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Abstract
Conventional neurorehabilitation appears to have little impact on impairment over and above that
of spontaneous biological recovery. Robotic neurorehabilitation has the potential for a greater
impact on impairment due to easy deployment, its applicability across of a wide range of motor
impairment, its high measurement reliability, and the capacity to deliver high dosage and high
intensity training protocols.

We first describe current knowledge of the natural history of arm recovery after stroke and of
outcome prediction in individual patients. Rehabilitation strategies and outcome measures for
impairment versus function are compared. The topics of dosage, intensity, and time of rehabilitation
are then discussed.

Robots are particularly suitable for both rigorous testing and application of motor learning
principles to neurorehabilitation. Computational motor control and learning principles derived
from studies in healthy subjects are introduced in the context of robotic neurorehabilitation.
Particular attention is paid to the idea of context, task generalization and training schedule. The
assumptions that underlie the choice of both movement trajectory programmed into the robot and
the degree of active participation required by subjects are examined. We consider rehabilitation as
a general learning problem, and examine it from the perspective of theoretical learning frameworks
such as supervised and unsupervised learning. We discuss the limitations of current robotic
neurorehabilitation paradigms and suggest new research directions from the perspective of
computational motor learning.

Introduction
Every year in the United States, approximately 780,000
people suffer a new or recurrent stroke. The majority of
people survive, but with long-term disability[1]. In 1999,
more than 1.1 million American adults reported limita-
tions in activities of daily living (ADLs) as a result of
stroke. About 50% to 70% of stroke survivors regain func-
tional independence eventually. However, up to 30% are
permanently disabled with 20% requiring institutional

care 3 months post-stroke. Among ischemic stroke survi-
vors who were 65 years or older, 50% report some form of
hemiparesis and 30% were unable to walk without assist-
ance[1].

Hemiparesis is a blanket term that encompasses general
weakness, motor control abnormalities, and spasticity.
Given the prevalence of motor function loss in stroke sur-
vivors, it is surprising that in a 2005 survey of stroke sur-
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vivors in 21 states and the District of Columbia, only 31%
received outpatient rehabilitation[1]. Although advances
in stroke rehabilitation have traditionally lagged behind
those in acute stroke treatment and secondary prevention,
the development of robotics and other new rehabilitation
approaches indicate that this is changing. Robotic neu-
rorehabilitation is attractive because of its potential for
easy deployment, its applicability across of a wide range of
motor impairment, and its high measurement reliability.
Most importantly for the purposes of this review, robots
will allow more rigorous testing and application of motor
learning principles to neurorehabilitation. In this review
we begin by describing the general challenges facing post-
stroke rehabilitation, and then introduce motor learning
principles within the context of robotic neurorehabilita-
tion. We focus on rehabilitation on the upper limbs, but
draw on motor control and learning examples for the
lower limbs when instructive.

The challenges facing post-stroke rehabilitation
Ideally, the rehabilitation strategy for any given patient
would be planned based on a sound knowledge of what
the natural history of their recovery would be in the pres-
ence or even in the absence of standard rehabilitation
approaches. Unfortunately, we have not yet reached this
point. Extant data suggest that the time course of recovery
from hemiparesis after stroke varies considerably both
across recovery measures and across patients[2]. Several
critical questions arise when considering the time course
of motor recovery from the perspective of neurorehabili-
tation: Should the focus of rehabilitation treatment
depend on where in the time course of recovery a patient
is and not just on severity of impairment? For example, if
a patient has significant remaining impairment at 3
months should the emphasis then switch to compensa-
tory approaches, assuming recovery from impairment
reaches a plateau at approximately 3 months? Conversely;
should compensatory strategies not be emphasized early
after stroke because these might interfere with ongoing
recovery from impairment?[3]. Does intense rehabilita-
tion focused on impairment change the time course of
recovery itself, with continuation in improvement beyond
3 months? Another question concerns the degree of inter-
individual variability with respect to recovery – is the sit-
uation as heterogeneous as is assumed or are there pre-
dictable rules for recovery that apply to the majority of
patients, albeit with important exceptions? Finally, do
practice-related changes in the brain interact with sponta-
neous biological recovery in the first few months after
stroke, and, if so, are these effects of learning distinct from
those seen in the chronic phase?

Recovery from impairment versus functional compensation
When assessing the efficacy of rehabilitation interventions
it is important to distinguish between measurements of
impairment and measurements of functional perform-

ance. Functional tests assess task-specific improvements
such as grasping a wooden block or pouring water from
glass to glass. Examples of such scales include the Action
Research Arm Test (ARAT)[4,5], the Jebsen-Taylor Hand
Test[6], the Wolf Motor Function Test[7], and the 9 Hole
Peg Test[8]. Other scales such as the Functional Independ-
ence Measure (FIM)[9,10] and the Barthel Index (BI) [11-
13] measure the capacity of patients to perform activities
of daily living (ADLs). However, because compensatory
adjustments are possible in many everyday tasks (e.g,
moving the trunk to compensate for reduced movement
ability at the elbow and shoulder), an improvement meas-
ured with one of these scales will not necessarily reflect
true recovery[14]. The most common clinical scale used to
assess recovery from impairment is the Fugl-Meyer Motor
Assessment (FMA), which tests motor function, sensory
function, balance, the range of motion at joints and joint
pain[15,16]. The motor and balance sections of FMA are
most commonly reported in the literature. Multiple items
are rated on a 0-to-2 point scale in each portion. In the
motor portion, 66 possible points can be achieved with
the upper limb items and 34 points with the lower limb
items. The upper limb items rate the patient's ability to
retract, elevate, abduct, adduct, flex, and extend at the
shoulders, elbows, upper arms, forearms, wrists and fin-
gers. Importantly, the motor portion of the FMA is resist-
ant to compensatory strategies and has good inter-rater
and test-retest reliability[16]. While correlations between
functional and impairment scores [17-20] are quite good,
it is nevertheless important to choose the appropriate
measure when assessing the efficacy of an intervention.
Indeed it has been suggested that recent clinical trials may
have failed as a result of poor choices of outcome meas-
urements rather than a lack of efficacy of the therapeutic
agent[21]. Unfortunately, there are no standard proce-
dures for choice of outcome measures post-stroke, which
makes comparison between rehabilitation approaches
very difficult.

