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A periodic predator–prey-chain system with impulsive perturbation
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Abstract

A periodic predator–prey-chain system with impulsive effects is considered. By using the global results of Rabinowitz and
standard techniques of bifurcation theory, the existence of its trivial, semi-trivial and nontrivial positive periodic solutions is
obtained. It is shown that the nontrivial positive periodic solution for such a system may be bifurcated from an unstable semi-
trivial periodic solution. Furthermore, the stability of these periodic solutions is studied.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Predator–prey phenomena occur commonly in ecological systems, and they are always interesting topics of
population dynamics. For autonomous predator–prey systems, i.e. all coefficients being constants, we usually pay
much attention to the existence and stability of their equilibria, especially positive equilibria; but we investigate the
existence and stability of periodic solutions for nonautonomous systems [1–3], whose coefficients are time dependent.
When the seasonal effects, food supply, mating habits, etc., are considered, the nonautonomous systems are necessary.

The exploitation of the species and ecosystem interact, and both are affected by environment changes and human
activities. In fact, the population is harvested from or stocked into the system in regular pulses. And many species
are immigrated at fixed moments every year. Consequently, the population levels usually experience short-time
abrupt changes at fixed moments after undergoing relatively long periods of smooth variation. Naturally, we consider
combining nonautonomous differential dynamical systems and impulsive effects at fixed moments, and construct
nonautonomous impulsive differential systems. The fundamental theory for these systems is described in Bainov and
Simeonov’s book [7], but there are some difficulties in applying it to the dynamical behaviors of population directly,
such as the existence and stability of periodic solutions, persistence and extinction, and so on. Recently, some progress
has been made for Lotka–Volterra systems. Two-species predator–prey periodic systems with impulsive effects at fixed
moments were studied in [4–6]. To the author’s knowledge, three-species periodic Lotka–Volterra impulsive systems
have not been discussed in any generality, so we will consider the following T -periodic predator–prey-chain system
with impulsive effects:
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Ṅ1(t) = N1(b1(t)− a11(t)N1(t)− a12(t)N2(t))
Ṅ2(t) = N2(−b2(t)+ a21(t)N1(t)− a22(t)N2(t)− a23(t)N3(t))
Ṅ3(t) = N3(−b3(t)+ a32(t)N2(t)− a33(t)N3(t))

 t 6= tk,

N1(t
+

k ) = (1+ hk)N1(tk)
N2(t

+

k ) = (1+ gk)N2(tk)
N3(t

+

k ) = (1+ fk)N3(tk)

 ,
(1.1)

where bi (t), ai2(t) (i = 1, 2, 3), ai1(t) (i = 1, 2), ai3(t) (i = 2, 3) are positive continuous T -periodic functions, and
hk , gk , fk (k ∈ N ) are constants satisfying 1+ hk > 0, 1+ gk > 0, 1+ fk > 0 for biological reasons. Moreover, we
assume that there exists an integer q > 0 such that hk+q = hk , gk+q = gk , fk+q = fk , tk+q = tk + T for all k ∈ N .

With system (1.1), we can take into account the potential exterior effects under which the population densities
change rapidly. The existence and stability of trivial periodic solutions, including semi-trivial periodic solutions, are
given by some lemmas and Floquet theory in the next section. In Section 3, nontrivial positive periodic solutions are
obtained by bifurcation techniques.

For convenience, we define

PCT = {x(t) | x(t) = x(t + T ) for ∀t ∈ R+; lim
s→t

x(s) = x(t) for t 6= tk (k ∈ N );

lim
t→t−k

x(t) = x(tk) (k ∈ N ) and lim
t→t+k

x(t) exists},

PCn
T = {X (t) = (x1(t), x2(t), . . . , xn(t)) | xi (t) ∈ PCT , i = 1, 2, . . . n, n ∈ N }.

Under the supremum norm ‖X (t)‖ =
∑n

i=1 sup0≤t≤T |xi (t)|, PCn
T is a Banach space. At the same time, we define

X (t) = (x1(t), . . . , xn(t)) > 0, if xi (t) > 0 (i = 1, 2, . . . , n), and [ f ] = 1
T

∫ T
0 f (x)dx , for f (x) ∈ PCT .

