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Abstract
In this paper, we consider a discontinuous Dirac operator with eigenparameter
dependent both boundary and two transmission conditions. We introduce a suitable
Hilbert space formulation and get some properties of eigenvalues and
eigenfunctions. Then we investigate the Green’s function, the resolvent operator, and
some uniqueness theorems by using the Weyl function and some spectral data.
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1 Introduction
Inverse problems of spectral analysis recover operators by their spectral data. Funda-
mental and vast studies about the classical Sturm-Liouville, Dirac operators, Schrödinger
equation, and hyperbolic equations are well studied (see [–] and references therein).

Studies of eigenvalue dependence appearing not only in the differential equation but also
in the boundary conditions have increased in recent years (see [–] and correspond-
ing bibliography). Moreover, boundary conditions which depend linearly and nonlinearly
on the spectral parameter are considered in [, –] and [–], respectively. Fur-
thermore, boundary value problems with transmission conditions are also increasingly
studied. These types of studies introduce qualitative changes in the exploration. Direct
and inverse problems for Sturm-Liouville and Dirac operators with transmission condi-
tions are investigated in some papers (see [, –] and the corresponding bibliography).
Then differential equations with the spectral parameter and transmission conditions arise
in heat, mechanics, mass transfer problems, in diffraction problems, and in various phys-
ical transfer problems (see [, , –] and corresponding bibliography).

More recently, some boundary value problems with eigenparameter in boundary and
transmission conditions were extended to the case of two, more than two or a finite num-
ber of transmissions in [–] and the references therein.

The present paper deals with the discontinuous Dirac operator with eigenparameter
dependent boundary and two transmission conditions. The aim of the present paper is to
obtain the asymptotic formulas of the eigenvalues and eigenfunctions, to construct the
Green’s function and the resolvent operator, and to prove some uniqueness theorems.
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Especially, some parameters of the considered problem can be determined by the Weyl
function and some spectral data.

We consider a discontinuous boundary value problem L with function ρ(x);

ly := ρ(x)By′(x) + �(x)y(x) = λy(x), x ∈ [a, ξ) ∪ (ξ, ξ) ∪ (ξ, b] = �, ()

where

ρ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

ρ–
 , a ≤ x < ξ,

ρ–
 , ξ < x < ξ,

ρ–
 , ξ < x ≤ b,

and ρ, ρ, and ρ are given positive real numbers;

�(x) =

(
p(x) q(x)
q(x) r(x)

)

, p(x), q(x), r(x) ∈ L[�,R];

B =

(
 

– 

)

, y(x) =

(
y(x)
y(x)

)

,

λ ∈C is a complex spectral parameter; we have boundary conditions at the endpoints,

ly := λ
(
α′

y(a) – α′
y(a)

)
–

(
αy(a) – αy(a)

)
= , ()

ly := λ
(
γ ′

 y(b) – γ ′
y(b)

)
+

(
γy(b) – γy(b)

)
= , ()

with transmission conditions at the two points x = ξ, x = ξ,

ly := y(ξ + ) – αy(ξ – ) = , ()

ly := y(ξ + ) – (α + λ)y(ξ – ) – α–
 y(ξ – ) = , ()

ly := y(ξ + ) – αy(ξ – ) = , ()

ly := y(ξ + ) – (α + λ)y(ξ – ) – α–
 y(ξ – ) = , ()

where αi, and α′
j , γ ′

j (i = , , j = , ) are real numbers; α > , α > , and

d =
∣
∣
∣
∣
α α′



α α′


∣
∣
∣
∣ > , d =

∣
∣
∣
∣
γ γ ′



γ γ ′


∣
∣
∣
∣ > .

2 Operator formulation and properties of spectrum
In this section, we present the inner product in the Hilbert space H := L(�) ⊕ L(�) ⊕
C

 and the operator T defined on H such that ()-() can be regarded as the eigenvalue
problem of operator T . We define an inner product in H by

〈F , G〉 := ρ–(x)
∫ b

a

(
f(x)g(x) + f(x)g(x)

)
dx + αf(ξ – )g(ξ – )

+ αf(ξ – )g(ξ – ) +

d

rr +


d
ss ()
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for

F =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

f (x)
r
s

f(ξ – )
f(ξ – )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ H , G =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

g(x)
r

s

g(ξ – )
g(ξ – )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ H , f (x) =

(
f(x)
f(x)

)

,

g(x) =

(
g(x)
g(x)

)

, r = α′
f(a) – α′

f(a), s = γ ′
 f(b) – γ ′

f(b),

r = α′
g(a) – α′

g(a), s = γ ′
 g(b) – γ ′

g(b).

Consider the operator T defined in the domain

D(T) =
{

F ∈ H : f (x) ∈ AC
(
[a, ξ) ∪ (ξ, ξ) ∪ (ξ, b]

)
, lf ∈ L(�) ⊕ L(�), lf = lf = 

}

such that

TF :=
(
lf ,αf(a) – αf(a), –

(
γf(b) – γf(b)

)
,

f(ξ + ) – αf(ξ – ) – α–
 f(ξ – ), f(ξ + ) – αf(ξ – ) – α–

 f(ξ – )
)T

for

F =
(
f ,α′

f(a) – α′
f(a),γ ′

 f(b) – γ ′
f(b), f(ξ – ), f(ξ – )

)T ∈ D(T).

Thus, we can rewrite the considered problem ()-() in the operator form as TF = λF ,
i.e., the problem ()-() can be considered as an eigenvalue problem of the operator T .

