“Theoretical Computer Scieace 1 (1976) 297-316. © North-Hollaad Publishing Company

THE INCLUSION PROBLEM FOR SIMPLE LANGUAGES*

EMILY P. FRIEDMAN
Department of System Science, University of California, Los Angeles, Calif. 90024, USA

Communicated by M. Nivat
Received October 1974
Revised February 1975

Abstract. A deterministi~ pushdown acceptor is called a simple machine when it is restricted to
have only on: siate, operate in real-tigfe, and accept by empty store. While the existence of an
effective procedure for deciding equj aience of languages accented by these simple machines is
well-known, i is ~hown that this family is powerful enough to have an undecidable inclusion
problem. It follows that the inclysion problems for the Ll (k) languages and the free monadic
recursion schemes that do not use an identity function are also undecidable.

1. Introduction

One of the most important questions in language theory is determin.ig whether
the languages accepted by twe different machines in some given class are the same.
This question is called the equivalence problem, and it has been investigated for
a wide variety of machine classifications [3,8,9,11]. Recently, however, its relation
to another question has drawn a great deal of interest. This question, known as the
inclusion problem, is that of deciding whether one language is a subset of another. The
most obvious connection between the equivalence and inclusion problems can be
explained as follows: The decidability of the inclusion problem for some family
of languages implies the decidability of the equivalence problem for the same fam-
ily. This is detcrmined by the fact that L, = L, iff L, < L; and L, < L, for
any two languages L, and L,. Thus, any algorithm that decides inclusion for some
family of languzges can also be used to decide equivalence. The question naturally
arises as to whether the converse holds. Does the decidability of the equivalence
problem for some family of languages implies decidability of te inclusion problem
for that same family?

Until recently, all “patural” families of languages studied had been found to
have their equivalence and inclusion problems both be decidable: or both be uade-

* The results reported are a portion of the author’s Ph. D. dissertation written at Harvard
University urdes the st pervision of Professor Ronald V. Book. The research was supported in
part by the National S:ience Foundation under Grant NSF GJ-30409 and Grant NSF GJ-803.

298 E. P. FRIEDMAN

cidable. For example, the regular sets [8] and the bounded languages [6] both have
decidable equivalence and inclusion problems, whereas the context-free languages [8]
and the languages accepted by Turing machines [8] both have undzcidable equiva-
lence and inclusion problems. In 1971, Bird exhibited the first case that fit into
neither of these previous patterns [3]. He found that the languages accepted by
two-tape Rabin and Scott machines [10] possess a decidable equivalence problem
and an andecidable inclusion problem. Valiant’s thesis [12] explored this question
further, finding three other families exhibiting this unusual feature of having a de-
cidable equivalence problem and an undecidable inclusion problem: the languages
accepted by finite-turn deterministic pushdown automata, one-counter deterministic
pushdown autoinata, and nonsingular automata,

In this paper we investigate another subclass of deterministic pushdown auto-
mata — simple machines. These devices are basically deterministic pushdown
automata that have only one state and operate in real-time. In Section 2, we outline the
fundamental properties of these machines.

Simple machines were first investigated by Korenjak and Hopcroft [9] in an
attempt to find a subfamily of the deterministic languages that characterizes a fairly
large class of programming languages that can be rapidly parsed. Although these
languages cannot describe all of the structures existing in a language such as ALGOL,
they can describe many other non-regular features. An interesting property of the
languages accepted by simple machines is that they possess a decidable equivalence
problem [9]. In their paper, Korenjak and Hopcroft posed the inclusion problem
as the major open question relating to simpie languages remaining to be solved [9].
A significant new result, Theorem 3.1, shows that these “simple languages” indeed
have an undecidable inclusion problem. Because the simple languages are a proper
subfamily of the LL languages (in fact, they are the simple LL(1) languages de-
scribed in [1]), the undecidability of the inclusion problem for LL languages is
an immediate result. Therefore, we add two rew families of languages to the grow-
ing list of those with decidable equivalence but undecidable inclusion problems.
The nature of the feature or features contrit-uting to this sirarge classification for
families of languages remains to be discovered.

2. Fundamenta! properties

A simple machine is a very restricted form of a pushdown automaton. A pushdown
automaton is called simple if it has only one state and operates in real-time (no
e-roves). Because these machines possess only one state, no information can be
stored in its finite-state control. Therefore, a simple machine can alternately be
thought of as a stateless device [12]. For this reason, there is no nzcessity for including

a state set in the definition of simple machines. We use the formal definition that
follows.

THE INCLUSION PROBLEM FOR SIMPLE LANGUAGES 299

Definition 2.1. (a) A. simple machine is a 4-tuple M = (2, T, 3, Z,,), where
Z is a finite input alphabet,
I is a finite pushdown alphabet,
6:2 X I' - '* is the partial traizsition function,
Zy € Tis the initial pushdown syrbol.
(b) A configuration of M is a pair (w,a), where
w € Z* is the portion of the input tape remaining to be read (i.e., not yet passed
under the read-head),
o € I'* is the current contents of the pushdown store, where the top of the:
store is the rightmost symbol of «.
We define the operator | (or |— where the machine M is clearly implied by the

context) on configurations of M as follows:
For al ae X, weX* Zel, afel?¥

(aw,aZ) | (w, o) iff 6(a, Z) = B.

Each occurrence of (aw, aZ) 17 (w, ¢P) is called a move of the simple machine M.

(c) A computation of M is a sequency of configurations c,, ...,c,, n 2> 1, where
¢ b ¢y, for all 1 <7< n—1. we let]—f{— denote the transitive reflexive ciosure:

s ses
of |'nT’ and i the transitive closurs of !'»T

For t > 0, we define h:l— as follows:

() l—:;— ¢ for all configurations ¢;

(ii) ¢ |- d iff there is a computation co, ..., ¢;, where ¢ = ¢o, d = cv.
® . t + . . .
Thus, ¢ ‘Tf d iff there is some ¢ > 0 such that ¢ h? d, and ¢ l’nT d iff there is some

¢ > 1 such that ¢ h—;——d.