It is obvious that R3
+ = {(N1, N2, N3) | Ni ≥ 0 (i = 1, 2, 3)} is a positive invariant set of system (1.1); in

particular, if there exists some i ∈ {1, 2, 3} such that Ni (t0) = 0, then Ni (t) ≡ 0 for all t ≥ t0.

2. Trivial periodic solutions

First, we introduce a useful conclusion about the one-species Lotka–Volterra impulsive system.

Lemma 2.1 ([7]). Consider the equationẋ(t) = r(t)

(
1−

x

K (t)

)
x t 6= tk,

∆x(t) = ck x(t) t = tk,
(2.1)

where there exist T > 0 and q ∈ N such that r(t + T ) = r(t), K (t + T ) = K (t) (t ∈ R), tk+q = tk + T ,
ck+q = ck (k ∈ N ) and inft∈[0,T ] K (t) > 0, and r(t) > 0, 1+ ck > 0 (k ∈ N ). If

µ =

q∏
k=1

1
1+ ck

exp
(
−

∫ T

0
r(s)ds

)
< 1,

i.e.

[r ] >
1
T

ln
q∏

k=1

1
1+ ck

holds, system (2.1) has a unique positive T -periodic solution.

Second, for the linear T -periodic impulsive equation{
Ẋ(t) = A(t)X (t) t 6= tk,
∆X (t) = Bk X (t) t = tk,

(2.2)

where A(t) ∈ PC(R,Cn×n), A(t + T ) = A(t), Bk ∈ Cn×n , det(E + Bk) 6= 0, and tk < tk+1 (k ∈ N ), and there
exists q ∈ N such that Bk+q = Bk , tk+q = tk + T , we have:
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Lemma 2.2 ([7]). The linear T -periodic impulsive equation (2.2) is asymptotically stable if and only if all its
multipliers µ j ( j = 1, 2, . . . , n) satisfy µ j < 1.

In order to discuss the local stability of the periodic solution N∗(t) = (N∗1 (t), N∗2 (t), N∗3 (t)) of (1.1), we set
Ni (t) = N∗i (t)+ xi (t) (i = 1, 2, 3). Then a linearized approximate system with respect to (x1(t), x2(t), x3(t)) reads

ẋ1(t) = (b1 − 2a11 N∗1 − a12 N∗2 )x1 − a12 N∗1 x2
ẋ2(t) = a21 N∗2 x1 + (−b2 + a21 N∗1 − 2a22 N∗2 − a23 N∗3 )x2 − a23 N∗2 x3
ẋ3(t) = a32 N∗3 x2 + (−b3 + a32 N∗2 − 2a33 N∗3 )x3

 t 6= tk,

x1(t
+

k ) = (1+ hk)x1(tk)
x2(t
+

k ) = (1+ gk)x2(tk)
x3(t
+

k ) = (1+ fk)x3(tk)

 ,
(2.3)

where ai j = ai j (t), bi = bi (t), and N∗i = N∗i (t) (i, j = 1, 2, 3), which are also valid in the following. We denote the
monodromy matrix of (2.3) by MN∗ . On the basis of Lemmas 2.1 and 2.2, for the trivial periodic solutions of (1.1),
we have

Theorem 2.1. If the conditions

[b1] <
1
T

ln
q∏

k=1

1
1+ hk

, (2.4)

[b2] >
1
T

ln
q∏

k=1

(1+ gk), (2.5)

[b3] >
1
T

ln
q∏

k=1

(1+ fk), (2.6)

hold, then N 0
= (0, 0, 0) is a stable trivial periodic solution of (1.1), but if one of the above three inequalities is

reversed, then N 0 is unstable.

Theorem 2.2. If [b1] >
1
T ln

∏q
k=1

1
1+hk

, then there exists a semi-trivial periodic solution N∗ = (N∗1 , 0, 0) of (1.1),
where N∗1 is a unique positive T -periodic solution of the one-species system{

Ṅ1(t) = N1(b1(t)− a11(t))N1(t) t 6= tk,
N1(t

+

k ) = (1+ hk)N1(tk).

And if

[b2] > [a21 N∗1 ] +
1
T

ln
q∏

k=1

(1+ gk) (2.7)

and (2.6) are true, then N∗ is stable; if (2.6) or (2.7) is reversed, N∗ is unstable.

