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Abstract. A determinist? pushdown tor is called a simple machine when it is restricted 6~ 
have only on5t state, eperate in real- and accept by empty store. While the existpnce of a~ 
effective procedure for deciding e ce of languages accepted by these simple machines is 
well-known, h; is .&~vn that thi! y is powerful enough t:o have an undecidable inclusion 
problem. It follows that the inc> on problems for the U (k) languages and the free monadic 
recursion schemes that do not’ use an identity function :Ire ako undecidable. 

1. Ilelwhc:tion 

One of the most imp&Drtant questions in language theory is determklg whether 

the languages accepted by twe different machines in some given class are the same. 
This question is called the equivalence problem, and it has been investigated for 
a wide variety of machine classifications [3,8,9,11]. Recently, however, its relation 
to another question has drawn a great deal of interest. This question, known as the 
inclusion problem, is that of deciding whether one language is a subset of another, The 
most obvious connection between the equivalence and inclusion problems can be 
explained as follows: The decidability of the inclusion problem for some family 
of ksnguages implies the deci ability of the equivalence problem for the same fam- 
ily. This is det~:rmined by he fact that L1 = L2 iff L1 s L2 an 
any two languages El and Lz. bus, any algorithm that decides inc 

family of langucges can also be used to decide equivalence. The question naturally 
arises as to whether the converse holds. oes the decidability of the equivakncc 
problem for some family of languages implies decidability of tie inclusion problem 
for that same family? 

Until recently, all %atura ” families of languages stu ied had been found ts 

ave their equk;slence and i lusion problems both be d 
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cida&. For example, the regular sets [8] and the bounded languages 
&&able equivalent and inclusion problems, whereas the context:free 
and the Itinguagers acmptecl by Turing mlachines [S] both have undecidable equiva- 
tence and, incluslion problems. In 1971, ird exhibited the first case that fit into 

her of these previous patterns [X’J. I found that the languages accepted by 
-tape Rabin and Scott machines [lOj possess a decidable equivalence problem 

and an undeci&.ble intJusion problem. Valiant’s thesis [12] explored this question 
fur&er, fincting three other farnilies exhi%ting this unusual feature of having a den 
Gdalble equivalence problem and an undecidable inclusion problem: the languages 

d by bite-turn deterministic pushdown automata, one-counter deterministic 
pu&adown automata, and nonsingular automata. 

Ini this paper we investigate anotlher subclass of deterministic pushdown auto- 
maeta - simple machines. These devices are basically deterministic pushdown 
automata that have only one state and operate in real-time. In Section 2, we outline the 
fundamental properties of these machines. 

Simple machines were first investigated by Korenjak and Hopcroft [9] in an 
attempt to find a subfamily of the deterministic languages that characterizes a fairly 
large class of programming languages that can be rapidly parsed. Although these 
languages cannoit describe all of the structures existing in a language such as ALGOL, 
they can describe many other non-regular features. An interesting property of the 
languages accepted by simple machines is that they possess a decidable equivalence 
problem [9]. Xn their paper, Korenjak and Hopcroft posed the inclusion problem 
as the major open question relating to simple languages remaining to be solved [9]. 
A sign&ant new result, Theorem 3.1, shows that these “simple languages” indeed 
have an undecidable inclusion problem. Because the simple languages are a proper 
subfamily of the LL languages (in fact, they are the simple LL(1) languages de- 
scribed in Cl]), the undecidability of the inclusion problem for LL languages is 
an immediate result. Therefore, we add two n:ew families of languages to the grow= 
ing list of tholse with decidable equivalence but undecidable inclusion problems. 
The nature of the feature or features contriMing to this straltge c:lassification for 
families of languages remains to be discovered. 

simple macI&zne is a very restricted form of a pushdown automaton. A pushdown 
automaton is called simple if it has only obte state and operates in renl-time (no 
63moves}. ecause these machines possess only one state, no information can be 

in its finite-state control. erefore, a s;lmple machine ca 
ateless device [ 12] 
e definition of simple mat 

. 