After the entire tape has been processed, the resulting configuration of the simple
machine determines whether the input tape is accepted or rejected. For this paper,
we are concerned with acceptance of an input tape by empty pushdown store. Accor-
dingly, we defin: the language accepted by simple machiine M to be

N(M) = {we 2% | (v, Zo) 1= (e,)}

A language L is said to be simple if L = N(M) for some simple machine M. We can
now define & as the family of simple languages.

A simple 1nachine is defined so that once the pushdown store is empty, no further
input can be processed. Thus, if L € S, thea L is prefix-free!. Hence, S corresponds
preciszly to the family of languages defined by Harrison and Havel as the real-time
strict deter:ainistic languages of degree 1 (see[7].

Recall that simple machines are defined so that no e-moves are allowed; the par-
tie) transition function is only defined on 2n input symbol and a pushdown syizibol.

1A language .. is prefix-frec if no proper prefix of a word in L is also a member of L. Ttat is,.
ifxcel,and el theny=e

300 E. P. FRIEDMAN

Valiant shows that we can relax the real-time restriction on our machines and not
-enlarge the family of languages accepted [12]. That is, we could redefine the tran-
sition function for simple machines in order to allow for e-moves. By this, we mean
that if M = (2,T,9, Z,) is a simple machine, then the partial transition function
is such that 6 :(ZT U {e}) X T — I'*. The requirement that simple machines remain
.deterministic includes the restriction that forcach Z e T, either (i) 6 (e, Z) = #, or (ii)
forallaeZX, 6(a,Z) = 0.

The $amily of languages accepted by these “lass restricted” simple machines
(that allow e-moves) is precisely S. For convenience, then, we retain our earlier
definition for simpie machines without e-moves. This does not really affect any of
the results that we prove.

3. The inclusion problem

Korenjak and Hopcroft [9] first investigated the properties of the languages of S
in an attempt to find a characterization for a fairly large class of programming lan-
_guages that can be parsed rapidly. Their main theorem shows that the equivalence
problem for § is decidable. The major open question in their paper is whether or not
the inclusion problem for languages accepted by simple machines is decidable. Recall
that this problem was posed before the discovery of any natural family of languages
having a decidable equivalence problem and an undecidable inclusion problem [3].
‘We intend to show that the question of inclusion is indeed undecidable. The inspi-
ration for the proof comes from the work of Valiant [12]. He shows that the inclu-
sion problem for a family of languages accepted by a subclass of real-time pushdown
automata (i. e., nonsingular avtomata) is undecidable. He was not able to extend
his proof to include the one-s:ate restriction, or even for LL languages.
We shall now prove the major theorem of this paper.

‘Theorem 3.1. The inclusion problem for S is undecidable.
Before we prove Theorem 3.1 we first give some definitions.

Definition 3.2. We use the following as our definition for a Turing machine.
A Turing machine is a 6-tuple M = (K, Z,T, 9, qo, F), where
K = the se: of states,
I" = the set of tape symbols. Let B eI" denote the blank tape symbol,
Z = the set of input symbols. Also, R ¢ X,
qo € K = the starting state,
F < K = tae set of final states,
6:K X T — KX (T—{B}) = {L, P} is the partial transiion function.
A configuration of the Turing machine A7 is denoted by the string agf, where
ge K is the current state of M,
@B (' —{B})* is the non-blank portion of the tape.

THE INCLUSION PROBLEM FOR SIMPLE LANGUAGES 301

The tape head is situated so that the next tape symbol that will be read is the
initial symbol of B, if B # e. For the case where f = ¢, the next symbol to be read
is a blank, B.

We define the relation |- (or |—when M is understood from the context)

on configurations of A as follows:
For all a,b,ceI'—{B}, «, 8,7, p € (T—{B})*,
Q) if 8(g,4) = (p,b,R) and B = ay, then agf = agay L—qzbw

(2) if 6(3,0) = (,b,L) and B = ay, @ = pc, then agp = ucqay |3+ ppchy;

(3 if 3(q, /) = (p,a,R) and p = e, then agf = aq ;- vap;

@) if 8(g,B) = (p,a,L) and B = ¢, o = pc, then agf = pcq |- ppca.

Each occurrence of agp | o’q’p’ is called a move of the Tiring machine. Moves (1)
and (3) advance the read head ons tape syuare to the right, whereas moves (2) and (4)
move the read head one square to the left. We let]% denote the transitive reflexive
closure of 3.

An input tape is accepted if the Turing machine ever gets into some configuration
where th. current state is a member of F. Thus, the language accep:e¢ by Turing
machine M is defined to be

L(M) = {weZ*| gow l—;— agP, for some o,f € (I" ~{BH*, ge& F}.

"Definition 3.3. A Turing machine M = (K, Z, T, 8, ¢y, F) is said to halt on input tape
we Z* if there exists some o,f € I'#*, q € K such that gow lT:‘ agpB, and no next move is
possible {rom configuration agp. , '

The haliing problem for Turing machines is as follows:
Given ay Turing machine M = (K, %, T, 8, gy, F) and input tape w e %%, does

Turing machine M halt on input w?

It is well-known that the halting problem for Turing machines is undecidable [3].
That is, therz is no algorithm that can decide whether 1 Turing machine Zalts for
some given input tape.

Definition 3.4. Let = be a finite set of symbols containing at least two elements,
and let & be a iinite non-empty sequence of ordered pairs of strings in %+. For
example,

CS = (xlgyl)a seey (xm yn)’

where fori = 1, ..., 1, x;,y, € £*. d is called an insiance of the Modified Correspondence
Problem.
The sequence of indices iy, ..., i with ¢ > 1 is a solution for & if xyx; ... Xy, =

Yidi, oo Vi
The Modified Correspondence Problem is defined as follows:

302 R E. P. FRIEDMAN

Given any instance of the Modified Correspondence Problem, o, does there
exist & solution for S? }
The Modified Correspondence Problem is undecidable [8].

The rest of this section i3 devoted to the proof of Theorem 3.1.

Given a deterministic Turing machine M and an input tape w, we censtruct two
simple machines, My and M, such that N(M,) £ N(M) iff M halts and accepts w.
Thus, we show that if the inclusion problem for S were solvable, we then could solve
complement of the halting problem for Turing machines. In fact, showing this
means that the inclusion problem for S is not semi-decidable. (Recall that the halit-
ing problem is semi-decidable, but the complement of the halting problem is not
semi-decidable.)