Current observations on the time course of recovery
Longitudinal studies on impairment recovery suggest that
only 33 to 70% of patients with stroke recover useful arm
ability, and initial paresis severity remains the best predic-
tor of arm function recovery 6 months [22-24]. However,
the observation that over 86% of the variance in impair-
ment at 6 months (as measured with the FMA) is
explained by impairment level at 30 days suggests that
rehabilitation has little impact on impairment in the
intervening 5 months[21]. Functional improvements
show a different time course. Arm function at 6 months
measured with BI is best predicted by functional improve-
ment in the first few weeks post stroke, with the first week
explaining 56% of the outcome variance[25,26]. It is
notable that functional ability at 6 months is not as well
predicted as impairment, which suggests that rehabilita-
tion in the intervening period has more impact on func-
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tion than it does on impairment, possibly due to a focus
on compensation strategies. Kwakkel and colleagues com-
pared the time course of recovery in patients who received
lower or upper limb rehabilitation with the time course in
control patients who had their arm and leg immobilized
with an air-splint for 30 minutes a day, 5 days per week for
20 weeks after stroke. [27,28]. At 6, 12 and 20 weeks post-
stroke, the BI, ARAT and walking ability (functional
ambulation categories) score were significantly better for
the arm-training and leg-training group than for the con-
trol patients. At 26 weeks, however, only the difference in
ARAT score remained significant. [26]. Thus, current reha-
bilitation programs appear to accelerate the rate of func-
tional recovery but not its final level [26]. The time course
of recovery beyond 6 months is not well characterized.
Kwakkel and colleagues showed that 10 to 30% of
patients showed further improvement or deterioration in
ADL measures[28]. More over, there appears to be a lim-
ited, early window during which rehabilitation has the
most long-term impact[26,27]. Ottenbacher and Janell
reviewed 36 trials and found that the effectiveness of reha-
bilitation diminishes with increasing delay to initiation of
therapy[29].

Variability in recovery and in response to rehabilitation
Scientific studies on human subjects often begin with the
premise that as the number of test subjects increases, the
distribution of the dependent variable approaches the
Gaussian distribution. With healthy subjects, movements
are usually stereotypical across subjects and studies,
allowing the number of subjects to be limited. The under-
lying assumption is that normal, healthy subjects operate
fairly similarly to each other in terms of planning and exe-
cution of movements. In contrast, for patient studies it is
assumed that there is large inter-individual variability
(broader Gaussian) in the capacity to recover [30]. We
recently challenged this widespread assumption. In a
study of 41 patients after first-time stroke, we found that
clinical predictors; age, gender, infarct location, imaged
infarct volume, time to reassessment, and acute upper
extremity FMA motor score, were only able to explain
47% of the variance in recovery (measured as change in
the FMA) at 3 months[30]. Interestingly, however, these
clinical variables could explain 89% of the variance if
some of the patients with severe initial impairment, iden-
tifiable as regression outliers, were excluded. Indeed, with
the "outlier" subpopulation excluded, there was a posi-
tive, proportional relationship between the increase in
FMA score after typical rehabilitation and maximal poten-
tial recovery (66 – initial FMA score). This study demon-
strated that much of the reported variability in recovery
after stroke results from the existence of sub-populations
of patients who respond differently to injury rather than
Gaussian-distributed inter-subject differences. Impor-
tantly, that so much variance in recovery at 3 months

could be accounted for by an initial measure of impair-
ment suggests that standard rehabilitation approaches in
the acute and subacute period have minimal impact on
impairment. Thus new approaches in the first three
months after stroke are sorely needed. It is possible that
the emphasis on compensatory strategies during acute
rehabilitation may interfere with attempts to rehabilitate
at the level of impairment[3]. It has been shown that func-
tional electrical stimulation given in the first two weeks or
over the first three months after stroke leads to improve-
ment on the FMA scale[31,32]. While well-controlled
clinical trials are currently lacking, it is possible that
robotic therapy during the acute and sub-acute phase of
stroke recovery could augment changes in impairment
driven by spontaneous biological recovery processes and
perhaps extend the impairment recovery period beyond
three months.

Less is known about the factors that determine variability
in response to therapy in patients with chronic stroke. If it
is true that the majority of patients recover proportionally
from impairment at three months and impairment
reaches a plateau at 3 months[21], then it can be specu-
lated that patients with chronic stroke who seek further
treatment are made up of two populations: those with
severe initial impairment who recovered to moderate lev-
els of impairment and those who remained severely
impaired[30]. Additional support for the idea that there
are two distinct populations of patients with chronic
stroke comes from the observation by Ferraro and col-
leagues that the amount of improvement in FMA after
robotic neurorehabilitation was larger in patients with
moderate impairment than in patients with severe impair-
ment[33]. Subsequent studies of robotic therapy in
patients with chronic stroke also report better results in
patients with some degree of residual function before
beginning therapy [34-36]. However, it remains unclear
what the optimal training method is, or what the optimal
training regimen should be, or even whether all patients
with chronic stroke can benefit from additional rehabili-
tation training.