THE INCLWSHON OBLEM FOR SIMPLE LANGUAGES 299~ 

De (a) A. simple machine is a 4tuple M = (E, r, 6, Z,,), where 
finite input alphabet, 

r is a fk& ~~1s~~~~~ alphabet, 
s:c x I=+ !Y* is the partial frlaizsition function, 
ZO E I’is the initial pushdown gmbol. 

0 configmztion of M is a pair (w, a), where 
w E c* is the portion of the input tape remaining to be read (i.e., not yet passed. 

under the read-head), 
is the current contents of the pushdown store, where: the top of the. 

store is the’ rightmost symbol of a. 
We defke the operator IT (or t_ where the machine is clearly implied by the 

context) on configurations of M as follows: 
For all at E Z, w E C*, 2 E r, a$ E: r*, 

(aw,ceZ) h (IV, CC/~) iff &a, 2) = /3. 4 

Each occurrence of (a~, aZ) ‘T (IV, ~$3) is called a move of the simple machine M.. 

(c) A computation of M is a sequency of configurations c,, . . . . cur, n b I, where 
ci h cl+l, for all 1 < i G n. j-1. we let c denote the transitive reflexk closure 

of h9 and G the transitive closure of b. 

For t 2 0, we de5ne & as follows: 

(i) c t$ c for all configurations c; 

(ii) c I* d iff there is a computation cO, . . . . ct, where c = cO, d = ct. 

Thus, c t$ d &there is some t 2 0 such that c G d, and c 1-k d iff there is somle 

t 2 1 such thEat c e d. 

After the entire tape has been processed, the resulting configuration of the simple 
machine determines whether the input tape is accepted or rejected. For this Gap5:r, 
we are concerned with acceptance of an input tape by empty pushdown store. &cur- 
dingly, we defina the language accepted by simple machine to be 

M)= {WE * I 0% &I) l-g (e9 60. 

language L is said to be S~IPQ& if L ) for some simple machine . ‘e can 
non* define S as the family of si 

simple znachine is defined so store is empty, no further 
input can be processed. T 
precisely to Ihe family of 
strict deterzlinistic language 

Recall that simple machin 
tiz,L trarls~~i~~~ function is 
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Valiant shows that we can relax the real-time restriction on our maehines and not 
enlarge th: family of languages accepted [12]. That is, we could redefine the tran- 
&ion function for simple machines in order to allow for e-moves. By this, we mean 
that if M I (IS, r, 6, &J is a simple mxhine, then the partial transition function S 
is such that S :(x LJ {e}) X I’ + *. T’hc requirement that simple machines remain 
.deterministic includes the restriction that for each 2 E I’, either(i) 6 (e, 2) = IFT, or (ii) 
f;Qw all fz6zC, S&Z) = 8. 

The Gamily of languages accepted by these %SS restricted” simple machines 
g(that allow e-moves) is precisely S For convenience, then, we retain our earlier 
detition for simple machines without e-moves. This does not really affect any of 
the results that we prove, 

.3. e incInsion problem 

Korenjak and Hopcroft [9] first investigated the properties of the languages of S 
in an attempt to find a characterization for a fairly large class of programming lan- 
guages that can be parsed rapidly. Their main theorem shows that the equivalence 
&oblem for S is decidable. The major open question in their paper is whether or not 
the inclusion problem for languages accepted by simple machines is decidable. Recall 
that this problem was pose(L before the discovery of any natural family of languages 
having a decidable equivalence problem and an undecidable inclusion problem [3]. 

intend to show that the question of inclusion is indeed undecidable. The inspi- 
ration for the proof comes from the work of Valiant [12]. He shows that the inclu- 
sion problem for a family of languages accepted by a subclass of real-time pushdown 
automata (i. e., nonsingular automata) is undecidable. He was not able to extend 
his proof to include the one-state restriction, or even for LL languages. 

We shah now prove the major theorem of this paper. 

. The inchim probIena for S is undecidable. 

Before we prove Theorem 3.1 we first give same definitions. 