Let M = (K, %, T, 6, q,, F) be any Turing inachine, and w e Z* be any input tape
to M. Without loss of generality, assume that F = {g,}, and foreachaeT, §(g,,)
is undefined. Also, assume that for all ge K—{g,}, aeT, that &(g, a) is defined.
Hence, Turing machine M halts on input tape w iff M accepts w. We now show how
to construct simple machines M; and M, from the definition of Turing machine M
and input tape w. The reduction ti:at follows is essentially similar to the proof of Hope
croft and Ullman of the undecidability of the Modified Correspondence Problem
(81

First, we construct two finit lists, X and ¥, of non-empty strings. Only the first
two pairs are numbered, as the numbering of the other parts is irrelevant. Recall
that B is the blank, 2nd # is a new symbol not connected to M.

LIST X LIST Y
Pair 1: # #qow#
Pair 2: qr## 7

#

For each d,,d;,d; e’ —{B}, pe K. ge K—{q,},

d é,

qd, d,p if 6(q,dy) = (p,d,, R),
dyqd, pdyd, if (g, dy) = (p,d,, 1),
q# dp# if 6(q, B) = (p,d,, R),
dsq# pdydy# if 0(g, B) = (p,d,, L),

d,9,4, ds

diq,7# qs#

#qdy #qy

We see that X and Y each consists of » strings, for some n > 2. Each string is
composed of symbols from KU {#}yU (I'~{B}). We denote X and ¥ by lists
X1y 000, Xy and (yy, ..., Yoy, respectively., '

TI(E INCLUSION PROBLEM FOR SIMPLE LANGUAGES 303

Hopcroft and Ullman [8] show that foralli € {0, ..., k}, 4; € K, a;, B, € (T — {B})*, if
qoW f“ “141ﬁ1 l—' 0 Brs

then there exist integers r > 0, 3 < iy, ..., i, < n, such that

X1Xy, oo Xy, = H Go W 7% 031G By # oo # Oy oy Prr #,
P1Vi, o Vi, = # QoW # 0y @y B3} o # Wy Gy Bi—1 # OB #.

If g« = q,, then by choosing pairs of strings (x;, y,), where x;, contains g, and pairs
from {(#,#)}V {(d,d)|deT —{B} }, we obtain

X1Xq, eee X Xy o = ViV oo Vi Vipyy oo Vi V2o
l I.

In addmon, if there exist some s > 0, 3 < ji, ..., js < n such that

xlle e x" Mg = yly,! e Vi V25

then r €5 andj! = il’ j2 = iz, ..-,j, = i,-- .
Therefore, ¢ make the following claim that is proved in [8].

Claim 1. M halts and accepts input tape w iff there exist t > 0, 3 <

Sifyunly 0
such that

x1xgl e xg‘ Xy = yl‘v,‘ e Vi, V2

Notice that for i > 3, each x; and y; contain the same number of occurrences
of letters denoting states of M — either 0 or 1; that x, contains no state; that y,
contains 1 state. Thus, in X = x,x; ...x;, and y = y(y; ...y, there is one more
occurrence of @ letter denoting a state of M in y than in X. Also, note that x, ends
in s# iff y; ends in #.

At this point, we use an example to illustrate the construction of simple machines
M, and M, from a given Turing machine and input tape.

Let M be a Turing machine that is given a string of 1’s as its input, and appends

another 1 to the right of this input tape and then halts (and accepts), and let w == ¢
be the input tepe to M. Thus,

M = {{q0, as},{1},{1, B}, 6, 90,{qs})
with
6(g0, 1) = {90, ,R), (20, B) = (45, L, R).
Lists X and Y each consists of 9 non-empty strings constructed from the alphabet
{#519 do; Qf}'
LIST X LISTY
Pair 1: # #H o

Pair 2: qr7#E# #
Pair 3: i i

304 | ' E. P. FRIEDMAN

Vair 4: # #

Fair 5: qol lqo

Pair 6: go# 1g,#

Pair 7: 19,1 1r

Pair 8: 1g,# qs#

Pair 9: #4qrl #4qy

‘The computation of M on the blank tape is
flohT 1,
Henue,

*1 Xs X8 ., X2
% G# To # G FEE
Py e R

For each integer i, 1 < i < n, let f; be a new symbol not in A = (I'—-{B})
U KU {#]}. f; should be considered an encoding for integer i. In addition, let ¢ and $
be two new symbolc not in AU {f;,...,fp;. Define the homomorphism A:A* —
(A v {¢})* determined by defining h(d) = d¢ for all de A. This homomorphism
will only be used to describe the languages accepted by M, and M,. The definitions
of the two machines are now given.

YWe first construct the simple machine M,, and make the claim that

NM,) = {fZﬂg'"ﬂ,fl h(, Vi, WV Y281t 20,3 <., < n}.

(Note: the case where ¢ = 0 in the definition of the above set, defines the string
L1ih(312) 8)

Jaformally, the mechanism of M, is such that it reads along the encodings of
integers (i.e., reads fs) and pushes the associated y’s onic the pushdown store. For
example, when M, reads f, it pushes y, onto the pushdown store. Then, as M,
reads symbols from A U {¢}, it pops when the symbol at the top of the pushdown
store matches the input symbol, checking that a ¢ appears as every o*her symbol.
M, accepts the tape if $ is read when the pushdown store has only Z, as its contents.

A formal definition of M, follows:

Let

Ml = (A v {¢} i {$} v {fla"uﬁ!}aal’ rls ZO)
where

rl = {Zo, AZI,C}
U {[z] | z € A%, |z] < max{|y,} }
U {[Z¢] I ZEA*a IZI < {lyil} }s rl NA = ﬂ,

(note that [z] (and also [z¢]) is & single pushdown symbol).