The promise of robotics
Robots provide both movement controllability and meas-
urement reliability, which makes them ideal instruments
to help neurologists and therapists address the challenges
facing neurorehabilitation. In a recent review, Riener
examined technical differences between several robotic
devices[37]. These devices take the form of either an actu-
ated robotic arm (i.e., a manipulandum) or joystick, or an
actuated robotic suit that encloses the affected limb like
an exoskeletal frame. The robots have sensors that record
movement data such as position, velocity and joint tor-
ques. The robots also have actuators the enable them to
move the subject's limb.
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Robots allow for more precise measurement, in terms of
movement kinematics and dynamics, of both initial
impairment and of impairment changes in response to
treatment. Not only does this measurement capability vir-
tually eliminate the effect of inter-rater differences on out-
come assessments, but also allows a biomechanical
model to be used to perform inverse dynamic analysis on
movement data to compute forces at joints[38]. Analo-
gous to musical scores, some motor control studies have
suggested that movements are planned as the combina-
tion of a relatively small number of muscle co-contraction
patterns called synergies [39,40]. Component analysis
techniques can be applied to both identify these patterns
and observe any changes after rehabilitation training[41].
Stochastic perturbation (e.g., small random kicks) can be
applied to the limb to estimate its impedance and control
using system identification techniques[42,43].

Unlike conventional therapy, robotic manipulanda or
exoskeletons can deliver training at a much higher dosage
(i.e., number of practice movements) and/or intensity
(i.e., number of movements per unit time) with hundreds
if not thousands of repetitions in a single session. This
dosage per unit time may be a critical factor in rehabilita-
tion as animal data show that changes in synapse density
in primary motor cortex occurs after 400 reaches but not
60[44,45].

Robotic neurorehabilitation studies have generally
reported beneficial effects on impairment measures but
have not proven effective with respect to functional out-
comes. In a systematic review of eight robotic neuroreha-
bilitation trials, Prange and colleagues concluded that
robotic therapies led to long-term improvement in motor
control by increasing speed, muscle activation patterns
and movement selection, although no consistent benefit
was found with ADL measures (e.g., FIM)[46]. In another
systematic review of robotic neurorehabilitation, Kwakkel
and colleagues also concluded that ADLs (e.g., FIM) did
not significantly improve despite obvious improvement
in impairment (e.g., FMA)[47]. One reason for these out-
come measure-dependent results may be that functional
assessment scales such as FIM are insensitive to improved
performance at the level of impairment in the affected
limb because they focus on the level of compensation.
Conversely, increases in movement range and force as
assessed by FMA may not have real-life relevance if they
do not translate to an improvement in ADLs [34,48]. It
may be necessary to employ more challenging impair-
ment scales without the ceiling effect of the FMA[16] to
improve correlations with functional scales. One such
impairment scale, the Motor Status Score (MSS)[49],
builds on the FMA and features more finely graded assess-
ments over a larger range of upper limb motion. We spec-
ulate, however, that what is needed to see improvement in

ADL measures is subsequent intense training in everyday
tasks once impairment has been reduced to a specific
level. This serial approach (i.e., focus on impairment first
and then on function) might address the apparent para-
dox of a parallel dissociation between impairment and
functional measures after a particular rehabilitative treat-
ment. Finally, robotic neurorehabilitation has shown a
beneficial effect on recovery from impairment in patients
with chronic stroke [33,50]. These results are exciting
because they imply that the 3 month impairment plateau
may not represent an absolute upper limit.

Besides their applicability to rehabilitation, robots have
also been used extensively to study motor learning in
healthy subjects. The basic paradigm is to introduce a
force perturbation that induces large trajectory errors to
which the subjects must then adapt. This approach has
allowed scientists to test several hypotheses about the
computational mechanisms of motor control and motor
learning[51]. However, relatively little attention has been
paid to these basic science results in the rehabilitation lit-
erature. These results and their underlying principles,
however, are likely to help us understand why robotic
neurorehabilitation may be effective and what can be
done to improve existing protocols.

Robotic neurorehabilitation and computational motor 
learning principles
Motor control scientists define motor learning loosely,
considering it a fuzzy term that encompasses motor adap-
tation, skill acquisition, and decision making[51]. Neu-
rorehabilitation is based on two basic assumptions: that
motor learning principles apply to motor recovery and
that patients can learn. Robots provide the means to
quantitatively test these two assumptions.

One of the fundamental principles of motor learning can
be succinctly summarized by a cliché – practice makes per-
fect. Better performance is correlated with the time and
amount of practice devoted to learning a particular
skill[52]. In a systematic review on the role of intensity of
practice on stroke rehabilitation, it was concluded that
there is a dose-dependent relationship between acute and
sub-acute post-stroke therapy and outcome[53]. The same
review also concluded that training intensity did not have
a significant impact on the outcome in patients with
chronic stroke although it was noted that the number of
well controlled trials (3) was low. Pilot studies in which
the intensity of robotic neurorehabilitation was matched
to the low dosage of conventional therapy did not find
extra benefit for the robot [54], which strongly suggests
that the benefits of robotic therapy come from the ability
to deliver, through automated administration, therapy at
dosages higher than is possible with conventional ther-
apy.
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Motor adaptation, internal models, and after-effects
Motor adaptation is a learner's reaction to a change in the
environment. Empirically, it refers to a learner's incremen-
tal return to baseline performance in response to an envi-
ronmental perturbation that causes performance errors.
For example, a pair of eye glasses has the effect of magni-
fying or shrinking the visual field. Therefore there is a mis-
alignment between the learner's sense of object position
in visual space and body position in proprioceptive space.
Often with a new pair of glasses, people feel disoriented.
If the learner's vision is distorted by the glasses, when he
reaches for a target he will miss it. Motor adaptation
occurs when he learns from the visual error to realign his
planned trajectory. Another example of motor adaptation
is walking in waist-high water. Since the viscosity of the
water causes resistance to motion, a person must adapt to
this novel environment and produce more force to over-
come the resistance to make the same movement that he
could make on land[55].