. We use thle fo owing ds our definition for a Turing ma 
tih Turing mwhine is a MupIe M = (K, C, r, is, qo, F‘), where 

K = the sex of states, 
F = the set of tape symbols. Let denote the blank tape symbol, 
,x = the sei of input symbols. A41so, 2 $2, 
qf+K= the starting state, 
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The tape head is situated so that the next tape symbol that will be read, ;s the 
initial SJ mbol of j?:, if /? + e. For the case where B = e, the next symbol to be! read 
is a blarlk, B. 

We define the relation lM (or /-when M is understood from the context) 

on configurations of M as follows: 

For all ~&XI’--(B), ~,/?,~,~E(K-{B})*, 

(1) if 6(q, a) = (p,b, R) and /3 = ay, then aq/J = aqay k abpy; 

(2) if 6(q, a) = (p, 6, L) and /S = sly, a = PC, then aqj? = wqay I= ppctiy; 

(3) if 6(q, b) = (p, a, R) and 0s = e, then aqj3 = aq k orap; 

(4) if 6(y, B) = (p, a, L) and /I = e, a = PC, then aq/J = pcq b ~gca. 

Each ocmrmm of aqj3 b a’q’fl’ is called a mote of the Tj:ring machine. Moves (1) 

and (3) advance the read head one tape square to the right, whereas moves (,Z?) and (4) 

move the read head one square to the left. We let c denote the tra.nsitive reflexive 

closure of h. 
An input tape is accepted if the Turing machine ever gets into some configuration 

where th* current state is a member of F. Thus, the language accep:e& by Turing 
machine M is defined to be 

L(M) = {IV E E* 1 qow /+ aqj?, for some a$ f3 (r - {El})*, q ei F}. 

* Definition 3.3. A Turing machine M = (K, Z, r, 6, qo, bj3 is said to hdt on input tape 
w E C* if there exists some a$ E JY, q E K such that qow c a@, and no next move: is 

possible from configuration aq/?. 

The haliing problem far Turing machines is as follows: 
Given a-y Turing machine 44 = (K, IZ, r, 6, qo, r;3 and input tape TN E X*, does 

Turing mac.hine A4 halt on input IV? 

It is well-known that the halting prtiblem for Turing machines is und.ecidable [S]. 
That is, ther’z is no algorithm that can decide whether z Turing m&ine Lalts for 
some given input tape. 

D&&ion 3.4. Let C be a finite set of symbols containing at least wvo elements, 
and let 3 be a &Cte non-empty sequence of ordered pairs of string:s in CI+. Foa 
example, 

4 = h, Ylh .**9 (xll, y/J, 
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Given any instance of the Modified Correspondence Roblem, 4, &es t&e 
exist ifi solution for, $? 

The Modified Correspondence Problem is undecidable [$I. 

The rest of this section is devoted to the proof of Theorem 3.11. 
riven a deterministic Turing machine M and an input tape w, we construct two 

simple machines, NI and A&, such thitt N(&) $ N(&) iff iM tilts and accepts W. 
Thus, we show that if the inclusion roblem for S were solvable, we then could solve 
compfement of the: halting probl for ‘Turing machines. In fact, showing this 
means that the inclusion problem fog: S is roof semi-decidable. (Recall that the halt- . 

ing problem is semi-decidable, but :the complement of the halting problem is not 
semkdecidable.) 

Let M = (K, IS, r, S, qO, Fj! be any “king machine, and IV E C* be any input tape 
to ,,U. Without loss >of generality, asEume that F = (qf}, and for each (4 E I’, (1; (Q, a) 
is undefined. Also,, assume that for all q E K- (sf}, a E r, that 6(q, a) is defined. 
Hence, Turing maohine 1cf halts on input tape w iff M accepts w. We now show 
to oonstruet simple machines A4$ and k& from the d&ition of Turing machine M 
and input tape w. The reduction t%at follows is essentially simiiar to the proof of Hop- 
oroft and Ulhnan of the undecidability of the Modified Correspondence Problem 

