-a z^{n}},
$$

where $a=0.6666714$ and $n=10$. Then $\|f(z)\|>\|g(z)\|$ and $|f(z)| \leqslant|g(z)|$ in $c<|z|<1$, where $c=$ $0.6779049274 \ldots$ is the real root of the equation $f(z)=g(z)$.

Proof. Let

$$
h(r)=\max _{|z|=r}\left|\frac{f(z)}{g(z)}\right|=\frac{a+r^{n}}{r\left(1+a r^{n}\right)} .
$$

Then, $h(c)=h(1)=1$. Since $f(z) / g(z)$ is analytic in $c \leqslant|z| \leqslant 1$, the maximum modulus theorem implies that $|f(z)| \leqslant|g(z)|$ in $c<|z|<1$. Using Maple to solve the equation, we obtain that $c=0.6779049274 \ldots$. Next, a direct calculation shows that

$$
\begin{aligned}
& \int_{D}|f(z)|^{2} d A(z)-\int_{D}|g(z)|^{2} d A(z) \\
& \quad=\frac{1}{\pi} \int_{0}^{2 \pi} \int_{0}^{1} \frac{a^{2}+2 a r^{n} \cos n \theta+r^{2 n}}{4-4 a r^{n} \cos n \theta+a^{2} r^{2 n}} r d r d \theta-\frac{1}{\pi} \int_{0}^{2 \pi} \int_{0}^{1} \frac{1+2 a r^{n} \cos n \theta+a^{2} r^{2 n}}{4-4 a r^{n} \cos n \theta+a^{2} r^{2 n}} r^{3} d r d \theta .
\end{aligned}
$$

Let $r^{n}=\rho$ and $n \theta=\phi$, then

$$
=\frac{1}{n \pi} \int_{0}^{2 \pi} \int_{0}^{1} \frac{a^{2}+2 a \rho \cos \phi+\rho^{2}}{4-4 a \rho \cos \phi+a^{2} \rho^{2}} \rho^{2 / n-1} d \rho d \phi-\frac{1}{n \pi} \int_{0}^{2 \pi} \int_{0}^{1} \frac{1+2 a \rho \cos \phi+a^{2} \rho^{2}}{4-4 a \rho \cos \phi+a^{2} \rho^{2}} \rho^{4 / n-1} d \rho d \phi .
$$

Using Maple, we obtain that when $a=0.6666714, n=10$ and $c=0.6779049274 \ldots$, then

$$
\int_{D}|f(z)|^{2} d A(z)-\int_{D}|g(z)|^{2} d A(z) \geqslant 0.22 \times 10^{-6}
$$

Hence,

$$
\|f(z)\|>\|g(z)\| .
$$

References

[1] W.K. Hayman, On a conjecture of Korenblum, Analysis (Munich) 19 (1999) 195-205.
[2] A. Hinkkanen, On a maximum principle in Bergman space, J. Anal. Math. 79 (1999) 335-344.
[3] A. Schuster, The maximum principle for the Bergman space and the Möbius pseudodistance for the annulus, Proc. Amer. Math. Soc. 134 (12) (2006) 3525-3530.
[4] C. Wang, On Korenblum's constant, J. Math. Anal. Appl. 296 (2004) 262-264.

[^0]: E-mail address: shenc@indiana.edu.