THE INCLUSION PROBLEM FOR SIMPLE LANGUAGES 305

L. Insure that the initial portion of an accepted input tape is a string of the form
J> ofy, where ae {fs,...,/1}*.

(@) 6,(f2, Z¢) = Zl[yg] G,
(0) 8:(f,, O = Y] C, for each i = 3,...,n,
) 8(f1,C) = [yil

II. The next portion (;f an accepted input tape must be a string 2(y, By,), where
B € {ya, ..., ya} *. Also, if the first portion of the input tape is f, af; (see part I above),
then we insure that

(i) « = e implies that 8 = e,

(i) @ =/, ... i, forj 21,3 <y, ..., iy < n implies that B =y, ...y,
For each de A, z< A%, |z] < max {|y|}, we have

(@ 6,(d, [zd)) = [z¢], check for matching symbol,
(e) o,(¢,[z¢p =[=), if z # e,} check that every other symbol
) 6, [¢D) = is a ¢.

HI. The final symbol in an accepted input tape is a §$.

(@) 0:(3,Z)) = ¢,
Note that 6, is only partially defined.

Facts about machine M,. These facts are obvious from the construction above,
so no proofs are jrovided.

(1) If (a, Z,) |— (e, o) is a valid computation of M, then by definition (a) of tran
sition function &,, it is clear that @ = f, and a = Z,[y}]C.

(@ If (a, C) |— (e, @) is a computation of M,, with « ¢ I'fC, then from part (c)
of ths definition of §,, we have a = f;, « = [¥}].

(3) If (v,C) |- (e,aC) is a computation of M, for ¢ > 1, then by part (b) of &,.
we have v = fi ... fi, @ = [yi]...[»i], where 3 < iy, i < 1.

@) If (v,2%) | £ (e, €) is a valid computation of M,, then parts (d), {¢), and (f)
of the definition of &; insure that v = h(2).

(5) If (v, Z,) |*- (e, €) is a computation of M,, then part (g) of é, requires that
v = §.

From the above fac's, we make the following claim (without prcof) about the
structure of the language accepted by M;.

Claim 2.
N(My) = {fofo o i, [ihD 1, o 9, 9238 | £ 2 0, 3 <y iy <

306 E. P. FRIEDMA

We now construct ihe simple machize AM,, and make the claim that

NCMZ) = {ﬁ,ﬂ‘.“.ﬂ_ﬁh(y!y!_‘...y&yzﬂ I 4 ? 0;, 3 < ijl;, ovey ig s n,

A TR @ T v A

» b
XXy eeeXyXo F= V11, V1. Y25

U {some strings that irrclevant to our arguments that follow}.

Feonllrsicone nTlae dhnn cmnmnllias RS abmmbn AP lae N eernerersmen alemiian o AL Taer wamdionm
AEUOUL 1Y, UG HIAUCLLIC [Oldld 11 1l a4 laliues Slliial W 0%24, UY 1vauluig
Ao £9% acnl el 4l mnmamiandad % mwda dha smesalh A A ataea Alact ne BS sandda
ﬂc, IR AASAEL B LIRG ADDULIALICUE A S LU e Puﬁuu IR DLVULE, 1VGALy D Juz Iva
arrenctemtr Lomane A1t F3Y) i mmsan velensmavran dhha tevonrnt nuremlanl antahan Fla arrsmiant
Sy VO 1101 O WV 1%}, P2 !J p» WLHCLUUVOL Ll luput AUV UIGLVIEVY LLl DY LIRUIGR
md dlie fmee ol bl ol Sarerie cdama maate alhaaliteens dhhnd a A namanemsy no arane abliacn
t Ui€ tOp oI nC pusnaown Store, again, Caclking uldt 4 ¢ applars as ov OUIST
aerenall al TTa129.o AL BE malants $la fnsensrt tnma £ 4ha @ 24 wand whan tha vurroldaveres
HIDUL. WIHAT /W2 1 IVIZ 4 qu.& LG 1 put LApPv 11 WUV P 1D 1vdu Wikl v puduau pis
dmmz mmcselate meles AL P Bl mcmntlios d4ha saisoh vz sbams nsmd annaméa tha feassd
SLOILE CGULIDIDLS VIl 1 Lg. NIy CHIPUCS WUC Pudsiiuuwil siutv U at > LG HIpPUL
dmoni sestemocacrma 21N dhin dmce af 4o admsn Anma st ceundal dlaa fsecesrd arreralial smnasd O
tapPic WIACLCVEL (17 LT WP OI 1€ 3L0IC QUG HUL 1alvil URC 1nput syHivul 1vaud, (<)
wxslenen @ S mamsimzccadmend marrd ks amsial A abawa dane st mmeoiad meoles o TP e £
Wikl & 15> CHGOUIICICU allU LG PpUdIIUUWIL SLUITU UULDd 11UL LCULDIdLE Vllly UL L4y, UL (Jy
avslamca 4l mdimcia mmsmboloan moales mand blan densmred Fmsmm 2 smmd dlea mfeliia & Tl wmm~aal
WIUCH L tOLC CUHLALID LILY 43 dalll UG HIPULl tapc 1y 110t ULIE $. LI 1 } 8
s BE 2. o deenTles amcamlila Aff ammmatline e Sumamand dmcam zeamcdan A1 dlhcna AP 4l ana e
URAL 2y 1> avdldily CdPaUIC Ul ACLCPLILE dil LIPUl tapt ullull dii UIve U1 ULt voll=
3202 ey mmancd Thaidan dlan el bl ol Al e o 4T ndh Lalloccn dlan e admes ks
GLIVLD LUINLLULWD LHC 1U4JUT POV U1 T PIUUL L4l IVHUWY LG LUl J1 5

L1
One portion of the proof shows that simple machine M, accepts all strings o

the form

o

£ L. .. s =s \O
J2lte e Ju J1RV 1 Vi oo Vie V29

where t 2 0, 3 < iy, . dy < M YWy, o0 Vi, Y2 F X1 Xy, 0 X1, X, and
1134, Vi D2l Z 121X o %y, %5

As soon as a mismatched symbol is encountered, we are insured that there are at
least as many input symbols remaining to be read as there are symbols on the push-
down store. At this point, the ¢ markers play a key role in encoding the fact that
a mismatch has occurred and that the entire pushdown store must be popped. In fact,

it is the use of these ¢ markers that gives rise to the “irrelevant strings” mentioned
in Claim 3 below.