We define the solutions

ϕ(x,λ) =

⎧
⎪⎪⎨

⎪⎪⎩

ϕ(x,λ), x ∈ [a, ξ),

ϕ(x,λ), x ∈ (ξ, ξ),

ϕ(x,λ), x ∈ (ξ, b],

ψ(x,λ) =

⎧
⎪⎪⎨

⎪⎪⎩

ψ(x,λ), x ∈ [a, ξ),

ψ(x,λ), x ∈ (ξ, ξ),

ψ(x,λ), x ∈ (ξ, b],

ϕ(x,λ) =
(
ϕ(x,λ),ϕ(x,λ)

)T ,

ϕ(x,λ) =
(
ϕ(x,λ),ϕ(x,λ)

)T ,

ϕ(x,λ) =
(
ϕ(x,λ),ϕ(x,λ)

)T ,

and

ψ(x,λ) =
(
ψ(x,λ),ψ(x,λ)

)T ,

ψ(x,λ) =
(
ψ(x,λ),ψ(x,λ)

)T ,

ψ(x,λ) =
(
ψ(x,λ),ψ(x,λ)

)T ,
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of equation () satisfying the initial conditions

ϕ(a,λ) = λα′
 – α, ϕ(a,λ) = λα′

 – α,

ϕ(ξ,λ) = αϕ(ξ,λ), ϕ(ξ,λ) = (α + λ)ϕ(ξ,λ) + α–
 ϕ(ξ,λ), ()

ϕ(ξ,λ) = αϕ(ξ,λ), ϕ(ξ,λ) = (α + λ)ϕ(ξ,λ) + α–
 ϕ(ξ,λ),

and similarly

ψ(b,λ) = λγ ′
 + γ, ψ(b,λ) = λγ ′

 + γ,

ψ(ξ,λ) =
ψ(ξ,λ)

α
, ψ(ξ,λ) = αψ(ξ,λ) – (α + λ)ψ(ξ,λ), ()

ψ(ξ,λ) =
ψ(ξ,λ)

α
, ψ(ξ,λ) = αψ(ξ,λ) – (α + λ)ψ(ξ,λ),

respectively.
These solutions are entire functions of λ for each fixed x ∈ [a, b] and satisfy the relation

ψ(x,λn) = κnϕ(x,λn) for each eigenvalue λn, where

κn =
α′

ψ(a,λn) – α′
ψ(a,λn)

d
.

Lemma  T is a self-adjoint operator. Therefore, all eigenvalues and eigenfunctions of
the problem ()-() are real and the two eigenfunctions ϕ(x,λ) = (ϕ(x,λ),ϕ(x,λ))T and
ϕ(x,λ) = (ϕ(x,λ),ϕ(x,λ))T corresponding to different eigenvalues λ and λ are orthog-
onal in the sense of

ρ–(x)
∫ b

a

[
ϕ(x,λ)ϕ(x,λ) + ϕ(x,λ)ϕ(x,λ)

]
dx

+ αϕ(ξ – ,λ)ϕ(ξ – ,λ) + αϕ(ξ – ,λ)ϕ(ξ – ,λ)

+

d

(
α′

ϕ(a,λ) – α′
ϕ(a,λ)

)(
α′

ϕ(a,λ) – α′
ϕ(a,λ)

)

+


d

(
γ ′

ϕ(b,λ) – γ ′
ϕ(b,λ)

)(
γ ′

ϕ(b,λ) – γ ′
ϕ(b,λ)

)
= .

By the method of variation of parameters, integral equations in Lemmas ,  can be
obtained and with the help of these integral equations, we also have their asymptotic be-
haviors.

Lemma  The following integral equations and asymptotic behaviors hold:

ϕ(x,λ) = –
(
λα′

 – α
)

sinλρ(x – a) +
(
λα′

 – α
)

cosλρ(x – a)

+
∫ x

a

[
p(t) sinλρ(x – t) + q(t) cosλρ(x – t)

]
ρϕ(t,λ) dt

+
∫ x

a

[
q(t) sinλρ(x – t) + r(t) cosλρ(x – t)

]
ρϕ(t,λ) dt

= –
(
λα′

 – α
)

sinλρ(x – a) +
(
λα′

 – α
)

cosλρ(x – a) + o
(|λ|e| Imλ|(x–a)ρ

)
,
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ϕ(x,λ) =
(
λα′

 – α
)

cosλρ(x – a) +
(
λα′

 – α
)

sinλρ(x – a)

+
∫ x

a

[
–p(t) cosλρ(x – t) + q(t) sinλρ(x – t)

]
ρϕ(t,λ) dt

+
∫ x

a

[
–q(t) cosλρ(x – t) + r(t) sinλρ(x – t)

]
ρϕ(t,λ) dt

=
(
λα′

 – α
)

cosλρ(x – a) +
(
λα′

 – α
)

sinλρ(x – a) + o
(|λ|e| Imλ|(x–a)ρ

)
,

ϕ(x,λ) = αϕ(ξ,λ) cosλρ(x – ξ)

–
(

(α + λ)ϕ(ξ,λ) +

α

ϕ(ξ,λ)
)

sinλρ(x – ξ)

+
∫ x

ξ

[
p(t) sinλρ(x – t) + q(t) cosλρ(x – t)

]
ρϕ(t,λ) dt

+
∫ x

ξ

[
q(t) sinλρ(x – t) + r(t) cosλρ(x – t)

]
ρϕ(t,λ) dt

= (α + λ)
[(

λα′
 – α

)
sinλρ(ξ – a) sinλρ(x – ξ)

–
(
λα′

 – α
)

cosλρ(ξ – a) sinλρ(x – ξ)
]

+ o
(|λ|e| Imλ|((ξ–a)ρ+(x–ξ)ρ)),

ϕ(x,λ) = αϕ(ξ,λ) sinλρ(x – ξ)

+
(

(α + λ)ϕ(ξ,λ) +

α

ϕ(ξ,λ)
)

cosλρ(x – ξ)

+
∫ x

ξ

[
–p(t) cosλρ(x – t) + q(t) sinλρ(x – t)

]
ρϕ(t,λ) dt

+
∫ x

ξ

[
–q(t) cosλρ(x – t) + r(t) sinλρ(x – t)

]
ρϕ(t,λ) dt

= –(α + λ)
[(

λα′
 – α

)
sinλρ(ξ – a) cosλρ(x – ξ)

–
(
λα′

 – α
)

cosλρ(ξ – a) cosλρ(x – ξ)
]

+ o
(|λ|e| Imλ|((ξ–a)ρ+(x–ξ)ρ)),

ϕ(x,λ) = αϕ(ξ,λ) cosλρ(x – ξ)

–
(


α

ϕ(ξ,λ) + (α + λ)ϕ(ξ,λ)
)

sinλρ(x – ξ)

+
∫ x

ξ

[
p(t) sinλρ(x – t) + q(t) cosλρ(x – t)

]
ρϕ(t,λ) dt

+
∫ x

ξ

[
q(t) sinλρ(x – t) + r(t) cosλρ(x – t)