An experimental situation that induces motor adaptation
has the learner hold the end of a planar robotic arm and
make reaching movements while the robot produces a
perturbation force (force field) that scales with movement
velocity and deflects the reach sideways[56]. A key finding
of motor adaptation studies in healthy subjects is that
when the environmental alteration is removed (e.g.,
switching off the force field) the learner's adapted state
temporarily persists as if the environment was still in the
last altered state. That is, subjects make a movement based
on the prediction that the environment will be the same
as they last experienced it. This motor after-effect demon-
strates that the learner does not merely react to environ-
mental changes but also anticipates the expected
dynamics of the new environment and moves according
to a new set of expectations. Therefore, motor adaptation
appears to rely on an update in the internal representation
(internal model) of the external environment.

Do patients with stroke adapt in the same way as healthy
subjects? When making movements in a dynamically
changing environment, healthy subjects make adaptive
compensatory adjustments, partially countering the envi-
ronmental changes. Healthy people make these adjust-
ments on a movement-to-movement basis based on a
short history of prior movements; with the largest weight
placed on the latest movement[57,58]. Scheidt and
Stoeckmann used the MIT-Manus to compare force field
adaptation in post-stroke and healthy subjects. They
found that the compensatory strategy utilized by the post-
stroke group was the same as the healthy group but the
influence of the movement error from trial n on trial n+1
was lower in patients with stroke[59]. These data imply
that patients can indeed adapt in the same way as healthy
subjects, even though it may take more practice trials.

The fact that patients can adapt to novel force fields sug-
gests that it may be possible to manipulate the training
environment so that after-effects resemble normal move-
ments. Indeed, in a simple reaching task with a robotic
arm, Patton and colleagues used force fields to exaggerate
patients' baseline movement errors, which resulted in
after-effects that resembled more normal move-
ments[60,61]. Reisman and colleagues used the fact that
after-effects are a general phenomenon and are not lim-
ited to upper limb movements in a split-belt treadmill
study of thirteen patients with chronic hemiparesis who
showed asymmetry in inter-limb co-ordination during
normal over ground walking[62]. In the experiment, one
belt sped up and the other slowed down. Healthy subjects
adapted to this speed differential by making longer strides
on the fast belt and shorter strides on the slow belt and
showed after-effects when the change of belt speed was
gradual. Analogous to the Patton study described above,
patients exhibited after-effects that transiently improved
the symmetry of their gait pattern.

Distinction between motor adaptation and skill learning
The improved movement patterns present as after-effects
are evidence that some patients with stroke have the phys-
ical capacity to perform desired movements. However, as
promising as it initially seems, error-induced after-effects
are short-lived: In the arm reaching study, after-effects
lasted for 30 to 60 movements (about 2 to 4 minutes)
after 600 training movements (about 40 minutes)[60]. In
the gait asymmetry study, after effects lasted for approxi-
mately 50 strides, after approximately 120 training
strides[62].

Why do patients not arrive at the desired after-effect pat-
terns on their own? It is possible that motor adaptation
may be distinct from motor skill learning (e.g. learning to
tie shoe laces, playing tennis). In motor adaptation tasks,
people seem to understand how to make the intended
movement but do not know how much movement to
make. Skill learning, however, is more about learning
how to make the intended movement in the first place. To
illustrate this idea, imagine a hierarchy of movement con-
trol for an arbitrary skill. On the top level is the control
policy that describes the skill requirement. One level
down is the adaptive mechanism to compensate for
changes in the operating condition of the skill task. At the
lowest level is the spinal reflex control of movements.
When there is a change in the operating condition (but
the intended skill stays the same), the middle level of con-
trol compensates in order to fulfill the desired outcome of
the top level control, i.e., motor adaptation. Now suppose
there are two parallel hierarchies for two different skills, A
and B. We perturb the operating conditions in B such that
the resultant compensated movement plan for B overlaps
with that of skill A without perturbation. It appears now
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that the learner is performing skill A very well. However,
the motor plan generated by hierarchy B is for the control
requirements of skill B, not A. Under this hypothetical
motor learning architecture, it is not sufficient for patients
with stroke to substitute appropriate skill control with
after-effects of another skill. To truly perform skill A well
in all operating conditions, the learner must acquire the
top level control of A. If this hypothetical architecture is
true, then patients will require extended training to
acquire the highest level of control. With a high dosage of
practice, robotic devices may increase the chance of
patients re-discovering the appropriate skill and retaining
it in the long term. Whereas motor adaptation, although
quick, is rapidly forgotten.