The second {and most difficult) part of the proof that follows is to show that M,
accepts all strings of the form

£ 80 VI N SN A Y
2N oo J1, JUNT 1t eos Vi V2)9

where t > 0, 3 < iy, ey by S B, PPy, o Vi, V2 F X1 Xy, o Xu, X5, This includes the case
where |1, ... yi, ¥a| < Loy, oo X, X5l
We prove in Claim 3 that a5 soon as a mismatch occurs

n there are still enough
input symbols remaining to be read in order to pop the pushdown store and thus
accept the tape. Lists X and ¥ have been devious d to enable the proof
to be carried through.

-t
g
&
8

nstruct

- s 8

My= (AU {EIV{S}U {fi, . fi} 12,65, Zy),

N

THE INCLUSION PROBLEM FOR SIMPLE LANGUAGES 307

where
Ty ={Zy,2,4,C,D,J}
U {[z] | z€ A, |z| < max{|x]}}
VU {[z¢] | z€ A%, |z] < max{|x;]}}
{as in M, [z] (and also [z¢]) is a single pushdown symbo}) and the transition func-
tion d, is

Y. Insure that the initial portion of an accepted input tape is a string of the form
J2afy, where a e {f3,..., fi}*.

@) 5xf2, Zo) = Z,[x5]C,

®) 8,(fi, ©) = [x}F1C,for i = 3,...,n,

© 8:(f1,0) = [x{].

II. As in part IT of the definition of 8, (machine M}, we match input symbols
against the pushdown store symbols, checking that a ¢ is every other symbol in the
input tape.

For de A, ze A¥*, |z] < max{|x,|},

(d) o,(d.[zd]) = [z{], check matching symbols,

0,(¢, =€,
g; 5:8;’ ?z%) =e[z]’ ifz+#e, }check that every other symbol is a ¢.

III. Reject the input tape if the final symbol is $ and the pushdown store contents
is Z1-
(g) 62($, ZJ.) = J.

IV. If there is a mismatch between the input symbol and the top of the pushdown
store, use the pushdown store symbol D as a means to encode the fact so that we can
accept the input tape.

For di,d,c A, d, # d,, and z,Z € A%, |z] < max {|x,|}, |z] < max {|xi|},

() 6, (1, [2d2]) = e, check for mismatched symbols and pop the
pushdown,
) 6, i) =D,z #e, use ¢ to then encode D on pushdown,

(j) 62(dy, D) = e.

V. If the bottom of the pushdown siore is encounteied (Z,) when a symbol
other than § is rcad, use pushdown symbol 4 to encode that the input tape will
be eventually accepted when the § is finally read.

For dye A v {¢},

k) é,(ds, Z2y) = 4, use A4 to encode the fact that we will eventuaily accepi
the tape,

() 0,(d5,A) = 4, process all symbols until §,
(m) 6,(8,4) = e, accept the inputi tape.

308 E. P. FRIEDMAN

Facts about machine M,. No proofs are given, as the facts follow directly from
the conmstruction above.
‘ (1) If (¢, Zy) | (e «) is a computation of M, then by part (a) of the definition
of 8,, a =f, and x = Z,[x3]C.
(2) ¥f (a, C) |— e, 0) is a computation of M,, with « ¢ I';C, the part (c) of J,
insures that a = f; and a = [x%].
(3) If(v,C) |- (e, aC) is 2 computation of M, for ¢ > 1, then by definition (b),
we have v = f,... fi,, a[x}]...[x], where 3 < iy, iy < 1.
(4) For any u,ve A* |uj < max {|x;|}, lui < |v], then either
@) u is a prefix of v, v = wv for some ve A*, and (h(v), [u*]) |= (2 (), &)
by parts (d), (e), and (f), or
(ii) » is not a prefix of v. Then u = ud,v; and v = ud,v, for u, vy,v, € A¥,
didyeA, dy#d,, and (h(v),[1’]) = (¢h(v,),e) by parts (d), ().
and (h) of the definition of J,.
(5) For any ve A¥*, if |v] = j> 1, then by parts (i) and (j) for the definition of 6,,
we have (h(v), [x]]... [x;}] D) |* (e, D).
(6) For any v e At, if [v| = 1, then by pa:ts (k), (I), and (m) of the definition of
&,, we have (h(v) $, Z,D) | X (8, A4) |— (e,).

We make he following claim about the structure of the language accepted by M,.

Claim 3. N(M,) includes all of the elements in N(M,), except those (if any) of
the form fofy, ... fi fih (xy X, ... X, %) 8, where v > 0, nd 3 < iy, w0 iy < 1.

In other words,

N(MZ) {fZﬁg fi,fl h(yl yit ysgyz) $| t lj» L1} il < n, xl xh eoe

vy Xz T V1 Vi, oo Vip Y2}
U JUNK,
where JUNK is just a set of strings irrelevant to this argument.

We do not prove which strings are contained in JUNK. It is only necessary to
insist that JUNK N N(M,) = @

Proof of Claim 3. Suppose that ze L(M,). Then by Claim 1, z is of the form
Lo foL s RO, . 31,9538, for some ¢ 2 0, 3 < iy, ...,7, < n. We examine the
itwo possibilities for z, where

Y1 Vi, e Y1y V2) = h(xsxy, oo Xy, %50
and

h Dy p1, oo Y1, 72) 7 B (%y Xy oo Xy, %),

'We show that no element satisfying the first condition belongs to N(M »), whereas
all eclements satisfying the second are contzined in N(M,).

THE INCLUSION PROBLEM FOR SIMPLE LANGUAGES 309

Case 1: First, consider the case where z =/ of, ... i, fi h(x X; ... ;. %5) 5,
for some ¢ > 0, 3 < iy,...,i; < n. Then,

(z, Zy) = (f>fi, ---ﬁ,fl h(xy Xy, e Xy, X3) 8, Zo) -
F= (h(xy x4, o 2y, X2) 8, 2, [x21[x] - [x:] [xiD by facts (1)-(3),
(8. 2) by fact (4)(0),
= (e, J) by part (g) of the de-
finition of §,.
Hence, z ¢ N(M,).
Case 2: Now, consider the case where z = f, f;, ... fi, ik Q1 ¥, .. Y1, ¥2) $, for

some ¢ 2> 0, 3 < i,..., 4 < n, where h(x;X,,...x;.%;) # h(y11,---Y1,¥2). By the con-
struction of the homomorphism A, we know that this implies that x,x, ...x; X, 5

Y1V V2.
Observe that the lists X and Y are such that there exists an integer 0 < j < ¢

that satisfies (%, below for some k > 0.