First, we constrtxt two fir&c lists, X and Y, of non-empty strings. Only the first 

two pairs are numbered, as the numbering of the other parts is irrelevant. recall 
that B is the blank, Rind ,# is a new symbol not connected to AL 

LIST X LIST Y I 

Pair I: 
Pair 2: 

# 

qJ&# 
# 

#q*w# 

# 
# 

For each & &, d3 E I” - {B}, p E K, q E K- (qf}, 

see that X and Y each consists of 12 strings, for some pt 
e denote 



ere i&t integers g 0, 3 -< jI, . ..) jF < n, s that 

XlXi, ‘@* X8, = # 40 w 3% al&/& # l ** # ak-1 

75t qow # WlA, # l ** # @t-l qk-1 pk-1 ?+ akqkbk #a 
Qk = qfS then by choosing pairs of strings (+, JQ, where xj contains qf and pairs 

from ((#,#)I u ((d, d) 1 de F- {B} }, we obtain 

Xl&, l ‘* XI, Xl*1 *** x4x2 = YlYi, l ‘a Yl,Yi,+, l ” YzJ2, 

In addition, if there exist some s 2 0, 3 < j,, . . . . jS G n such that 

x1+, l a* x ‘0 E2 = YlY,J, .** Y_j* Y29 

then r < s an j, = iI, j2 = i2, *.., S; = i,. + 

Therefore, me make the following claim that is proved in [8]. 

M 

Notice that for i 2 3, each xi and yf contain the same number of occurrences 
of !etters denotkg 
contains 1 state. 

either 0 or 1; that x1 contain 

occurrence of x letter denoting a state of 

an example to illustrate the construction of simple ma XES 

n Turing machine and input tape. 
at is given a string of l’s as its input, a 

input tape and then halts (and accepts), a 
us, 



The computation of M’ on the blank tape is 

# 

lqo 
Iqf# 

qf 

4f# 

#!?f 

FYI1 I ---z+ I 9 
For each integer i, 1 < i 6; ~2, let fi be a new symbol not in A = (r - {B}) 

u R” u (#j.E, shodd be considered an encoding for integer i. In addition, let # and $ 
be two new symbolr not in A u {f;, . ..) .r;l). Define the homomorphis:m h :A* + 
(A I.) (p))* detemlined by defining k(d) = & for ah d E A. This homomorphism 
will only be used to describe iht’ languages aaepted by A& and Mz. The definitions 
of I he two machines are now given. 

We first construct the simple machine MI, and make the claim that 

(IWe: the case where t = 0 in the definition of the above set, defines the string 

x2 fl h OIY;?) $4 
I&‘ormaUy, the mechanism of MI is such that it reads along the encodings of 

integers (Le., readsf’s) and pushes the associated y’s onto the pushdown store. For 
example, when MI reads f4, it pushes y4 onto the pushdown store. Thq as Ma 
reads symbols from A hJ {#I, it pops when the symbol at the top of the pushdown 
store matches the input symbol, checking that a $ appears as every other symbol. 
MI accepts the tape if !§ is read when the pushdown store has only Z1 as its coBtentsp 

A formal definition of MI follows: 

Let 
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I. Insure that ,ihe initial pojtiion of an accepted input tape is a string of the form 
fi cxfi, where LX E {f’, . . . . p”l}“. 

4a) ME29&) = ~,Lv2”1 c, 

(b) S,(fi, C) = [$] C, for each i = 3, . . . . n, 

(4 d ($1, C) = l[vfl* 

II. The next portion of an accepted input tape must be a string hb, /?JJ~), where 
B E {Y3, l ‘.9 Y,}*. Also, if the first portion of the input tape is fi afl (see part I above), 
then we insure that 

0 i 01 = e implies that J = e, 

0 ii ct = A, . ..ft., for j >, 1,s < il, . . . . i, < n implies that jl = J+, . . . yr,. 

For each d E A, t c_ LP, 14 < ma { InI}, we have 

w w9 [$I> = [4, check for matching symbol, 

Ce) M$9 C&t, = I?], if 2 # e, check that every other symbol 

(f) M4 P]) = e, is a #. 