End-effector versus exoskeletal robotic systems
Current upper-limb systems can be broadly grouped into
two types: end-effector (e.g., MIT/IMT-Manus, MIME,
GENTLE/s) and exoskeleton (e.g., ARMin, Pneu-WREX,
RUPERT, REHAROB)[37,63-67]. With end-effector sys-
tems, subjects hold a manipulandum that experiences
robot-imposed forces. All the forces and measurements
are thus at a single interface, which has the advantage of
easy set-up for patients of different body sizes. An analysis
of three studies that used different kinds of end-effector
system (MIT-Manus, ARM Guide, MIME) did not show a
significant difference with respect to ADL measures (i.e.,
FIM score)[47]. However, comparisons at the level of
impairment have not been made, nor between training in
2 versus 3 dimensions.

With exoskeletal systems, the limb is enclosed in an actu-
ated robotic suit, which conforms to the configuration of
the limb. While a subject's limb can be constrained with
an end-effector system to specify one limb configuration
(e.g., ARM Guide), the mechanical flexibility of the
exoskeletal type allows full specification of limb configu-
ration and for forces to be applied and measured inde-
pendently at each joint. Exokeletal systems have the
advantage that forces can be applied and measured inde-
pendently at each joint. To date no studies have directly
compared the two types of robotic system of system but
differences can be expected based on motor control prin-
ciples.

Generalization of learning within and across task contexts
An important question to ask is how much learning of
one movement generalizes to another. For example, will
skill at tennis generalize to skill at table tennis? From a
computational perspective, full generalization could be
considered the situation in which the relevant control
parameters are common across two tasks and just their
values need to be adjusted. This question has begun to be
addressed formally in studies using adaptation paradigms
(e.g, force field and rotation adaptation), which indicate

that generalization can occur, to varying degrees, across
the workspace, limb configurations, effectors, and tasks.

To test whether healthy subjects can generalize across the
workspace within a given task context, we asked subjects
to adapt to a rotation in a single direction centered on the
hand. Typically in a visual rotation paradigm, visual feed-
back is rotated and set at a single angular offset at the
beginning of the adaptation phase. Thus a misalignment
between vision and the planned movement trajectory is
introduced. Adaptation generalized to the same move-
ment direction but with a new arm configuration[68].
Similarly, Baraduc and Wolpert asked healthy subjects to
reach and point to a target from the same starting point
using their index fingers but with different initial arm con-
figurations. As we found, adaptation generalized across
different arm configurations[69]. The implication of these
results is that full specification of arm configuration in
robotic therapy may not always be necessary. In our visual
rotation study, we also tested for generalization across
movement directions. We found that generalization fell to
zero as the angular difference between the trained and the
tested direction extended beyond 45 degrees[68]. Similar
results have also been observed in reaching studies with
force perturbations[70,71]. Taken together, these studies
suggest that within-task generalization is broad in limb
configuration space, and narrow in the visual space. In
robotic neurorehabilitation, therefore, it may be impor-
tant to train patients across several movement directions
to fully learn a task.

Motor adaptation can also show varying degrees of gener-
alization from one body part to another (i.e., effector). In
a series of studies, Sainburg and colleagues found that
training with clock-wise perturbations of dynamics in one
arm can generalize to the other arm with counter-clock-
wise perturbations [72-75]. Similarly, Cricimagna-Hem-
minger and colleagues found that adaptation to force
perturbation can transfer across upper limbs, but only
from the dominant to the non-dominant arm[76]. For
within-limb generalization, we found that adaptation to a
visuomotor rotation during planar arm movements with
the arm and shoulder transfers to movements of the wrist,
but not vice versa[77]. Furthermore, prior wrist training
with the visual feedback rotation blocked this transfer.
These data suggest that generalization of motor adapta-
tion depends on the effector, and the history of training in
particular effector contexts.

How is context assigned in motor adaptation? This an
open question; however, there is evidence that such
assignment is dependent on how training is given. Let us
re-consider the split-belt treadmill experiment introduced
earlier. The gradualness of the change in the belt speed
was important. When the belt speed was changed sud-
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denly, both healthy subjects and patients with stroke did
not exhibit after-effects[62]. Similarly, an incremental
introduction of a visuomotor rotation promotes greater
adaptation[78]. It has also been shown that the gradual
adaptation procedure not only promotes larger and
longer-lasting after-effects, it also induces inter-limb
transfer[79,80]. Prism after-effects ordinarily only last for
minutes in healthy subjects, but Rossetti and colleagues
noted that after-effects in patients with neglect were signif-
icantly larger and lasted up to two hours[81]. It has been
proposed that there may be multiple, concurrent proc-
esses that optimally adapt to environment changes on dif-
ferent time-scales[82,83]. When changes are sudden (e.g.,
holding a hammer), the learner's adaptation is reactive: it
forms quickly at the first instance of the environmental
change but also quickly fades away when the environment
returns to baseline. When environmental changes are
slow (e.g., growth of the body, chronic illness), the
learner's adaptation is slow, but also more persistent. It
has been suggested that the longer lasting after-effects,
seen in patients with neglect and in subjects after incre-
mental adaptation, arise because in both cases subjects are
unaware of the external perturbation and so attribute
errors as self-generated [79,84]. Thus gradual training may
be a viable method to bias patients' attribution of error to
self, and thereby prolong retention of adaptation.