% { Xy Xq, oe Xy, = # 0o qo Po # 01 @181 # .. # U1 Q-1 Br—1 7

ViV Vi, = # 0 go Bo # 1 @y By # .. # C—y Gi—1 Bi—1 # 0 qi Bi #

where aygoB0 = gow and «;,p,e(C'—{B})*, q,e K for 0 <i < k. (Recall that w is
the input tape to Turing machine 34.) Again, we point out that for all i > 3, each x,
and y, contains the same number of occurrences cf states of M ; that x, contains no
state; and that y, contains the single state, g,- Also, x; ends in # iff y, ends
in #. Equations (+) are trivially satisfied for j = 0. In this instance,

xy=# and y; = #qow # = #Hopqs Po #-

There may. however, be several such integers < ¢ that satisfy (%) above. Let p
be the maximal suct integer. Thus, for some «,f € (—{B})*,

ge kK, V1 Vi, o Vi, == Xy Xy oo Xy, 0GB #.
Suppose simple machine M, is given the string z as its input tape. Then,
(z 7o) = (2], ---fi,f1 h(y; Vi oo ¥1.Y2) 3, Zo)
[y, v, ¥2) 8, Z4 [x51 D601 [xR] [x3 D) by facts (1)-(3).
= (hCx; x4, % Y R (gB#) R i,y o V1, ¥2) $5 Z1 [65] [XE]).
SMEAE)

SiNCe Yy i, o Vi, = X1 Xy, oo Xy, 090 #,

- (azB #) ke Uiyy - Vi)8, Zy D?][xg [x?p“])
by fact (4) (i).

310 E. P. FRIEDMAN

Since p is maximal, a mismatch will occur while M, reads h(xgf#). That is,
some symbol in h(agB#) will not maich the top of the pushdown store. The main
thrust of what follows is to show that when this occurs, there are still enough input
symbols remaining to oe read so that the whole pushdown store can be emptied
: and the input tape accepted.

- Subcase 2.1: Let us first suppose that Xy, oo XegXa 18 a~proper’prcﬁx of agf#.
Then agf# = x,,,, ... X, X0 for some v # e. Hence,

(2, Zo) - (W(agB#)(1,, 031 Y28, Zo[x5] [xE][, D by the argu-
ment above,

= (h(xs,, o X100, oo DY 2)$, 2o [X5] [x5]. [XF,,D

= Gty 71 2)8, Z21) by fact @),
— (8, 4) by parts (k) and (1) of the definition of §,,
— (e, e) by part (m) of the definition of J,.

So for this subcase, ze Ni(M,), as desired.

Subcase 2.2: Now suppose that Xy,,, e X1, %2 is not a proper prefix of agf#.
Since p is maximal, we aiso know that agf# is not a prefix of Xy, + XX, There-
forz, there exist 7, v, Y € A¥, d,d, € A, d; # d,, such that

egf# = tdyy, Xy, XX = Td)).

But T =0y, ... %, 7, for some p < p+q < ¢, 1, € A*, where

Xtpiges if £ > p+q (then Xipeqrs = Tldza for some
o€ A¥),

X2 if t=p+gq (then x, = v,d,x for some
o € A¥),

7,4, is a prefix of

and quﬁ# = xip_“ oee xgp+¢ 71d1”-
Therefore,

(2, Zo) | = (n (agBs#) h Oipyy V.72 8, Z, [X3] [%3] ... [xfm])
= (h(xy,,, .- Xipog 1D Wiy, - 3, ¥2) 8, Zy [X5][%0] ... [xfm])

(h(zyd)h i,y o Y2) 8, Z4 [x5] [x,] [xapwﬂ])

B if ¢t > p+gq,

(A(rydy) b (’ﬂ’.)’t,,,‘1 Y, ¥2) 8. Zy [xg]) ift=p+gq,

THE INCLUSION PROBLEM FOR SIMPLE LANGUAGES 311

[(h(z,d;) h(”}’:m Vi 72) 5,2, [x?] [x}‘, [xr,,ﬂu] [oRd, tlll])

if t>p+qg+1,
-y (h(xy d) A i, o V1,72 8, Z, [x:] [x*d, “!:])
if t =p+q+1,

L (Bt dD ROy, - 31Y2) 8, Z, [aRd, i) if t=p+gq,

r (di ¢h (”.}’1,,,, Vi) 8, Z, [xg] [xﬁ] [x:{,,,,.,,,,] [o®*d,])

. if t>p+q+1,
I—_ 1 (i ¢h (”J’tm e 1,72) 8, 2, [x';] [a*d,]) if t =p+q+1,
L i ehCoy,,, - 3,328, Z, [aRd,]) if t=p+gq;

since d, # d,, we have by part (h) of the definition of &,:
¢hOyi,., -2, ¥2) 8. Z, %3] [x2] ... [xtlf,,.qﬂ]) ift>p+g+1.
=1 (¢h ("}’t,+, eV Y2) $,.Z, [xlzt]) ift=p+q+1,
@Eh (i, --- 11,72 8. Zy) ift=p+gq,
= (¢h (”J’x‘,,ﬂ e Y1,Y2) 8, Zyy),
where
3100 ... [..] if t>p+g+l,
y= 3 [x2] if t =p+q+i,
e if t=p+gq.

So y is a proper prefix of [x3] [x}]... [x}‘m]. Then |y] < t—p.
Subcase 2.2.1: Assaumethaty = e. Then we have
(¢ h(")’t,,ﬂ Y1, ¥2) 8, Z,) = (¢h (”.Vt,,,., e Vi, ¥2) 8, 2Zy)
F— (hCoy,,,, --3:,Y2) 8, 4) by part (k) of the definiticn

of §,,

(8, 4) by part (I) of the definition
of 9,,

(e, e} by part (m) of the definition
of §,.