III. The final symbol in an accepted input tape is a $. 

(gl Wk 21) = e, 

Note that S1 is only partially defined. 

Facts about machine Ml. These facts are obvious from the construction aboire, 
so no proofs are Tvovided. 

(1) If(GG&--( 9 ) e 01 is a valid computation of M1, then by definition (a) of tran 
sition function &, it is clear that a = fi and QC = Z,[~~]C. 

(2) If (a, C) I- ( e BC k a computation of M1, with a 4 l?(yC, then from part (c) 9 1 
of ths definition. of &, we have a =f’, a = [I$]. 

(3) If (u, C) F- (e, aC) is a computation of Ml for t 2 1, then by part (b) of &: 
we have v = f;, ..& a = [YE-J . . . [$I, where 3 < ii, . . . . it < IZ. 

W If (0, z”) t fE_ ( e e is a valid computation of Ml, then parts (d), de), and (f) , ) 
of the definition of a1 insure that v = hi 

(9 If 04 2,) p ( e e is a computation of M,, then part (g) of a1 requires t 9 ) 
0 = $. 

From the above fat’s, we make the following claim (without proof) about the 
structure of the language aGGepte 
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mach.i;re , ,and make the claim that 

follow}* 

InfkxmaHy, the machine .M2 starts off in a manner similar to Ml, by reading 

e f’s and pushing the associated x’s onto the pus vm store. Next, 8s 
symbols from ‘A w {#}, it pops whenever the in 01 :mat&es th 

at the top of the pushdown store, again, checking that a # appears as every other 
symbol. ‘Unlike M2 rejects the input tape if the $ is read when the pushdown 
stoire consists only of Zli. empties the pushdo tore ‘and a.c:wpts the input 
tape whenever (I) the top he store does not m the input sjlmbo! read, (2) 

hrtl $ is cncxxrntered rand the pushdown store does not consist only of .&, or (3) 
when store contains only Z1 and ‘ithe input tape is not the string $& The proof 
that i s ;tc,:tually capablje of accepting an input tape under all three of these con- 

tions cons!.i;utes the m;ajor portion of the. proof at follows the construction, 

One portion of the proof shows that simple m 
the for4 

e M2 accepts all strings of 

fifig-* fi,txYrYi!, ..‘ Yr,Y& 

here f 3 0, 3 < i 1, ..‘,, iIt G n, yayf, . . . yi, y2 # x1x8, . . . xf, x2 and 

IY 3 1 'aa l ** Yi,YA 2 I%&, l ** xr,xzl* 

AS goon as a mismatched symbol is encountered, we are insured that there are at 
least its many input symbols remaining to be read as there are symbols on the push- 
down store. !U ahis point., the # markers play a key rolle in encoding the fact that 
a mismatch has oecurre hat the entire pushdown store must be popped. 
it it; the use of these p rs that gives rise to the 5rrelevant strings” 
in Ciaim 3 below, 

e second t ’ ‘and most difficult) part of the proof that follows is to show that 
accepts CXU strings of t 
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Y I4 K max{lxrl) ) 
[as in Ml, [z] (and also [q!]) is a single pushdown 
tion S2 is 

symbol) and the transition func- 

1. Insure that the initial portion of an accepted input tape is a string of t 
fzclfi, whm a E {fs, . . ..fn)*. 

00 u$i, &I) = z,[$]c, 
(b) S2& C) = [$]C, for i = 3, . . . . n, 

(4 WL 6) = Lxl* 

II. As in part 11 of the definition of aI (machine MI), we ma,tch input symbols 
against the pushdown store symbols, checting that a 4f is every other symbol in the 
input tape. 

For de A, z c A*, lzl K max(!x,l}, 
(d) Md,k4) = 149 check 

de) UP, [PI) = e, 
(f) S&C [zp]) = I-71, if z # e, check 

matching qmbols, 

that every other symbol is a 4. 