Successful rehabilitation also requires that training gener-
alize beyond the trained task. For example, training on
task A at a rehabilitation center must lead to improvement
at home in performance not just for task A but also gener-
alize to similar but untrained tasks B, C, and D. In this
case, the context is specified at the task level. It remains
unclear whether results about generalization in healthy
subjects using adaptation paradigms can inform with
regard to generalization across task contexts for patients.
One concern is that in adaptation paradigms the task goal
is always the same – get the displayed cursor in the target.
In contrast, learning to hold a cup may not make you turn
a doorknob better. Similarly for gait, successful stationary
walking patterns on the treadmill need to generalize to
kinetic walking on the ground. Thus generalization results
and concepts derived from adaptation experiments may
not apply to skill and rehabilitation. This issue is critical
for robotic neurorehabilitation, because it originated
from adaptation studies, and because the robot itself can
be seen as a tool external to the patient. There is evidence
that suggests that monkeys, and likely humans, distin-
guish between body and object context. Graziano and col-
leagues showed that there are neurons in posterior
parietal cortex sensitive to the visual position of the mon-
key's own arm and a fake arm prepared by a taxidermist,
but not a similarly shaped rectangular box or an attended
fruit[85]. Therefore the key question in rehabilitation
using a robot is, do patients learn to adapt to a novel tool,
or do they truly re-learn the control of their own arm?

Takahashi and colleagues found that improvements in
grasp brought about through repetitive rehearsals with a
robotic exoskeleton, did not generalize to improvements
in supination/pronation of the hand despite an overall
increase in motor gains in the proximal arm[86]. Simi-
larly, Hidler, Hornby and colleagues found that robot-
assisted locomotor training was not better than conven-
tional therapy for patients with sub-acute[87] and chronic
stroke[88]. One reason that skill generalization was not
seen in the studies above, is that, analogous to the gradual
versus abrupt adaptation studies mentioned previ-
ously[80], patients may have learned to associate training-
related changes with the robot rather than with their own
body. Shadmehr and Krakauer have recently suggested in
a review of lesion studies that the function of the cerebel-
lum is system identification to facilitate error-driven
motor adaptation[89,90] but that other anatomical
regions are needed to form sensory beliefs, calculate the
cost and rewards of actions, and compute control policies.
Adaptation alone may not be sufficient because skill
learning is likely to require all of these computations.

Effects of training schedule on motor learning
Varying training schedules may also have a positive effect
on rehabilitation. It is known that when training sessions
are temporally distributed over a period of time, the reten-
tion of performance is better than if the training sessions
are massed together[91,92]. It is postulated that the min-
utes and hours between training sessions may allow con-
solidation of motor memories [93-97]. More recently, it
has been shown that intervals between movements, even
of a few seconds, can benefit motor learning by promot-
ing spatial generalization on a trial-to-trial basis[98].
Robot rehabilitation is an ideal vehicle for automated
delivery of pre-specified training schedules.

Training is only meaningful if the acquired motor skill is
retained beyond the training sessions. A motor learning
principle related to scheduling and retention of learned
motor skills is contextual interference. Instead of training
on only one task per session, mixing several tasks in one
session has been shown to produce better retention.
Indeed, this is even the case when the performance of an
individual skill is better at the end of a block during which
it is the sole skill practiced. Shea and Morgan asked
healthy subjects to practice three different punching
styles, and tested their performance at 10 minutes and at
10 days after training. They found that people who inter-
mixed trainings retained their learned skill better than
those who practiced one punch style at a time[99]. Similar
results on the acquisition and retention of motor skills
were demonstrated in basketball shooting[100] and in
functional movement learning after stroke[101,102]. It is
suggested that an inter-mixed schedule may aid learning
because the variability in training skills promotes the
learning of each individual skill as part of an overall prob-
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lem to be solved, the brain solves a problem in each trial
rather than just replaying a movement from memory.

Degree of subject participation in robotic training
The most common robot rehabilitation protocols
employed to date involve one or a combination of the fol-
lowing: 1) the robot initiates the movement and produces
an assistive force to push the subject's arm with a pre-
defined trajectory and speed; 2) the subject initiates the
movement but the robot then produces an assistive force;
3) the subject initiates and pushes the robot to an
intended target while the robot provide a resistive force;
4) the subject initiates and pushes the robot to an
intended target; the robot only corrects if the movement is
off course or too slow. Most studies have not distin-
guished the effects of the these protocols since partici-
pants usually receive a mixture of the three either as a fixed
paradigm or at the discretion of the study therapist[46].
Attempts to determine the relative efficacy of these proto-
cols have been inconclusive [103,104].

These protocols can be implemented with an impedance
controller (e.g., IMT-Manus) or an admittance controller
(e.g., GENTLE/S). To visualize how an impedance control-
ler works, imagine a ball-bearing representing hand posi-
tion at the bottom of a symmetrical concave well. The
slope of the well wall provides the impedance that keeps
the bearing at the center of the well. If the slope becomes
steeper (i.e., higher stiffness) in one direction +x (i.e.,
higher stiffness) and flat (i.e., zero stiffness) in the oppo-
site direction -x, the bearing will move toward the -x direc-
tion. The shapes of the well can be modified such that the
bearing encounters a low level of impedance in the direc-
tion of desired trajectory and a high level of impedance in
any other direction. In engineering terms, the impedance
controller reacts to a displacement with a restoring force.
With an admittance controller, the system measures the
amount of the push by the subject, and reacts with a dis-
placement. In engineering terms, the admittance control-
ler reacts to a force with a restoring displacement. Thus,
the impedance controller has a high gain simulating a stiff
wall, and a 0 gain simulating free air; the admittance con-
troller has a high gain simulating free air, and a 0 gain
simulating a stiff wall. An overly high gain can lead to
over-compensation and oscillations of the robot when
there is a small difference between the actual system state
and the desired state.