In fact, it is easily known that

MN 0 =



q∏
k=1

(1+ hk)eT [b1] 0 0

0
q∏

k=1

(1+ gk)e−T [b2] 0

0 0
q∏

k=1

(1+ fk)e−T [b3]


,
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MN∗ =


e−T [a11 N∗1 ] # 0

0
q∏

k=1

(1+ gk)eT [−b2+a21 N∗1 ] 0

0 0
q∏

k=1

(1+ fk)e−T [b3]

 ,

where # does not need to be calculated. According to Lemma 2.2, we have the above two conclusions.

Theorem 2.3. If [b1] >
1
T ln

∏q
k=1

1
1+hk

and [b2] < [a21 N∗1 ] +
1
T ln

∏q
k=1(1 + gk) hold, then there exists a

small nonnegative constant b0 such that for each b2(t) ∈ C(R+, R) with b2(t + T ) = b2(t), if 0 < [a21 N∗1 ] +
1
T ln

∏q
k=1(1 + gk) − b0 ≤ [b2] ≤ [a21 N∗1 ] +

1
T ln

∏q
k=1(1 + gk), system (1.1) has another semi-trivial T -periodic

solution N∗∗ = (N∗∗1 , N∗∗2 , 0), where (N∗∗1 , N∗∗2 ) is the positive T -periodic solution of the two-species predator–prey
system

Ṅ1(t) = N1(b1(t)− a11(t)N1(t)− a12(t)N2(t))
Ṅ2(t) = N2(−b2(t)+ a21(t)N1(t)− a22(t)N2(t))

}
t 6= tk,

N1(t
+

k ) = (1+ hk)N1(tk)
N2(t

+

k ) = (1+ gk)N2(tk)

}
.

(2.8)

Moreover, if [b3] < [a32 N∗∗2 ] +
1
T ln

∏q
k=1(1+ fk), then N∗∗ is unstable.

For the existence of positive T -periodic solution (N∗∗1 , N∗∗2 ) of (2.8), see [4]. With the stability of N∗∗, it is easily
found that

∏q
k=1(1+ fk)eT [−b3+a32 N∗∗2 ] is a multiplier of monodromy matrix MN∗∗ .

3. Positive periodic solutions

Lemma 3.1 ([7]). For the linear homogeneous T -periodic impulsive system (2.2), i.e. A(t) and Bk satisfy all periodic
conditions of Lemma 2.2, if det(E − M) 6= 0, where E is the unit n × n matrix and M is the monodromy matrix of
(2.2), then:
(1) System (2.2) has no T -periodic solution other than X ≡ 0. In this scenario, (2.2) is called noncritical.
(2) The linear nonhomogeneous T -periodic system{

Ẋ(t) = A(t)X (t)+ g(t) t 6= tk,
∆X (t) = Bk X (t)+ lk t = tk,

(3.1)

where g(t) ∈ PC(R,Cn), lk ∈ Cn , g(t + T ) = g(t), and lk+q = lk , has a unique T -periodic solution

X̃(t) =
∫ T

0
G(t, s)g(s)ds +

∑
0≤tk<T

G(t, t+k )lk,

and G(t, s) is a Green’s function which is controlled by the linear system (2.2) corresponding to (3.1). X̃(t) is called
a noncritical periodic solution of system (3.1).

In order to discuss the existence of a positive periodic solution of (1.1), we assume that (2.8) satisfies the following
hypothesis.

H : System (2.8) has a positive noncritical T -periodic solution (N∗∗1 (t), N∗∗2 (t)), i.e. all multipliers of the
linearized system of (2.8) at (N∗∗1 (t), N∗∗2 (t)) are distinct from 1.

Theorem 3.1. If H holds, λ∗ = 1
T ln

∏q
k=1(1 + fk) + [a32 N∗∗2 ] 6= 0, and b0(t) is a given T -periodic function with

[b0] = 0, then there exists a continuum F = {(N1(t), N2(t), N3(t), λ) ∈ PC3
T × R} with the following properties:

(1) (N1, N2, N3, λ) ∈ F implies that (N1, N2, N3) ∈ PC3
T is a solution of (1.1) with b3(t) = b0(t)+ λ.