III. Reject the input tape if the ha1 symbol is $ and the pushdown store coa.tents 
is Z1. 

0 M& a = J- 

IV. I[f there is a mismatch between the input symbol and the -top of the pushdown 
store, use the pushdown store symbol D as a means to encode the fact so that we Cal:& 
awpt the input tape. 

; For dl, dz e A, dl # d,, and z,Z E A*, 121 < max {IJc,l), 1~1 c max {Ix,& 
(h) a2 ($, LzdJ) = e, check for mismatched symbols and pop the 

pushdown, 
(9 82 (6 [i 1) = D, Z # e, use $ to then encode ls on pushdown, 
(j) a2 (d2, L)) = e. 

If the bottom of the pushd own store is e countered (Z1) when a symbol 
is FGX& use jpushdown symbol 1 to encode that the input tape will 

* accepted when the 1$ is finally 

use A to encode the fact that we will eve 



chine M2. No proofs are @Vera, as 
comu~ction above. 

the facts follow 

(G, &) t--- (e a) is a computation of ition 

= $z and IX = 
n of M2, with a 6 the part cc) of S2 

p (4?, aC) is a computation of for r 2 11, then by definition (b), 
$It . . . fi,, a [xt] . . . [x:1, where 3 I< il, ..*, r0, Q 82. 

iari i< max (Ix,l), Ifci < lul, then either 

z-6 for some Z E A*:, and (h (zJ), [uR]) (h (3, e) 

(ii) u is not a prefix of O. Thea u = %I1 d v = G&v2 for U, vl,v3, E A*, 
di,d, E A, 4 # 4,) and (h (u), [u’], ($h (vz), e) by parts W, (f), 
and (h) of the de!kition of S2. 

v E A”, iF 101 = j2 1, thm by parts (i) and (j) for the definition of SzS 

(lc), (I), and (m) of the defkition of 

he following claim about the strPlcture of the language accepted by 

rings irrelejfant to this argument, 
which strings are contained in J t is Glnlsp necessary to 
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e case where z = f2 fit . . . fit fi h (xl q .=. xi, x,) &. 
F some d b OS II B is, . . . . ir G iuE. 

: Now, consider t case *where z fcr 
some t 3 0, 3 < i 1, .*., it \< it, where h(xlxil... x&x2) 7t: WLYI,-•YlrY2)* 

omomorphism h, we know that this implies that x1x~,...xitx2 + 

lists X and Y’ are such that there exists an integer 0 < j G t 

0 
rr’l xti a** XI3 = # &)q()j$ #alqla, 6.. #@k-l qk-1 pk-1 ?+, 

* 
Yl YI, l **Y,, = # aOqO@O# w?l&# . ..# ak-1 qk-lh-l# @kqkBk 8% 

where aoqo~o = qow and a&z })*, qlcX for era11 that w is 
tfte input tape to Turing machine gain, we point out that for all i >, 3, each x1 
and y1 contains t e same number of occurrences of states of ; thst x1 containis no 
state; and that 1 contains the single st ds in # iff y, ends 
in #. Equations (+) are trivially satisfied 

Xl = # and yl = #qow # = #a0qoBo#~ 

There may, however, be several such integers 6 t th 
e the maximal suc1, integer. Thus, for some a,/? E 

sfy (a) above. 

YI Ya, . . . Yip = XI xi1 . . . xi, aqB #* 

uppose simpl42 mat e string z as its in tape. 

:I) by facts (l)-(3). 
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Since p is maximal, a mismatch will oww while M2 reads &q/I#). Tfrat is, 
me symbol in h(aqjl#) will not match the top o:r the 

st of what follows is to show that when this occurs,, 
symbols remaining to be read so that the whole pushdown store can be 
and the input tape accepted. 1 

Sdwase 2.1: Let us tist suppose thit x~~+~. of q/j#* 
n q/W = Xsp+r . . . +x20 for some ;v # e. 

by the argu.. 
ment above, 

t-(h(u3h~f~,,...rr,~~,Z,) by fact (4)(i), 

I- UC 4 by parts (k) and (1) of the definition of Sz, 

by part (m) of the definition of ~5~. 