The haptic interface between human and the robot may
promote different motor control strategies. The choice of
a particular motor control strategy may depend on an
innate cost function that weights rewards (e.g., speed,
accuracy) and costs (e.g., pain, effort)[105,106]. For
example, the patient's may not even be able initiate move-
ment without assistive force. On the other hand, the
patient may exert less force when he or she knows the

rehabilitating robot will provide assistance. To answer
this, imagine that over the course of a movement, the
patient's motor controller produces a continuously mod-
ulated motor command. Reinkensmeyer and colleagues
hypothesized that the continuous output of the patient's
motor controller is reduced by an amount proportional to
the controller's previous output[107]. In other words, the
human real-time motor controller has memory. As a
result, patients' force output exponentially decays over the
course of a movement allowing the initial momentum to
carry over into the later phase of movement, and the
robot's memory-less assistive force controller takes over
the performance. By adding memory to the robot control-
ler (via the addition of a slack term that depends on the
previous robot output), they found they could increase
the patients' share of load, therefore increase their active
participation in the movement exercise.

Desired movements
What exactly are patients learning with robotic neuroreha-
bilitation? To begin to answer this question, it is useful to
borrow ideas from machine learning. The field of
machine learning examines the effectiveness of training
algorithms. One type of learning algorithm is called
supervised learning, in which the learning agent is given
pre-determined training examples with their correspond-
ing desired solutions. The learning agent is provided with
an algorithm to generate a function that maps the training
inputs to the provided desired outputs. In the implemen-
tation of many robot rehabilitation systems, patients
undergo supervised learning as the desired trajectories are
pre-determined. The control software of the robot then
attempts to minimize the spatiotemporal difference
between the actual position of the affected limb and the
desired trajectory.

How are desired trajectories determined? Early motor con-
trol studies provide clues. In the 1980s, motor control sci-
entists debated whether reach plans were encoded in joint
coordinates (joint angles at the shoulders and elbows) or
visual coordinates (i.e., Cartesian coordinates centered on
the eyes, head or hand). The latter is suggested by studies
showing that natural arm movements are quite stereo-
typed across the population: hand paths are straight and
the velocity profiles are smooth and bell-shaped [108],
even in congenitally blind people[109]. Hogan and Flash
[110] found that they could mathematically represent the
smoothness of hand motion by the solution function that
minimizes the third time derivative of position (i.e, jerk).
The minimum jerk trajectory is attractive because it only
requires one to know the length and desired duration of a
movement to completely describe the trajectory with an
analytic function of time. Systems such as the IMT-Manus
and the ARM Guide are programmed with the minimum-
jerk trajectory[111,112].
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The applicability of the smooth path described by the
minimum-jerk trajectory is, however, limited when we
consider the complexity of most ADLs, for example,
reaching for an object around an obstacle. In fact, depend-
ing on the goal of the reach, the hand trajectory may not
conform to that of the minimum jerk trajectory. Nathan
and Johnson examined functionally oriented reach-to-
grasp movements with different objects[113]. In the
study, subjects were asked to reach for a comb, retrieve the
comb, brush twice, and return the comb. They found that
the reaching portion of the movements were significantly
different from minimum jerk predictions.

One reason for this deviation from minimum-jerk trajec-
tory is that additional goal-dependent criteria also need to
be met for any given movement. Optimal feedback con-
trol theories formally address this idea. Under the optimal
control scheme, there is a cost function that includes task-
relevant parameters such as the goal of the movement, the
need to avoid obstacles and the effort required [114]. The
notion of optimal feedback control also means that peo-
ple do not adapt by simply trying to cancel out perturba-
tions in the environment in order to arrive back at a pre-
perturbation desired trajectory. Rather, adaptation is a re-
optimization process that plans a new desired trajectory
based on the new environment[115].

In addition to minimum-jerk and optimal feedback con-
trol trajectories, other smoothness criteria have also been
used. For example, the NeReBot system uses cubic-spline
interpolation of pre-defined steps of arm configurations
to obtain a smooth desired trajectory[116]. Another strat-
egy to implement a reference trajectory is to derive it from
the movement of the unaffected arm accomplishing the
same goal. The Mirror Image Movement Enabler (MIME)
system is a 6-degree-of-freedom industrial end-effector
type robot that allows for uni- and bi-manual movements
that employs this strategy as one of its possible operating
protocols[50]. However, the MIME pilot study employed
multiple operating protocols concurrently so it is not clear
whether the protocol is better than the others. In sum-
mary, a critical and as-of-yet unresolved question with
regard to training trajectory is whether the therapist
should choose an invariant optimal trajectory (e.g., as
seen in healthy subjects or the unaffected arm) or assume
an invariant cost function and allow for trajectory re-opti-
mization.

Training away compensation
One reason that patients develop compensatory strategies
to accomplish functional tasks is that these strategies were
perhaps indeed optimal for their level of impairment in
the sub-acute period. However, compensatory strategies
can become a habit that is hard to break if brain function
recovers to a point where a more normal movement