(2) (N∗∗1 , N∗∗2 , 0, λ∗) ∈ F.
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Proof. Let x1 = N1 − N∗∗1 , x2 = N2 − N∗∗2 , x3 = N3 in (1.1); then

ẋ1 = (b1 − 2a11 N∗∗1 − a12 N∗∗2 )x1 − a12 N∗∗1 x2 + r1(x1, x2, x3)

ẋ2 = a21 N∗∗2 x1 + (−b2 + a21 N∗∗1 − 2a22 N∗∗2 )x2 − a23 N∗∗2 x3 + r2(x1, x2, x3)

ẋ3 = (−b3 + a32 N∗∗2 )x3 + r3(x1, x2, x3)

 t 6= tk,

x1(t
+

k ) = (1+ hk)x1(tk)
x2(t
+

k ) = (1+ gk)x2(tk)
x3(t
+

k ) = (1+ fk)x3(tk)

 ,
(3.2)

where r1(x1, x2, x3) = −a11x2
1 − a12x1x2, r2(x1, x2, x3) = a21x1x2 − a22x2

2 − a23x2x3, and r3(x1, x2, x3) =

a32x2x3 − a33x2
3 .

Define b3(t) = b0(t)+ λ; then λ = [b3]. At the same time, we set

A =

[
b1 − 2a11 N∗∗1 − a12 N∗∗2 −a12 N∗∗1

a21 N∗∗2 −b2 + a21 N∗∗1 − 2a22 N∗∗2

]
,

Z =

[
x1
x2

]
, C =

[
0

−a23 N∗∗2

]
, R =

[
r1
r2

]
, Pk =

[
hk 0
0 gk

]
,

and then (3.2) can be rewritten as
Ż = AZ + x3C + R
ẋ3 = (a32 N∗∗2 − b0(t))x3 − λx3 + r3(Z

>, x3)

}
t 6= tk,

Z(t+k ) = (E + Pk)Z(tk),
x3(t
+

k ) = (1+ fk)x3(tk).

(3.3)

Here, Z> denotes the transposed vector of Z . Let G1(t, s), G2(t, s) be Green’s functions for the following linear
equations:{

ẋ3(t) = (a32 N∗∗2 − b0(t))x3 t 6= tk,
x3(t
+

k ) = (1+ fk)x3(tk),
(3.3a)

and {
Ż(t) = AZ t 6= tk,
Z(t+k ) = (E + Pk)Z(tk),

(3.3b)

respectively; we know that G1(t, s) and G2(t, s) exist since
∏q

k=1(1+ fk) exp
∫ T

0 (a32 N∗∗2 −b0)dt 6= 1 and (N∗∗1 , N∗∗2 )

is a noncritical solution of (2.8). Then these Green’s functions may define compact linear operators L1 : PC → PC
and L2 : PC2

→ PC2 by means of the integrals

L1ξ =

∫ T

0
G1(t, s)ξ(s)ds (ξ ∈ PC), L2η =

∫ T

0
G2(t, s)η(s)ds (η ∈ PC2),

and system (3.3) is equivalent to the pair of operator equations{
Z = L2(x3C)+ H2(Z

>, x3),

x3 = −λL1x3 + H1(Z
>, x3),

(3.4)

in which H1 = L1r3 : PC2
× PC → PC and H2 = L2 R : PC2

× PC → PC2 are completely continuous operators
of order higher than linear near (Z>, x3) = (0, 0). Eq. (3.4) is in turn equivalent to the equations{

Z = −λL2((L1x3)C)+ H3(Z
>, x3),

x3 = −λL1x3 + H1(Z
>, x3),

(3.5)

where H3(Z>, x3) = L2(H1(Z>, x3))C + H2(Z>, x3) is also of order higher than linear near (Z>, x3) = (0, 0). In
fact, (3.5) may be written in the concise form

w = λLw + H(w), (3.6)
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in which L : PC2
× PC → PC2

× PC , Lw = (−L2(L1x3)C,−L1x3), and H : PC2
× PC → PC2

× PC ,
H(w) = (H3(w), H1(w)), w = (Z>, x3) ∈ PC2

× PC . The operator L is linear and compact and of order higher
than linear near w = (0, 0).