So for this subcase, ZE JW3M2), as desired. 
S&cgse 2.2: Now suppose that xl_* ,.. xitx2 is not a proper prefix of aq/3#. 

Since p is maximal, we also know that aq/3# is not a preti of xfr+% . . . xr,xz. There- 
fore, there exist z, .Y, $ E A *, dl,d2 E A, dl # d,, such that 

ccqj?# = zdp, xi_ . . . xltx2 = zd,#. 

ut z = .x;~~+~ . . . xf_ z1 for some p < p + q G t, zl E A*, where 

Xb*Q+I if t > 1~ +q (then xtp+*+& = zxd2a for some 

z,6& is a prebix of tx E A*), 

x2 en x2 = zld2a for some 

~ml WJW = xip+I .*. a&,, q 

erefore, 



YftY2) $9 5 Lel IcaRd if t =p+q+l, 

Y#*Y2)$* z1 bRd23> if t = p+q; 

we have by part (h) of the definition of 6,: 

where 
= (P (VYr,,, 6 l l Yi, Y2) $, z,?Q, 

So y is a proper prefix of [xi] [xt] . . . [B$,,,]. Then 1~1 < t-p. 

Subcase 2.2.1: Asmne that y = e. Then we have 
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/=- (37 4 sin= l.Yfp,, l **Yf,Y2I 3 t--p+ 1, (IYfJl 3 1 
for dl jfz (p-t-11, =..,t,2)) 

and I!\ = ~+-I < t-y 

(hen=, Ifi < IV~p+l l ** Yf, Y2ll 

mad by facts (59 and (6), 

j--- (e, e) by part (m) of the deli 

&nlce, we have ZE N(M2) for this subcase, also. 
This proves Claim 3. u 

We temporarily return to the example illustrated after Claim f . Let M be the T’u- 
ring machine we defined at that point with blank input tape, and let X and Y be the 
corresponding lists constructed from A&. From these lists, we define simple ma- 
chines and M2 as outlined above. 

Construct the simple machine M,: 

We illustrate the operation of MI on a simple input tape, Consider the string 

f2f3.G NY, Y3 .YaP = f2f3 K# qo # I#) $9 

Then, 

f3fdo%o 3% I#)$, 



en=, Ihe string f2f3fiKw3yZ)$ 2 

The construction of Mz follows: Let 

whers 

u {[zjq 1 ZE {l,%qfY k)*Y I4 c 31; 
and 

(a) WL zo) = a3+3flCY 

(b) S,Y;, C) = [x:] C, for i = 3, . . . . 9, 

(c) &y;, C) = WI* 

For each de { 1, go, qf, X), z E (1, go, qf, #I** id C 3, we have 

ei es. 



sat@e 1: Consider ~1~3~2 = # & # 1 #, +~3~2 = # lqf ##. ‘ISis is to be 

the same input tape as the one illustrated for machine MI, 

cr;f,fi~tilYSY2)$,Z = ux3fi~(#40#1 #YGsJ 

f- Cfjfi~(iP~oi4”-~ ~xwl[# #q&l Pae (a) 0% 

t_ V;h(#~0#1#)$,ZtC##qfj [l]O part (b), 

I---- (~(#%~~#)$~z,c##qf] [:q [# 

I-- (It&#1 +9%,&b+ #q,t] [I] [#I) pati (d), 

k w?*#i#)$,Z1[##q,l [I]) Pafi fe), 

E (ph(#~w,~,[##qf]) Pati (11)s 
1-- @(#I ?#)W$) paa (0, 

(_-- ($l###$,Z,) Paa ci), 
1_ (ow$$,A) Paa 00, I 
p UbO Pa (I), 

I---- (e&9* 

SO, fzf3fLhCY1YsYzP E WWA afld fzfJfih(YiY3Y2)$ E N(Ml), where ~1~3~2 = 

:= #q*#l## #lOp## = X.lX3+ -. 