would be attainable with practice. In other words, a
patient's performance may become stuck in a local opti-
mum. It may be possible to change the environmental
condition for the learner such that the local optimum dis-
appears and thereby encourages exploration for the global
optimum. A very simple example of this is provided by
constrained-induced movement therapy (CIMT). In
CIMT, the non-affected arm is constrained, therefore a
local minimum, use of the unaffected arm, is eliminated
and patients are thereby obligated to explore command
space with their affected arm. Robotic neurorehabilita-
tion, through the application of resistive, assistive and
other forces, is ideal to promote exploration of movement
strategies because the difficulty level of the robotic ther-
apy can be titrated to the patients' impairment level to
promote unlearning of compensatory habits and reduc-
tion in impairment. In other words, the cost function can
be artificially titrated to promote plasticity. Robotic neu-
rorehabilitation in the acute and sub-acute phases might
even pre-empt patients from becoming stuck in a local
optimum. For example, conventional contextual interfer-
ence paradigms, as described previously, randomize equal
proportions of training trials for individual tasks to
enhance overall skill retention compared to block training
design. Choi and colleagues recently asked whether the
benefit of contextual interference can be further improved
by a varying schedule that takes into account the skill level
of the learner and the difficulty of the individual
tasks[117]. Healthy subjects were asked to adapt to four
visuomotor rotations in 3 consecutive daily sessions, each
made up of 120 pseudo-randomized trials. An algorithm
that adaptively increased the proportion of training trials
for the worse-performed rotation was used in each ses-
sion. Subjects' performance was shown to be better with
the adaptive schedule than with a uniformly distributed
schedule in a delayed retention test. Choi and colleagues
then adaptively allowed more or less time for each move-
ment based on an on-line estimate of performance, and
showed that this also led to better retention.

Supervised versus unsupervised learning in motor learning
Most of the experimental motor learning literature is con-
cerned with supervised or passive learning because the
tasks involve simple or stereotypical movements and the
desired trajectories are obvious. Subjects are commonly
instructed: "make a straight reaching movement to the tar-
get". However, a task may require more than a simple,
stereotypical movement to accomplish. If the ability to
make a complete movement is lost after brain injury, how
does one re-learn the movement when it may be accom-
plished in many different ways through many different
commands, and no instruction is given as to how to pro-
ceed? Active learning is the study of algorithms that select
teaching examples for use in supervised learning. Cohn
and colleagues studied this theoretical problem and
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developed an optimal algorithm based on the learner's
uncertainty about various components of the task[118]. It
was proposed that the best sequence of actions the learner
should choose is one that minimizes the learner's uncer-
tainty about the overall task. We recently tested this theo-
retical framework with a force-field adaptation paradigm
in healthy subjects. We found that when given a choice of
which target to visit, subjects would repeat those actions
that had resulted in large errors, which supported the
uncertainty hypothesis. However, people also repeated
actions that were already perfect, taking time away from
learning other less accurate actions, thereby making their
choice of target sequence inefficient[119]. The implica-
tion of the study is that it might be possible to improve
motor learning with robotic neurorehabilitation by impo-
sition of an optimal, supervised sequence.

Unlike supervised learning, in unsupervised learning the
learner does not know the desired outcome. Instead, the
learner interacts with the environment to extract informa-
tion and arrives at an optimal solution [120,121]. One
can imagine a situation where a child fumbles around to
learn to play with a novel toy. By pressing, stretching or
simply re-orienting the toy, he receives proprioceptive,
tactile, audio or visual feedback and may eventually dis-
cover a magic button that makes the toy play music. Sim-
ilarly in motor learning, one can adjust and try different
actions until the optimal set of parameters are found.
Unlike supervised learning, "errors" are not explicitly cor-
rected in unsupervised learning. Theoretical investigations
on this learning principle are most studied in a sub-field
of machine learning called reinforcement learning, in
which the learning focuses on reinforcement of actions
that result in better performance. Reinforcement learning
may apply to robot-assisted rehabilitation. For example, a
recent study of robotic therapy for the hand employed two
types of training modes. In the active assist mode, patients
initiated a grasp movement and the robot helped the com-
pletion of the grasp if the movement was not completed
within a few seconds. In the active non-assist mode,
patients attempted the grasp without robot assistance. It
was found that active assist mode was better[86]. In the
reinforcement learning framework, the successful comple-
tion of the movement with robot assistance may have
helped to identify the desired sensory states and their tran-
sitions, which subsequently helped to identify the motor
commands required to achieve these state transitions.

The efficacy of the learning interactions depends on the
sequence of actions the learner chooses. Should a patient
keep practicing a particular movement with the hope that
he can build on his previous experience and will eventu-
ally "get it" (i.e., exploitation of current knowledge) or
should he try other movements that may lead to the cor-
rect movements (i.e., exploration of unknowns)? Careful

assessment of a patient's trial-to-trial performance should
make it possible to titrate robotic assistance in order to
shift their exploitation-exploration tradeoff. Current
robotic neurorehabilitation paradigms are almost cer-
tainly combining supervised and unsupervised learning
principles, even if this is not the explicit intention. Deter-
mining the relative benefit of one learning principle over
another and the optimal balance between them will
require further investigation.

Conclusion
Computational motor learning principles provide a
framework for the design of optimal rehabilitation proto-
cols. Since motor impairment is the common denomina-
tor of all functional motor disabilities, we suggest that in
acute and sub-acute stages of recovery that it would be
more effective to focus rehabilitation efforts on restora-
tion of impairment and avoid a premature emphasis on
compensation. In order for rehabilitation to have an
impact at the impairment level, high intensity (i.e., dosage
per unit time), high dosage, and realistic movement train-
ing in 3-dimensions will most likely be required. After a
given level of impairment improvement, therapy would
transition to an emphasis on functional ability. In
patients with chronic stroke, outcome prediction tools
need to be developed to assess further potential for further
reduction in impairment. A comprehensive rehabilitation
program, therefore, may require therapy protocols and
equipment that differ in the acute and chronic stages of
recovery. The capacity of robots to deliver training with
high intensity, dosage, reliability, repeatability, quantifia-
bility, and flexibility makes them an ideal tool to both
test, and eventually implement rehabilitation paradigms
to aid motor recovery from stroke and other forms of
brain injury and disease.
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