It is obvious that w = 0 is a trivial solution of (3.6) (corresponding to the solution N∗∗ = (N∗∗1 , N∗∗2 , 0)
of (1.1)). But we are interested in nonzero solution w 6= 0 of (3.6) which can yield a solution (N1, N2, N3) =

(x1+N∗∗1 , x2+N∗∗2 , x3) of (1.1) for some [b3] = λ ∈ R. In order to use the global bifurcation theorem of Rabinowitz
[8], it must be shown that L has a characteristic value λ = λ0 of odd multiplicity. The linear equation w = λLw is
equivalent to the linearized homogeneous T -periodic system

Ż = AZ + x3C
ẋ3 = (a32 N∗∗2 − b0(t)− λ)x3

}
t 6= tk,

Z(t+k ) = (E + Pk)Z(tk),
x3(t
+

k ) = (1+ fk)x3(tk).

(3.7)

For system (3.7), if x3 = 0, then w = (Z>, x3) ≡ 0 because (N∗∗1 , N∗∗2 ) is a noncritical periodic solution
of (2.8), so (3.7) has a nontrivial periodic solution if and only if x3 6= 0, which occurs if and only if λ =
1
T ln

∏q
k=1(1+ fk)+ [a32 N∗∗2 ], and this shows that L has a unique nonzero characteristic value λ = λ∗.

Finally, we prove that λ = λ∗ is simple. Let 0 6= w0 = (Z>0 , x30) ∈ PC2
× PC be a characteristic solution,

i.e. w0 = λ
∗Lw0. Assume w = (Z>, x3) ∈ PC2

× PC satisfying (I − λ∗L)2w = 0, and let (I − λ∗L)w = w∗; then
(I − λ∗L)w∗ = 0, which implies that w∗ = mw0 for some real number m, i.e. w∗ = mλ∗Lw0. Therefore we have
w = λ∗L(w + mw0), which shows that w = (Z>, x3) ∈ PC2

× PC is a solution of nonhomogeneous linear system
Ż = AZ + x3C + λ∗m Z0
ẋ3 = (a32 N∗∗2 − b0(t)− λ

∗)x3 + λ
∗mx30

}
t 6= tk,

Z(t+k ) = (E + Pk)Z(tk),
x3(t
+

k ) = (1+ fk)x3(tk).

The Fredholm alternative with respect to impulsive differential equations shows that λ∗mx30 must be orthogonal to
the adjoint solution 1/x30 on [0, T ], where 1/x30 solves the adjoint equation

ẋ = −(a32 N∗∗2 − b0(t)− λ
∗)x t 6= tk,

x(t+k ) =
1

1+ fk
x(tk),

and since λ∗ 6= 0, m = 0; consequently, w = λ∗Lw, which implies that w is a multiple of w0. According to
Rabinowitz’s theorem, there exists a continuum D = {(x1, x2, x3, λ)} ⊆ PC3

T × R of nontrivial solutions of (3.2) such
that the closure D̄ of D contains (0, 0, 0, λ∗). D can yield another continuum F = {(N1, N2, N3, λ)} ⊆ PC3

T × R
of nontrivial solutions of (1.1) whose closure F̄ contains the bifurcation point (N∗∗1 , N∗∗2 , 0, λ∗). And the proof is
completed. �

Remark. Theorem 3.1 guarantees the existence of global branches of T -periodic solutions of (1.1), but it doesn’t
assert the positivity of these solutions.

In order to investigate the properties of the continuum D near the bifurcation point (0, 0, 0, λ∗), we give the
Lyapunov–Schmidt small parameter expansion of the solution (x1, x2, x3, λ), which is

Z(t) = Z1(t)ε + Z2(t)ε
2
+ Z3(t, ε)ε

2,

x3(t) = x31(t)ε + x32(t)ε
2
+ x33(t, ε)ε

2,

λ = λ∗ + λ1ε + λ2ε
2
+ λ3(ε)ε

2,

(3.8)

where ε is a small parameter, Z1(t)>, Z2(t)> ∈ PC×PC , x31(t), x32(t) ∈ PC , λ1, λ2 ∈ R, and |Z3(t, ε)|, |x33(t, ε)|,
λ3(ε) are of higher order than ε. Substituting (3.8) into the differential Eq. (3.2) and equating the coefficients of ε and
ε2 respectively, we have{