]
ρϕ(t,λ) dt

= (α + λ)(α + λ)
[
–
(
λα′

 – α
)

sinλρ(ξ – a) sinλρ(ξ – ξ)

+
(
λα′

 – α
)

cosλρ(ξ – a) sinλρ(ξ – ξ)
]

sinλρ(x – ξ)

+ o
(|λ|e| Imλ|((ξ–a)ρ+(ξ–ξ)ρ+(x–ξ)ρ)),

ϕ(x,λ) = αϕ(ξ,λ) sinλρ(x – ξ)

+
(


α

ϕ(ξ,λ) + (α + λ)ϕ(ξ,λ)
)

cosλρ(x – ξ)
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+
∫ x

ξ

[
–p(t) cosλρ(x – t) + q(t) sinλρ(x – t)

]
ρϕ(t,λ) dt

+
∫ x

ξ

[
–q(t) cosλρ(x – t) + r(t) sinλρ(x – t)

]
ρϕ(t,λ) dt

= –(α + λ)(α + λ)
[
–
(
λα′

 – α
)

sinλρ(ξ – a) sinλρ(ξ – ξ)

+
(
λα′

 – α
)

cosλρ(ξ – a) sinλρ(ξ – ξ)
]

cosλρ(x – ξ)

+ o
(|λ|e| Imλ|((ξ–a)ρ+(ξ–ξ)ρ+(x–ξ)ρ)).

Lemma  The following integral equations and asymptotic behaviors hold:

ψ(x,λ) =
(
λγ ′

 + γ
)

cosλρ(x – b) –
(
λγ ′

 + γ
)

sinλρ(x – b)

–
∫ b

x

[
p(t) sinλρ(x – t) + q(t) cosλρ(x – t)

]
ρψ(t,λ) dt

–
∫ b

x

[
q(t) sinλρ(x – t) + r(t) cosλρ(x – t)

]
ρψ(t,λ) dt

=
(
λγ ′

 + γ
)

cosλρ(x – b) –
(
λγ ′

 + γ
)

sinλρ(x – b) + o
(|λ|e| Imλ|(b–x)ρ

)
,

ψ(x,λ) =
(
λγ ′

 + γ
)

sinλρ(x – b) +
(
λγ ′

 + γ
)

cosλρ(x – b)

+
∫ b

x

[
p(t) cosλρ(x – t) – q(t) sinλρ(x – t)

]
ρψ(t,λ) dt

+
∫ b

x

[
q(t) cosλρ(x – t) – r(t) sinλρ(x – t)

]
ρψ(t,λ) dt

=
(
λγ ′

 + γ
)

sinλρ(x – b) +
(
λγ ′

 + γ
)

cosλρ(x – b) + o
(|λ|e| Imλ|(b–x)ρ

)
,

ψ(x,λ) =
[
(α + λ)ψ(ξ,λ) – αψ(ξ,λ)

]
sinλρ(x – ξ)

+

α

ψ(ξ,λ) cosλρ(x – ξ)

–
∫ ξ

x

[
p(t) sinλρ(x – t) + q(t) cosλρ(x – t)

]
ρψ(t,λ) dt

–
∫ ξ

x

[
q(t) sinλρ(x – t) + r(t) cosλρ(x – t)

]
ρψ(t,λ) dt

= (α + λ)
[(

λγ ′
 + γ

)
cosλρ(ξ – b) sinλρ(x – ξ)

–
(
λγ ′

 + γ
)

sinλρ(ξ – b) sinλρ(x – ξ)
]

+ o
(|λ|e| Imλ|((b–ξ)ρ+(ξ–x)ρ)),

ψ(x,λ) =
[
–(α + λ)ψ(ξ,λ) + αψ(ξ,λ)

]
cosλρ(x – ξ)

+

α

ψ(ξ,λ) sinλρ(x – ξ)

+
∫ ξ

x

[
p(t) cosλρ(x – t) – q(t) sinλρ(x – t)

]
ρψ(t,λ) dt

+
∫ ξ

x

[
q(t) cosλρ(x – t) – r(t) sinλρ(x – t)

]
ρψ(t,λ) dt

= –(α + λ)
[(

λγ ′
 + γ

)
cosλρ(ξ – b) cosλρ(x – ξ)
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–
(
λγ ′

 + γ
)

sinλρ(ξ – b) cosλρ(x – ξ)
]

+ o
(|λ|e| Imλ|((b–ξ)ρ+(ξ–x)ρ)),

ψ(x,λ) =
(
αψ(ξ,λ) – (α + λ)ψ(ξ,λ)

)
sinλρ(x – ξ)

–

α

ψ(ξ,λ) cosλρ(x – ξ)

–
∫ ξ

x

[
p(t) sinλρ(x – t) + q(t) cosλρ(x – t)

]
ρψ(t,λ) dt

–
∫ ξ

x

[
q(t) sinλρ(x – t) + r(t) cosλρ(x – t)

]
ρψ(t,λ) dt

= –(α + λ)(α + λ)
[(

λγ ′
 + γ

)
cosλρ(ξ – b)

–
(
λγ ′

 + γ
)

sinλρ(ξ – b)
]

sinλρ(ξ – ξ) sinλρ(x – ξ)

+ o
(|λ|e| Imλ|((b–ξ)ρ+(ξ–ξ)ρ+(ξ–x)ρ)),

ψ(x,λ) =
(
(α + λ)ψ(ξ,λ) – αψ(ξ,λ)

)
cosλρ(x – ξ)

–

α

ψ(ξ,λ) sinλρ(x – ξ)

+
∫ ξ

x

[
p(t) cosλρ(x – t) – q(t) sinλρ(x – t)

]
ρψ(t,λ) dt

+
∫ ξ

x

[
q(t) cosλρ(x – t) – r(t) sinλρ(x – t)

]
ρψ(t,λ) dt

= (α + λ)(α + λ)
[(

λγ ′
 + γ

)
cosλρ(ξ – b)

–
(
λγ ′

 + γ
)

sinλρ(ξ – b)
]

sinλρ(ξ – ξ) cosλρ(x – ξ)

+ o
(|λ|e| Imλ|((b–ξ)ρ+(ξ–ξ)ρ+(ξ–x)ρ)).