In this subcase, z & N(M,), as desired.
Subcase 2.2.2: Assume that y # e. Then y = §[x]] for some 2 < j < n. Thus,

(¢h(‘VJ’ap+,, e Vi, Y8, Zyy) = (¢k(”J’1pﬂ e Vi, ¥2)$, Z; 3’[-"?])
F— Gy, - ¥1,72)%, Z,3D) by definition (i) of 6,.

312 . E. 2. FRIEDMAN
(8, 4) since lvy,,, ...y, Y2l 2 t=p+1,(Ip, | > 1
forallje {p+1,...,1,2})
and [} = y|—-1 < t~p
(hence, || < |”J’:p+, e Vi, Y2
and by facts (5) and (6),
|—(e.e) by part {m) of the definition of J,.

Hence, we have ze N(#;) for this subcase, also.
This proves Claim 3. []

We temporarily return to the example illustrated after Claim 1. Let M be the Tu-
ring machine we defined at that point with blank input tape, and let X and Y be the
corresponding lists constructed from M. From :hese lists, we define simple ma-
chines M, and M, as outlined above.

Construct the simple machine M,:

MI = ({19 9o, qf& #s ¢’ $} U {fb ---:fq}s 529 rb ZO)

where
r= {ZO’ VAR C}
U {[z11z € (1,90, 95 #}* |2| < 3}
U {[z¢]1z€ {1, 90, 95, #}*, 12 < 3};
and

@) 64(f2. Zy) = Z,[#]C,
®) 6,(f;, C) = [y]C, for each i = 3,...,9,
©) 6,(f1,C) = [# g0 #].
For each de {1, q,,4,, #}, z€ {1, 40,9y, #}*, |2] < 3, we have
(d) 6,(d, [zd]) = [¢],
(©) 8:(¢,[z¢]) = [2], if z # e,
® 6, [¢D) =,
(@ 6:(5,Z) =e.
We illustrate the operation of M, cn a simple input tape. Consider the string

L3 ih(1y3 ¥)8 = Lo fs i I(# g0 # 17#) 8.
Then,

(25i(#qo #17#)8,Z0) | — (fo fil(# 9o #1798, Z,[#]C) part (a) of 6,
= Cfih(#ao#1#)5,Z,[#] [1]C) part (b),
— (i(#qo#1#)$.Z[#J[11[#qo # Dpart (o),
F— (@h(go#1#)$,Z, [#]1[1] [#4go¢D part (d),
- (gon21 #)8,Z, [#] [1] [#40]) part (),
[Eh(#1#)8,2, [#1 1] [#¢]D par (@),

THE INCLUSION PROBLEM FOR SIMPLE LANGUAGES

— ((#1#)8.Z,[#] [1] [#]
— (¢h(1:9)8,Z,[#] [1] [¢D
— ((1#)8,Z,[#] [1])

— (¢ #¢$.Z,[#] [¢])

— (#¢8,Z,[#])

— (¢8, Z,[¢D)

—(8.Z,)

- (e

Hence, the string f>f3f14(r1y3y2)8 = N(M,).
The construction of M, follows: Let

MZ = ({l’ qo>4qrs #! ¢s $} v {fl’ -“’f9}’ 52’ FZa Zo) ’

whers
I, = {Zo, Z;, 4,C, D, J}
v {[z]1ze {1, 40, 95, #}*, Izl < 3}
U {[z8] 1z {1, 90 g5, #}*, Iz <3}
and

(a) 0:(f2, Zo) = Z,[##4,]C,
) 8,(f;, C) = [xF]C, for i =3,...,9,

(© 8,(fi, ©) = [#].
For each de {1,406, 95 #}, 2= {1,490, 45, #}* |2] <3, we have
(d) 52(ds [Z'd]) = [z¢]s
(&) (2. [¢D) =e,
() (¢ 2¢]D = [2], if z #ee,
(g) 62($9 zl) = J.

part (e),
part (d),
part {f),
part (d),
part (f),
part (d),
part (f),
part (g).

313

For each o,d,€ {1,490, 9y, #}, dy # dy, and z,2e{l, qo, g5, #}*, 12 <3, |2} < 3,

(h) 6,(dy, [zd;]) = e,
() 0,(¢.[z]) =D,z e,
(j) 6,(dy, D) = e.

For each d; € {1, g0, 9y, #, ¢},
(k) 6,(ds, Z,) = 4,
() 6,(ds, 4) = 4,
(m)5,(§, 4) =e.

We illustrate the operation of M, on two sample input tapes.

314 E. P. FRIEDMAN

Sample 1: Consider »,y:y, = # q¢ # 1 #, x1X3%, = # 19, ##. This is to be
the same input tape as the one illustrated for machine M.

(aofsf1h(1y3y2)$.2Z0) = (fofafil(#q0#1#)8,2Z)
= (a1i(#qo#1#)8,Z, [##4,]C) part (a) of 5,,
b— (il(#90#1#)8,Z, [##4q,] [1]C) part (b),
- ((#qo#1#)8,Z [##q,]1 [1] [#]) part (o),
- (thao#1#)8.Z\ [##9,1 [11 [¢D part (d),

- (o #1#)8,Z, [# #4,] [1]) part (e),

- (h(#1#) $,Z, [##4,]) part (h),

l— (W(#13#)$,Z,D) part (i),

;L‘_' (¢1¢#¢$,21) part (J),

[~ (1¢#¢8$,4) part (), .
- (5,4) part (1),

F— (e.e).