Ż1(t) = AZ1 + x31C t 6= tk,
Z1(t

+

k ) = (E + Pk)Z1(tk),
(3.9a)
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and {
ẋ31(t) = (a32 N∗∗2 − b0 − λ

∗)x31 t 6= tk,
x31(t

+

k ) = (1+ fk)x31(tk).
(3.9b)

Consequently,
Z1(t) =

∫ t

0
G2(t, s)x31(s)Cds

4
= (z11(t), z12(t))

>,

x31(t) =
∏

0≤tk<t

(1+ fk) exp
∫ t

0
(a32 N∗∗2 (s)− b0(s)− λ

∗)ds > 0,

in which G2(t, s) is defined by (3.3b). Meanwhile, we can obtain{
ẋ32(t) = x32(a32 N∗∗2 − b0 − λ

∗)+ x31(−λ1 − a33x31 + a32z12) t 6= tk,
x32(t

+

k ) = (1+ fk)x32(tk).

This equation is a nonhomogeneous version of (3.9b) and consequently the nonhomogeneous term must be orthogonal
to the solution 1/x31(t) of the adjoint equation of (3.9b),∫ T

0

1
x31(t)

x31(t)(−λ1 − a33(t)x31(t)+ a32(t)z12(t))dt = 0,

so λ1 = [a32z12 − a33x31]. Since the sign of z12(t) is indefinite, we have the following conclusions.

Theorem 3.2. If λ1 < 0 and [a32 N∗∗2 ] +
1
T ln

∏q
k=1(1 + fk) > 0, then there exists a small nonnegative constant m

such that for each b3(t) ∈ C(R+, R) with [a32 N∗∗2 ]+
1
T ln

∏q
k=1(1+ fk)−m ≤ [b3] < [a32 N∗∗2 ]+

1
T ln

∏q
k=1(1+ fk),

system (1.1) has a solution (N1(t), N2(t), N3(t)) ∈ PC3
T , Ni (t) > 0 (i = 1, 2, 3) for all t ∈ R+.

Proof. From the third equality of (3.8), we know that λ − λ∗ = λ1ε + o(ε); therefore for each b3(t) ∈ C(R+, R)
satisfying [a32 N∗∗2 ] +

1
T ln

∏q
k=1(1 + fk) − m ≤ [b3] < [a32 N∗∗2 ] +

1
T ln

∏q
k=1(1 + fk), we have ε > 0. With

x3(t) = x31(t)ε+ x32(t)ε2
+ o(ε2) and x31(t) > 0 for all t > 0, clearly, N3(t) = x3(t) > 0 is true for all t > 0 under

the conditions of Theorem 3.2. Now, we need only show that (N1(t), N2(t)) = (x1(t) + N∗∗1 (t), x2(t) + N∗∗2 (t)) =
Z(t) + (N∗∗1 (t), N∗∗2 (t)) > 0. This can be easily proved. In fact, if m is small enough, then [b3] = λ is close
enough to λ∗; therefore (N1(t), N2(t)) is near (N∗∗1 (t), N∗∗2 (t)) in the supremum norm of PC2, and consequently
(N1(t), N2(t)) > 0 holds since (N∗∗1 (t), N∗∗2 (t)) > 0 is bounded away from zero. �

Theorem 3.3. If λ1 > 0 and [a32 N∗∗2 ] +
1
T ln

∏q
k=1(1 + fk) > 0, then there exists a small constant η such that for

each b3(t) ∈ C(R+, R) satisfying [a32 N∗∗2 ] +
1
T ln

∏q
k=1(1 + fk) ≤ [b3] < [a32 N∗∗2 ] +

1
T ln

∏q
k=1(1 + fk) + η,

system (1.1) has a positive solution (N1(t), N2(t), N3(t)) ∈ PC3
T .

The proof is omitted since it is similar to that of Theorem 3.2.
In short, this paper gives some theoretical conditions that guarantee the existence of positive periodic solutions

for periodic predator–prey-chain systems with impulsive perturbation. We hope our results can supply some useful
suggestions for ecological protection.
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