Denote

�i(λ) := W (ϕi,ψi, x) := ϕiψi – ϕiψi, x ∈ �i (i = , ),

which are independent of x ∈ �i and are entire functions such that � = [a, ξ), � =
(ξ, ξ), � = (ξ, b].

Let

�(λ) = �(λ) = W (ϕ,ψ , b) =
(
λγ ′

 + γ
)
ϕ(b,λ) –

(
λγ ′

 + γ
)
ϕ(b,λ) ()

and

μn := ρ–(x)
∫ b

a

[
ϕ

 (x,λn) + ϕ
 (x,λn)

]
dx

+ αϕ

 (ξ – ,λn) + αϕ


 (ξ – ,λn) +


d

(
α′

ϕ(a,λn) – α′
ϕ(a,λn)

)

+


d

(
γ ′

ϕ(b,λn) – γ ′
ϕ(b,λn)

). ()

The function �(λ) is called the characteristic function and numbers {μn}n∈Z are called
the normalizing constants of the problem ()-().
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Lemma  The following equality holds for each eigenvalue λn:

�̇(λn) = –κnμn.

Proof Since

ρ(x)ϕ′
(x,λn) + p(x)ϕ(x,λn) + q(x)ϕ(x,λn) = λnϕ(x,λn),

ρ(x)ψ ′
(x,λ) + p(x)ψ(x,λ) + q(x)ψ(x,λ) = λψ(x,λ),

and

–ρ(x)ϕ′
(x,λn) + q(x)ϕ(x,λn) + r(x)ϕ(x,λn) = λnϕ(x,λn),

–ρ(x)ψ ′
(x,λ) + q(x)ψ(x,λ) + r(x)ψ(x,λ) = λψ(x,λ),

we obtain

ϕ(x,λn)ψ(x,λ) – ϕ(x,λn)ψ(x,λ)
(∣
∣ξ
a +

∣
∣ξ
ξ

+
∣
∣b
ξ

)

= (λ – λn)ρ

∫ ξ

a

[
ψ(x,λ)ϕ(x,λn) + ψ(x,λ)ϕ(x,λn)

]
dx

+ (λ – λn)ρ

∫ ξ

ξ

[
ψ(x,λ)ϕ(x,λn) + ψ(x,λ)ϕ(x,λn)

]
dx

+ (λ – λn)ρ

∫ b

ξ

[
ψ(x,λ)ϕ(x,λn) + ψ(x,λ)ϕ(x,λn)

]
dx.

After adding and subtracting �(λ) on the left-hand side of the last equality and by using
the conditions ()-() one can obtain

�(λ) – (λ – λn)
(
α′

ψ(a,λ) – α′
ψ(a,λ)

)
+ (λ – λn)

(
γ ′

ϕ(b,λn) – γ ′
ϕ(b,λn)

)

+ α(λ – λn)ϕ(ξ – ,λn)ψ(ξ – ,λ) + α(λ – λn)ϕ(ξ – ,λn)ψ(ξ – ,λ)

= (λ – λn)ρ

∫ ξ

a

[
ψ(x,λ)ϕ(x,λn) + ψ(x,λ)ϕ(x,λn)

]
dx

+ (λ – λn)ρ

∫ ξ

ξ

[
ψ(x,λ)ϕ(x,λn) + ψ(x,λ)ϕ(x,λn)

]
dx

+ (λ – λn)ρ

∫ b

δ

[
ψ(x,λ)ϕ(x,λn) + ψ(x,λ)ϕ(x,λn)

]
dx,

or

�(λ)
λ – λn

= ρ

∫ ξ

a

[
ψ(x,λ)ϕ(x,λn) + ψ(x,λ)ϕ(x,λn)

]
dx

+ ρ

∫ ξ

ξ

[
ψ(x,λ)ϕ(x,λn) + ψ(x,λ)ϕ(x,λn)

]
dx

+ ρ
[
ψ(x,λ)ϕ(x,λn) + ψ(x,λ)ϕ(x,λn)

]
dx
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+
(α′

ψ(a,λ) – α′
ψ(a,λ))(α′

ϕ(a,λn) – α′
ϕ(a,λn))

d

+
(γ ′

ψ(b,λ) – γ ′
ψ(b,λ))(γ ′

ϕ(b,λn) – γ ′
ϕ(b,λn))

d

+ αϕ(ξ – ,λn)ψ(ξ – ,λ)

+ αϕ(ξ – ,λn)ψ(ξ – ,λ).

For λ → λn, –�̇(λn) = κnμn is obtained by using the equality ψ(x,λn) = κnϕ(x,λn)
and (). �

From Lemma , we see that �̇(λn) 
= . Thus, the eigenvalues of problem L are simple.

Lemma  (cf. []) Let {αi}p
i= be the set of real numbers satisfying the inequalities α >

· · · > αp– >  and {ai}p
i= be the set of complex numbers. If ap 
=  then the roots of the

equation eαλ + aeαλ + · · · + ap–eαp–λ + ap =  have the form

λn =
πni
α

+ �(n) (n = ,±, . . .),

where �(n) is a bounded sequence.

Now, from Lemma  and (), we can note that

�(λ) – �(λ) = o
(|λ|e| Imλ|((ξ–a)ρ+(ξ–ξ)ρ+(b–ξ)ρ)),

where

�(λ) = λ sinλρ(ξ – ξ)
[
γ ′

 sinλρ(b – ξ) + γ ′
 cosλρ(b – ξ)

]

× [
α′

 cosλρ(ξ – a) – α′
 sinλρ(ξ – a)

]
.

On the other hand, we can see non-zero roots, namely the λ
n of the equation �(λ) = 

are real and simple.
Furthermore, it can be proved by using Lemma  that

λ
n =

nπ

(ξ – a)ρ + (ξ – ξ)ρ + (b – ξ)ρ
+ �n, sup

n
|�n| < ∞, n = ,∓,∓, . . . . ()

Theorem  The eigenvalues {λn} which are located on the positive side of the real axis
satisfy the following asymptotic behavior:

λn = λ
n– + o(), n → ∞. ()

Proof Denote

Gn :=
{
λ :  ≤ Reλ ≤ λ

n – δ, | Imλ| ≤ λ
n – δ, n = , , , . . .