So, fofsfii(y1y3y2)8 € N(M,), and fif3fih(y1y3y2)8 € N(M,), where y y;y, =
= #qo#l#;é 5#15_”‘## = X1X3X2e

Sample 2: Consider

T e . =

qo# lar# qr#E#
' Y1 L Y6 'FJ—’;‘ *;’-2—'

Then
(f2fsfef1h(1V6Y8Y2)8,2,) =
= (fofsfe/1H{#qo#1q,#qs # #)3,Z,)
t— fsfefih(#qo#1q,# 4, # #)8.Z, [# #4,]1C) part (a) of 4,
- (fofib(#qo# 14, # 4, # #)8,Z, [# #4,] [#4,1]C) part (b),
P Uih(# g0 # 19, # q:# #)8.Z, [# #4,) [#4,1] [#6,]C) part (b),
— (h(F#qo# 19, #q, # #)8.Z [# #q,1 [#4,1] [#q0) [#D part (c),
- (h(go#1q,#q,# #)8,Z [# #q,) [#4a,1] [#¢0)) fact (4)(i),

- (g #q, # #)8,Z, [# #q: [#4,1]) fact (4)(),

P (g, # #)8, 2. [##4q,)) fact (4)(i),

F=($,Z2)) ' fact (4)(@i),

t— (e,) part (g).
Thus,

Lo fafefih(# qo# 1 qp# g #7#) 8 = fofafs Sih(V1 Y6 Y 208

= fafaSo J1 h(xy X6 x5 %,)8¢ N(M).
‘We now return to the proof of Theorem 3.1.
Claim 4 below follows immediately from Claims 2 and 3.

THE INCLUSION

Claim 4. N(M,) c N(M,) iff
N(Ml) N {fzﬂ‘ ...f;‘fl h(x1 xgi eor Xy x2)$ I t 2 0, 3 < il‘ veey it < n} =

4
iff there is no (possibly empty) sequence of integers iy, ..., i, t > O, with3 < iy,...,i; <n
such that xy x; ... X; X3 = Yy Vi, - Vi, Va2

From Claims { and 4, we obtain
Claim 5. N(M,) &£ N(M,) iff Turing machine M halts and accepts tape w.

Since we can construct two simple machines from any given Tvring machine and
any given input tape, we have reduced the halting probicm for Turing machines to
the corplement of the inclusion problem for simple machines. Hence, the inclusion
problem for siraple machines is undecidable. In fact, as pointed out earlier, we have
shown that the inclusion problem is not even semi-decidable.

This proves Theorem 3.1. []

4. Single-turn restriction

We consider the family of simple machines with a restriction of the movement of
the pushdown siore.

Definion 4.1. A simple machine M = (2, T, 8, Z,) is said to be a 1-turn simple
machine if for all a,bec X, v,weX*, 2y, Z,,Z, €T, a,f,yeT*,

if (?"ZO) I'f;'(aWby azl) S—M—(Wb, a) ";‘ (b= BZ2) h{; (e9 ﬁY)’ then l}'i < 1.

Thus, M is a 1-turn simple machine if once it pops 2 symbol from the pushdown
store, it never pushes more than one symbol at a time (cach move) back onto the
store.

In the proof of Theorem 3.1, simple machines M, and M, are consiructed so that
they both are 1-turn simple machines. Thus, we have the following.

Corollary 4.2. If M, and M, are both 1-turn simple machines, then it is not
semi-decidable whether N(M,) < N(M,).

Consider the LL(k) grammars defined in [11]. Rosenkrantz and Stearns [11]
have shown that if G, and G, are both LL{k) grammars, then L(G,) = L(G,) is
decidable. The decidability of whether L(G,) < L(G,) was posed as an open ques-
tion. For k = 0, L(G,) and L(G,) must each have at most one member. Thus, for
k = 0, we can easily decide if L(G,) € L{G,). But it can be shown that the family
of languages generated by LL(1)} grammars without e-rules (productions cf the
form Z — e, for non-terminal Z) is precisely the family of languages accepted by

316 E. P. FRIEDMAN

simple machines [11]. These grammars are also known as the simple LL(k) grammars
defined in Aho and Ullman [1]. By translating such a grammar into Greibach
normal form, we obtain a grammar that is easily transiatable into the coresponding
simple machine [9]. The next result follows immediately from Theorem 3.1.

Corollary 4.3. If G, and G, are both LL (k) grammars, k > 1, then it is not semi-de-
cidable whether L(G,) = L(G,).

8. Concluding remarks

Theorem 3.1 and its corollarics answer three of the open questions that had been
posed in language theory. The new techniques employed would appear to have
applications in several other areas. In fact, we are now presented with a means of
showing how the inclusion problem for free monadic recursion schemes [2] (or,
equivalently, deBakker-Scott schemes [4]) that do not use the identity function
is undecidable. This is most easily accomplished by using these schemes to encode
the operations of simple machines [5]. It is now hoped that the methods presented
herein will prove useful in additional areas.

References

f11 A. V. Aho and J. D. Uliman, The Theory of Parsing, Translation, and Compiling, Vol. 1:
Parsing (Preatice-Hall, Englewood Cliffs, N.J., 1972).
{21 E. Ashcroft, Z. Manna and A. Pnueli, Decibale properties of monadic functional schemas,
J. ACM 20(3) (1973) 489-49%.
{31 M. Bird, Thke equivalence problem for deterministic two-tape automata, J. Comput. System
Yci. 7 (1973) 218-236.
{4} *. W. DeBakker and D. Scott, A theory of programs, unpublished memo, Vienna (August
196%).
[5] E. P. Friedman, Equivalence problems in monadic recursion schemas, 14th Annual Symp.
o%» Switching and Automata Theory, University of lowa, Iowa City (Cctober 1973) 26-33.
[6] S. Ginsburg, The Mathematical Theory of Context-free Languoges (McGraw-Hill, New
York, 1966).
{7] M. A. Harrison and I. M. Havel, Real-time strict deterministic languages, STAM J. Comput.
1 (1972) 333-349.
{81 J. E. Hopcroft and J. D. Uliman, Formal Languages and Their Relation to Automata
(Addiscn-Wesley, Reading, Mass., 1068).
[9]1 A. J. Korenjak and J. E. Hopcroft, Simple deterministic languages, IEEE Conf. Record
of 7th Annual Symp. on Switching and Automata Theory, 36-46.
{10] M. O. Rabin and D. Scott, Finite automata and their decision problems, in: E. F. Moore,
ed., Sequential Machines: Selected Papers (Addison-Wesley, Reading, Mass., 1964) 63-91,
{11] D. J. Rosenkrantz and R. E. Stearns, Properties of deterministic top-down grammars,
Information and Control 17(3) (1970) 226-256.
{t2] L. G. Valiant, Decision procedures for families of deterministic pushdown automata,

Ph.D. Thesis, Department of Computer Science, University of Warwick, Coventry (July
1973),