Sampk 2: Consider 

I i k 1 

Yl 76 ’ lyel $2 
Then 

c$rfefsfihD1_v~YsY2)$,~ZO) = 

= ~~f~~kl~#cgo#lqf#q~##)$,zo) 

t--f~~~(#q*#l4,#~~#i4f)$,Z,[##qflC) part (a) of S2, 

1_ vkfi~(#~O~~sf#~~~~)~~~~C#~~~l t#(;rAc) Part o-0, 
t_v;h(#qo#1q~#q~l##)%,z,[##~~l W!xdl bMolch=t cb), 
I_ ~~(#%#lq~~q~~#)$,L7,c##q,l CMfcl C#cilo 
~-(h(%#lq,#q,##)$,Z,C##q~l C#qdl C+?ol> fact (4)f i), 

t” (I(I%#~~~#)$,Z,f##4flC#4rll) fact (4)(i), 

p- (&?jG# W%GC# ~ss3, fact [[4)(i), 

p- 6,Z,) fact (h)(i), 

I_ (4 IPart tis)= 

lUS, 



THE INCLUSION PLE LANGUAGES 

claim 4. N(M,) G N(M2) i&f 

N(&) n (fifi, l fr,f~ h&l XI, .-. .g~i* ~2)s 1 t b 0,3 < iI1 l ... it < n} = 0 

iff there is no (possibly empty) sequence of integers iI!, l o-S ir, t 2 0, with 3 < iI, . . . . it < n, 
wch that x1 xi1 . . . xi, x2 = y1 yi, . . . yi, y2. 

From Claims 1 and 4, we obtain . . 

Claim 5. N(M,) $ N(i&) iff Turing machine M halts and accepts tape w. 

Since we can construct two simple machines from any given Turing machine and 
any given input tape, we have reduced the halting probltim for Turing machines to 
the complement of the inclusion problem for simpl,e machines. Hence, the inclusion 
problem for sinagle machines is undecidable. In fact, as pointed out earlier, we have 
shown that the inclusion problem is not even semi-decidable. 

This pro\ 2s Theorem 3.1. 0 

4. Siigiedum restricthi 

We consider the family of simple machines with a restriction of the movement of 
the pushdown store. 

Demos 4.1. A simple machine M = (E, l?, 6, &) is said to be a l-turn simple 
machine if for all ct, b E 22, v, w E C *, ZO, Z1 9 Zz E r, cc, /?, y’ E I?, 

if (CZ,) E (awb a&) h Oh a) 1% (b, B&) tr k Brh then lrl 6 1. 

Thus, M is a l-turn simple machine if once it pops a symbol from the pushdown 
store, it never pushes more than one symbol at a time (each move) back onto the 
store. 

In the proof of Theorem 3.1, simple machines MI and Mz are constructed SD that 
they both are l-turn simple machines. Thus, we have the following. 

both l-turn sipjple machines, then it is not 

Consider the LL(k) grammars defined in [ll]_ Rosenkrarkz and Stearm 1: 11 
have shown that if G1 and G2 are both LL,# grammars, thzn L(G,j = I&,) is 
decidable. e decidability of whc r L(G) c L(GJ was posed as an 
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simpJe machines Cl 11. These grammars are afso known as the simpJe IX(k) grammars 
defined in Aho and Pullman [l]. By translating such a gramjnar into Greibach 
normal form, we obtain a grammar that is easily tra_ns:ata.ble into the coresponding 
simple machine [9 J. The next result follows immediately from Theorem 3.1. 

Theorem ‘3.1 and its corollaries answer three of the or,lerr questions that had been 
posed in language theory. I’he new techniques employed would appear to have 
applications in several ot hex areas, In fact, we are now presented with a means of 
showing ho-g the inclusion problem for free monadic recursion schemes [2] (or, 
equivalently, deBakker-Scott schenles fit]) that do not use the identity function 
is undecidable. This is most easily accomplished by using these schemes to encode 
the operations of simple machines [SJ. It is now hoped that the methods presented 
herein will prove useful in additional areas. 
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