} ∪ {
λ : |λ| < δ

}
,

where δ is a sufficiently small number. The relations

∣
∣�(λ)

∣
∣ ≥ C|λ|e| Imλ|((ξ–a)ρ+(ξ–ξ)ρ+(b–ξ)ρ)
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and

�(λ) – �(λ) = o
(|λ|e| Im k|((ξ–a)ρ+(ξ–ξ)ρ+(b–ξ)ρ))

are valid for λ ∈ ∂Gn. Then, by Rouche’s theorem, we see that the number of zeros of �(λ)
coincides with the number of zeros of �(λ) in Gn, namely n +  zeros, λ,λ,λ, . . . ,λn+. In
the annulus between Gn and Gn+, �(λ) has accurately one zero, namely kn : kn = λ

n + δn,
for n ≥ . So, it follows that λn+ = kn. Applying Rouche’s theorem in ηε = {λ : |λ – λ

n| ≤
ε} for sufficiently small ε and sufficiently large n, we get δn = o(). Finally, we obtain the
asymptotic formula λn = λ

n– + o(). �

3 Construction of Green’s function
In this section, we get the resolvent of the boundary value problem ()-() for λ, not an
eigenvalue. Hence, we find the solution of the non-homogeneous differential equation

ρ(x)By′(x) + �(x)y(x) = λy(x) + f (x), x ∈ �, ()

which satisfies the conditions ()-().
We can find the general solution of homogeneous differential equation

ρ(x)By′(x) + �(x)y(x) = λy(x), x ∈ �,

in the form

U(x,λ) =

(
cϕ(x,λ) + cχ(x,λ)
cϕ(x,λ) + cχ(x,λ)

)

, [a, ξ),

U(x,λ) =

(
cϕ(x,λ) + cχ(x,λ)
cϕ(x,λ) + cχ(x,λ)

)

, (ξ, ξ),

U(x,λ) =

(
cϕ(x,λ) + cχ(x,λ)
cϕ(x,λ) + cχ(x,λ)

)

, (ξ, b],

where ci, i = ,  are arbitrary constants. By using the method of variation of parameters,
we shall investigate the general solution of the non-homogeneous linear differential equa-
tion () in the form

U(x,λ) =

(
c(x,λ)ϕ(x,λ) + c(x,λ)χ(x,λ)
c(x,λ)ϕ(x,λ) + c(x,λ)χ(x,λ)

)

, for x ∈ [a, ξ),

U(x,λ) =

(
c(x,λ)ϕ(x,λ) + c(x,λ)χ(x,λ)
c(x,λ)ϕ(x,λ) + c(x,λ)χ(x,λ)

)

, for x ∈ (ξ, ξ), ()

U(x,λ) =

(
c(x,λ)ϕ(x,λ) + c(x,λ)χ(x,λ)
c(x,λ)ϕ(x,λ) + c(x,λ)χ(x,λ)

)

, for x ∈ (ξ, b],

where the functions ci(x,λ) (i = -) satisfy the following linear system of equations:
(

c′
(x,λ)ϕ(x,λ) + c′

(x,λ)χ(x,λ) = f(x)
c′

(x,λ)ϕ(x,λ) + c′
(x,λ)χ(x,λ) = f(x)

)

, for x ∈ [a, ξ),
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(
c′

(x,λ)ϕ(x,λ) + c′
(x,λ)χ(x,λ) = f(x)

c′
(x,λ)ϕ(x,λ) + c′

(x,λ)χ(x,λ) = f(x)

)

, for x ∈ (ξ, ξ),

(
c′

(x,λ)ϕ(x,λ) + c′
(x,λ)χ(x,λ) = f(x)

c′
(x,λ)ϕ(x,λ) + c′

(x,λ)χ(x,λ) = f(x)

)

, for x ∈ (ξ, b].

Since λ is not an eigenvalue, each of the linear system of equations has a unique solution.
Thus,

∣
∣
∣
∣
ϕ(x,λ) χ(x,λ)
ϕ(x,λ) χ(x,λ)

∣
∣
∣
∣ 
= ,

∣
∣
∣
∣
ϕ(x,λ) χ(x,λ)
ϕ(x,λ) χ(x,λ)

∣
∣
∣
∣ 
= ,

and

∣
∣
∣
∣
ϕ(x,λ) χ(x,λ)
ϕ(x,λ) χ(x,λ)

∣
∣
∣
∣ 
= .

It is obvious that

c(x,λ) =


�(λ)

∫ ξ

x

(
χ(t,λ)f(t) – χ(t,λ)f(t)

)
dt + c,

c(x,λ) =


�(λ)

∫ x

a

(
ϕ(t,λ)f(t) – ϕ(t,λ)f(t)

)
dt + c,

c(x,λ) =


�(λ)

∫ ξ

x

(
χ(t,λ)f(t) – χ(t,λ)f(t)

)
dt + c,

c(x,λ) =


�(λ)

∫ x

ξ

(
ϕ(t,λ)f(t) – ϕ(t,λ)f(t)

)
dt + c,

c(x,λ) =


�(λ)

∫ b

x

(
χ(t,λ)f(t) – χ(t,λ)f(t)

)
dt + c,

c(x,λ) =


�(λ)

∫ x

ξ

(
ϕ(t,λ)f(t) – ϕ(t,λ)f(t)

)
dt + c,

where ci, i = ,  are arbitrary constants. Substituting these above expressions in (), then
we obtain the general solution of non-homogeneous linear differential equation () in the
form

for x ∈ [a, ξ), U(x,λ) =


�(λ)

∫ ξ

x

(
χ(t,λ)f(t) – χ(t,λ)f(t)

)
ϕ(x,λ) dt

+


�(λ)

∫ ξ

x

(
χ(t,λ)f(t) – χ(t,λ)f(t)

)
ϕ(x,λ) dt

+


�(λ)

∫ x

a

(
ϕ(t,λ)f(t) – ϕ(t,λ)f(t)

)
χ(x,λ) dt

+


�(λ)

∫ x

a

(
ϕ(t,λ)f(t) – ϕ(t,λ)f(t)

)
χ(x,λ) dt

+ cϕ(x,λ) + cχ(x,λ) + cϕ(x,λ) + cχ(x,λ),
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for x ∈ (ξ, ξ), U(x,λ) =


�(λ)

∫ ξ

x

(
χ(t,λ)f(t) – χ(t,λ)f(t)

)
ϕ(x,λ) dt

+


�(λ)

∫ ξ

x

(
χ(t,λ)f(t) – χ(t,λ)f(t)

)
ϕ(x,λ) dt

+


�(λ)

∫ x

ξ

(
ϕ(t,λ)f(t) – ϕ(t,λ)f(t)

)
χ(x,λ) dt

+


�(λ)

∫ x

ξ

(
ϕ(t,λ)f(t) – ϕ(t,λ)f(t)

)
χ(x,λ) dt

+ cϕ(x,λ) + cχ(x,λ) + cϕ(x,λ) + cχ(x,λ),

for x ∈ (ξ, b], U(x,λ) =


�(λ)

∫ b

x

(
χ(t,λ)f(t) – χ(t,λ)f(t)

)
ϕ(x,λ) dt

+


�(λ)

∫ b

x

(
χ(t,λ)f(t) – χ(t,λ)f(t)

)
ϕ(x,λ) dt

+


�(λ)

∫ x

ξ

(
ϕ(t,λ)f(t) – ϕ(t,λ)f(t)

)
χ(x,λ) dt

+


�(λ)

∫ x

ξ

(
ϕ(t,λ)f(t) – ϕ(t,λ)f(t)

)
χ(x,λ) dt

+ cϕ(x,λ) + cχ(x,λ) + cϕ(x,λ) + cχ(x,λ). ()

Therefore, we easily see that l(U) = –c�(λ), l(U) = c�(λ). Since �(λ) 
= , �(λ) 
=
, and from the boundary conditions ()-(), c = , and c = .

On the other hand, considering these results and transmission conditions ()-(), the
following linear equation system according to the variables c, c, c, and c is acquired:

–cϕ(ξ + ) + cϕ(ξ + ) + cχ(ξ + )

= –


�(λ)

∫ ξ

ξ

(
χ(t,λ)f(t) – χ(t,λ)f(t)

)
ϕ(ξ + ,λ) dt

+


�(λ)

∫ ξ

a

(
ϕ(t,λ)f(t) – ϕ(t,λ)f(t)

)
χ(ξ + ,λ) dt,

–cϕ(ξ + ) + cϕ(ξ + ) + cχ(ξ + )

= –


�(λ)

∫ ξ

ξ

(
χ(t,λ)f(t) – χ(t,λ)f(t)

)
ϕ(ξ + ,λ) dt

+


�(λ)

∫ ξ

a

(
ϕ(t,λ)f(t) – ϕ(t,λ)f(t)

)
χ(ξ + ,λ) dt,

–cϕ(ξ + ) – cχ(ξ + ) + cχ(ξ + )

= –


�(λ)

∫ b

ξ

(
χ(t,λ)f(t) – χ(t,λ)f(t)

)
ϕ(ξ + ,λ) dt

+


�(λ)

∫ ξ

ξ

(
ϕ(t,λ)f(t) – ϕ(t,λ)f(t)

)
χ(ξ + ,λ) dt,

–cϕ(ξ + ) – cχ(ξ + ) + cχ(ξ + )
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= –


�(λ)

∫ b

ξ

(
χ(t,λ)f(t) – χ(t,λ)f(t)

)
ϕ(ξ + ,λ) dt

+


�(λ)

∫ ξ

ξ

(
ϕ(t,λ)f(t) – ϕ(t,λ)f(t)

)
χ(ξ + ,λ) dt. ()

Recalling the definitions of the solutions ϕij(x,λ) and χij(x,λ) (i = , , j = , ), the following
relation is gotten for the determinant of this linear equation system:

∣
∣
∣
∣
∣
∣
∣
∣
∣

–ϕ(ξ + ) ϕ(ξ + ) χ(ξ + ) 
–ϕ(ξ + ) ϕ(ξ + ) χ(ξ + ) 

 –ϕ(ξ + ) –χ(ξ + ) χ(ξ + )
 –ϕ(ξ + ) –χ(ξ + ) χ(ξ + )

∣
∣
∣
∣
∣
∣
∣
∣
∣

= –�(λ)�(λ).

Since the above determinant is different from zero, the solution of () is unique. When
we solve system (), we obtain the following equality for the coefficients c, c, c, and c:

c =


�(λ)

∫ ξ

ξ

(
χ(t,λ)f(t) – χ(t,λ)f(t)

)
dt

+


�(λ)

∫ b

ξ

(
χ(t,λ)f(t) – χ(t,λ)f(t)

)
dt,

c =


�(λ)

∫ b

ξ

(
χ(t,λ)f(t) – χ(t,λ)f(t)

)
dt,

c =


�(λ)

∫ ξ

a

(
ϕ(t,λ)f(t) – ϕ(t,λ)f(t)

)
dt,

c =


�(λ)

∫ ξ

a

(
ϕ(t,λ)f(t) – ϕ(t,λ)f(t)

)
dt

+


�(λ)

∫ ξ

ξ

(
ϕ(t,λ)f(t) – ϕ(t,λ)f(t)

)
dt.

As a result, if we substitute the coefficients ci (i = , , , ) in (), then we get the resolvent
U(x,λ) as follows:

U(x,λ) =
χ (x,λ)
�i(λ)

∫ x

a
(fϕi – fϕi) dt +

ϕ(x,λ)
�i(λ)

∫ b

x
(fχi – fχi) dt, i = ,  ()

such that

ϕ(x,λ) =

⎧
⎪⎪⎨

⎪⎪⎩

( ϕ(x,λ)
ϕ(x,λ)

)
, x ∈ [a, ξ),

( ϕ(x,λ)
ϕ(x,λ)

)
, x ∈ (ξ, ξ),

( ϕ(x,λ)
ϕ(x,λ)

)
, x ∈ (ξ, b],

χ (x,λ) =

⎧
⎪⎪⎨

⎪⎪⎩

( χ(x,λ)
χ(x,λ)

)
, x ∈ [a, ξ),

( χ(x,λ)
χ(x,λ)

)
, x ∈ (ξ, ξ),

( χ(x,λ)
χ(x,λ)

)
, x ∈ (ξ, b].
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We can easily find the Green’s function from the resolvent () as follows:

G(x, t;λ) =

⎧
⎨

⎩

χ (x,λ)
�i(λ)

( –ϕi(x,λ)
ϕi(x,λ)

)T , a ≤ t ≤ x ≤ b, x 
= ξ, ξ, t 
= ξ, ξ,
ϕ(x,λ)
�i(λ)

( –χi(x,λ)
χi(x,λ)

)T , a ≤ t ≤ x ≤ b, x 
= ξ, ξ, t 
= ξ, ξ.

We can rewrite equation () in the following form:

U(x,λ) =
∫ b

a
G(x, t;λ)f (t) dt such that f (t) =

(
f(t)
f(t)

)

.

Now, we define the resolvent operator

R(T ,λ) := (T – λI)– : H → H.

It is easy to see that the operator equation (T – λI)Y = F , F ∈ H is equivalent to the
boundary value problem (), ()-() where λ is not an eigenvalue,

Y =
(
y(x), y(x), y, y, y, y

)T such that y = α′
y(a) – α′

y(a),

y = γ ′
 y(b) – γ ′

y(b), y = y(ξ – ), y = y(ξ – ) and

F =
(
f(x), f(x), z, z, z, z

)T where z = z = z = z = .

4 Inverse problems
In this section, we study the inverse problems for the reconstruction of boundary value
problem ()-() by the Weyl function and spectral data.

We consider the boundary value problem L̃ which has the same form as L but with
different coefficients �̃(x), α̃j, γ̃j, α̃′

j , γ̃ ′
j , j = , , such that

�̃(x) =

(
p̃(x) q(x)
q(x) r̃(x)

)

.

If a certain symbol σ denotes an object related to L, then the symbol σ̃ denotes the
corresponding object related to L̃.

Let �(x,λ) be a solution of equation () which satisfies the condition (λα′
 –α)�(a,λ) –

(λα′
 – α)�(a,λ) =  and the transmissions ()-().

Assume that the function φ(x,λ) = (φ(x,λ),φ(x,λ))T is the solution of equation () that
satisfies the conditions φ(a,λ) = d–

 α′
, φ(a,λ) = d–

 α′
 and the transmission conditions

()-().
Since W [ϕ,φ] = , the functions φ and ϕ are linearly independent. Therefore, the func-

tion ψ(x,λ) can be represented by

ψ(x,λ) = d–


(
α′

ψ(a,λ) – α′
ψ(a,λ)

)
ϕ(x,λ) + �(λ)φ(x,λ)

or

�(x,λ) =
ψ(x,λ)
�(λ)

= φ(x,λ) +
α′

ψ(a,λ) – α′
ψ(a,λ)

d�(λ)
ϕ(x,λ), ()
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which is called the Weyl solution, and

α′
ψ(a,λ) – α′

ψ(a,λ)
d�(λ)

= M(λ) = d–


(
α′

�(a,λ) – α′
�(a,λ)

)
()

is called the Weyl function.

Lemma  The following representation is true:

M(λ) =
∞∑

n=–∞


μn(λn – λ)

.

Proof The Weyl function M(λ) is a meromorphic function with respect to λ, which has
simple poles at λn. Therefore, we calculate

Re sλ=λn M(λ) =
α′

ψ(a,λn) – α′
ψ(a,λn)

d�̇(λn)
.

Since

κn =
α′

ψ(a,λn) – α′
ψ(a,λn)

d

and �̇(λn) = –κnμn,

Re sλ=λn M(λ) = –


μn
. ()

Let �n = {λ : |λ| ≤ |λo
n| + ε}, where ε is a sufficiently small number. Consider the contour

integral In(λ) = 
π i

∫

�n
M(μ)
μ–λ

dμ, λ ∈ int�n.

Since �(λ) ≥ Cδλ
e| Imλ|((ξ–a)ρ+(ξ–ξ)ρ+(b–ξ)ρ) and M(λ) = α′

ψ(a,λ)–α′
ψ(a,λ)

d�(λ) , |M(λ)| ≤
Cδ

|λ| for λ ∈ Fδ = {λ : |λ – λn| ≥ δ, n = ,±, . . .}, where δ is a sufficiently small number. Thus,
limn→∞ In(λ) = . Then the residue theorem yields

M(λ) =
∞∑

n=–∞


μn(λn – λ)

. �

Theorem  If M(λ) = M̃(λ), then L = L̃, i.e., �(x) = �̃(x), a.e. and αj = α̃j, γj = γ̃j, α′
j = α̃′

j ,
γ ′

j = γ̃ ′
j , j = , .

Proof We introduce a matrix P(x,λ) = [Pkj(x,λ)]k,j=, by the formula

P(x,λ)

(
ϕ̃ �̃

ϕ̃ �̃

)

=

(
ϕ �

ϕ �

)

()

or
(

P(x,λ) P(x,λ)
P(x,λ) P(x,λ)

)

=

(
ϕ�̃ – �ϕ̃ –ϕ�̃ + �ϕ̃

ϕ�̃ – ϕ̃� –ϕ�̃ + ϕ̃�

)

, ()
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where �(x,λ) = ψ(x,λ)
�(λ) and W (�̃, ϕ̃) = . Thus, we find

P(x,λ) = ϕ(x,λ)
ψ̃(x,λ)
�̃(x,λ)

–
ψ(x,λ)
�(λ)

ϕ̃(x,λ),

P(x,λ) = –ϕ(x,λ)
ψ̃(x,λ)
�̃(λ)

+
ψ(x,λ)
�(λ)

ϕ̃(x,λ),

P(x,λ) = ϕ(x,λ)
ψ̃(x,λ)
�̃(λ)

–
ψ(x,λ)
�(λ)

ϕ̃(x,λ),

P(x,λ) = –ϕ(x,λ)
ψ̃(x,λ)
�̃(λ)

+
ψ(x,λ)
�(λ)

ϕ̃(x,λ).

()

On the other hand, from (), we get

P(x,λ) = ϕ(x,λ)φ̃(x,λ) – ϕ̃(x,λ)φ(x,λ) +
(
M̃(λ) – M(λ)

)
ϕ(x,λ)ϕ̃(x,λ),

P(x,λ) = –ϕ(x,λ)φ̃(x,λ) + ϕ̃(x,λ)φ(x,λ) –
(
M̃(λ) – M(λ)

)
ϕ(x,λ)ϕ̃(x,λ),

P(x,λ) = ϕ(x,λ)φ̃(x,λ) – ϕ̃(x,λ)φ(x,λ) +
(
M̃(λ) – M(λ)

)
ϕ(x,λ)ϕ̃(x,λ),

P(x,λ) = –ϕ(x,λ)φ̃(x,λ) + ϕ̃(x,λ)φ(x,λ) –
(
M̃(λ) – M(λ)

)
ϕ̃(x,λ)ϕ(x,λ).

()

Thus, if M(λ) ≡ M̃(λ) then the functions Pij(x,λ) (i, j = , ) are entire in λ for each fixed x.
Moreover, since asymptotic behaviors of ϕi(x,λ), ϕ̃i(x,λ), ψi(x,λ), ψ̃i(x,λ), and |�(λ)| ≥
Cδ|λ|e| Imλ|((ξ–a)ρ+(ξ–ξ)ρ+(b–ξ)ρ) in Fδ ∩ F̃δ , we can easily see that the functions Pij(x,λ)
are bounded with respect to λ. As a result, these functions do not depend on λ. Here, we
denote F̃δ = {λ : |λ – λ̃n| ≥ δ, n = ,±,±, . . .} where n is sufficiently small number, λ̃n are
eigenvalues of the problem L̃.

From (), we get

P(x,λ) –  =
ψ̃(x,λ)(ϕ(x,λ) – ϕ̃(x,λ))

�̃(λ)
– ϕ̃(x,λ)

(
ψ(x,λ)
�(λ)

–
ψ̃(x,λ)
�̃(λ)

)

,

P(x,λ) =
ψ(x,λ)(ϕ̃(x,λ) – ϕ(x,λ))

�(λ)
+ ϕ(x,λ)

(
ψ(x,λ)
�(λ)

–
ψ̃(x,λ)
�̃(λ)

)

,

P(x,λ) = ϕ(x,λ)
(

ψ̃(x,λ)
�̃(λ)

–
ψ(x,λ)
�(λ)

)

+ ψ(x,λ)
(

ϕ(x,λ) – ϕ̃(x,λ)
�(λ)

)

,

P(x,λ) –  =
ψ(x,λ)(ϕ̃(x,λ) – ϕ(x,λ))

�(λ)
+ ϕ(x,λ)

(
ψ(x,λ)
�(λ)

–
ψ̃(x,λ)
�̃(λ)

)

.

It follows from the representations of the solutions ϕ(x,λ) and ψ(x,λ), that

lim
λ→∞

ψ̃(x,λ)(ϕ(x,λ) – ϕ̃(x,λ))
�̃(λ)

=  and lim
λ→∞ ϕ̃(x,λ)

(
ψ(x,λ)
�(λ)

–
ψ̃(x,λ)
�̃(λ)

)

= 

for all x in �. Thus, limλ→∞(P(x,λ) – ) =  is valid uniformly with respect to x. So we
have P(x,λ) ≡  and similarly P(x,λ) ≡ , P(x,λ) ≡ , P(x,λ) ≡ .

From (), we obtain ϕ(x,λ) ≡ ϕ̃(x,λ), � ≡ �̃, ϕ(x,λ) ≡ ϕ̃(x,λ), and � ≡ �̃ for all
x and λ. Moreover, from �(x,λ) = ψ(x,λ)

�(λ) , we get ψ(x,λ)
ψ(x,λ) = ψ̃(x,λ)

ψ̃(x,λ) . Hence, �(x) = �̃(x), i.e.,
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p(x) = p̃(x), r(x) = r̃(x) almost everywhere. On the other hand, since

(
ϕ(a,λ)
ϕ(a,λ)

)

=

(
λα′

 – α

λα′
 – α

)

,

(
ψ(b,λ)
ψ(b,λ)

)

=

(
λγ ′

 + γ

λγ ′
 + γ

)

,

we easily see that α′
 = α̃′

, α = α̃, α′
 = α̃′

, α = α̃, and γ ′
 = γ̃ ′

, γ = γ̃, γ ′
 = γ̃ ′

 , γ = γ̃.
Therefore, L ≡ L̃. �

Theorem  If λn = λ̃n and μn = μ̃n for all n, then L ≡ L̃, i.e., �(x) = �̃(x), a.e., αj = α̃j,
γi = γ̃i, α′

j = α̃′
j , γ ′

j = γ̃ ′
j , j = , . Hence, the problem ()-() is uniquely determined by the

spectral data {λn,μn}.

Proof If λn = λ̃n and μn = μ̃n for all n, then M(λ) = M̃(λ) by Lemma . Therefore, we get
L = L̃ by Theorem . �

Let us consider the boundary value problem L with the condition α′
y(a,λ)–α′

y(a,λ) =
 instead of the condition () in L. Let {τn}n∈Z be the eigenvalues of the problem L. It is
clear that the τn are zeros of �(τ ) := α′

ψ(a, τ ) – α′
ψ(a, τ ), which is the characteristic

function of L.

Theorem  If λn = λ̃n and τn = τ̃n for all n, then L(�,γi,γ ′
j ) = L(�̃, γ̃i, γ̃ ′

j ), j = , .
Hence, the problem L is uniquely determined by the sequences {λn} and {τn} except coef-

ficients αj and α′
j .

Proof Since the characteristic functions �(λ) and �(τ ) are entire of order , the functions
�(λ) and �(τ ) are uniquely determined up to a multiplicative constant with their zeros
by Hadamard’s factorization theorem [],

�(λ) = C
∞∏

n=–∞

(

 –
λ

λn

)

,

�(τ ) = C

∞∏

n=–∞

(

 –
τ

τn

)

,

where C and C are constants depending on {λn} and {τn}, respectively. When λn = λ̃n

and τn = τ̃n for all n, �(λ) ≡ �̃(λ) and �(τ ) ≡ �̃(τ ). Hence, α′
ψ(a, τ ) – α′

ψ(a, τ ) =
α̃′

ψ̃(a, τ ) – α̃′
ψ̃(a, τ ). As a result, we get M(λ) = M̃(λ) by (). So, the proof is completed

by Theorem . �
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