Real submanifolds of codimension two of a complex space form

Mirjana Djorić ${ }^{\text {a,* }}$, Masafumi Okumura ${ }^{\text {b }}$
a University of Belgrade, Faculty of Mathematics, Studentski trg 16, pb. 550, 11000 Belgrade, Serbia
b 5-25-25, Minami Ikuta, Tama-ku, Kawasaki, Japan

ARTICLE INFO

Article history:

Received 12 March 2012
Available online 6 December 2012
Communicated by D.V. Alekseevsky
MSC:
53C15
53C40
53B20

Keywords:

Complex space form
Second fundamental form
Structure induced from almost complex structure

Abstract

We prove some classification theorems for real submanifolds of codimension two of a complex space form under the condition that $h(F X, Y)+h(X, F Y)=0$, where h is the second fundamental form of the submanifold and F is the endomorphism induced from the almost complex structure J on the tangent bundle of the submanifold.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Let M be a real submanifold of a complex manifold \bar{M} and J be the natural almost complex structure of \bar{M}. If the holomorphic tangent space $H_{X}(M)=J T_{x}(M) \cap T_{x}(M)$ has constant dimension with respect to $x \in M$, the submanifold M is called a CR submanifold and the constant complex dimension is called the $C R$ dimension of $M[3,6]$.

In this paper we study real submanifolds of codimension 2 of a complex manifold. It is clear that the codimension 2 case is fundamental in the study of even-dimensional real submanifolds of a complex manifold. In this direction, in [8], K. Yano and the second author of this paper studied submanifolds of codimension 2 of a complex Euclidean space. The known results show that the situation for submanifolds of codimension 2 is more complicated than in the case of real hypersurfaces. For example, a complex hypersurface, which is a $C R$ submanifold of $C R$ dimension $\frac{n-2}{2}$, is a real submanifold of codimension 2 , but there also exist real submanifolds of codimension 2 which are not CR submanifolds (for example, an even-dimensional sphere of codimension 2 of an even-dimensional Euclidean space, see [8]). The aim of this paper is to extend the results obtained in [8] for complex Euclidean space and, moreover, to investigate real submanifolds of codimension 2, but not only of complex Euclidean space but also of other complex space forms.

In Section 2 we develop the theory of submanifolds of codimension 2 of a Kähler manifold and we derive some fundamental formulae for later use. We also prove that if a complex hypersurface satisfies the algebraic condition on the (1,1)-tensor, induced from the almost complex structure J, and the second fundamental form of the submanifold, then the submanifold is a totally geodesic complex hypersurface. In Section 3, we restrict our investigation to the case when the

[^0]ambient manifold is a non-Euclidean complex space form. When the ambient manifold is a complex Euclidean space, in Section 4, we obtain similar, but more rigorous results than those presented in [8].

From the results derived in Sections 3 and 4, we conclude that the case $\lambda=0$ is significant, where λ is a function defined on the real submanifold of codimension 2 . Therefore, in Section 5 we examine submanifolds M of a complex Euclidean space, with $\lambda=0$, and in Section 6 we study even more particular case, when there exists a totally umbilical hypersurface M^{\prime} of a complex Euclidean space such that $M \subset M^{\prime}$. We recall here that K. Yano studied in [7] hypersurfaces of an odddimensional sphere satisfying a certain algebraic condition. However, the results obtained in [7] establish some properties of a vector field defined on the hypersurface and not of the hypersurface itself. Our purpose is to give a classification theorem for hypersurfaces $M \subset M^{\prime} \subset \mathbf{C}^{\frac{n+2}{2}}$.

Throughout this paper we assume that all submanifolds are connected.

2. Submanifolds of codimension 2 of a complex manifold

Let \bar{M} be a real $(n+2)$-dimensional complex manifold, J its natural almost complex structure and \bar{g} its Hermitian metric. Further, let M be an n-dimensional submanifold of \bar{M} with the immersion l of M into \bar{M} where we also denote by l the differential of the immersion, or we omit to mention t, for brevity of notation. Then the tangent bundle $T(M)$ is identified with a subbundle of $T(\bar{M})$ and a Riemannian metric g of M is induced from the Riemannian metric \bar{g} of \bar{M} in such a way that $g(X, Y)=\bar{g}(l X, l Y)$ where $X, Y \in T(M)$. Let ξ_{1} and ξ_{2} be mutually orthogonal unit normals to M. Then

$$
\begin{align*}
& J \iota X={ }_{\iota} F X+\sum_{a=1}^{2} u^{a}(X) \xi_{a}={ }_{\iota} F X+u^{1}(X) \xi_{1}+u^{2}(X) \xi_{2}, \tag{2.1}\\
& J \xi_{a}={ }_{l} U_{a}+\sum_{b=1}^{2} \lambda_{a b} \xi_{b}=-{ }_{l} U_{a}+\lambda_{a 1} \xi_{1}+\lambda_{a 2} \xi_{2}, \tag{2.2}
\end{align*}
$$

that is,

$$
\begin{equation*}
J \xi_{1}=-\iota U_{1}+\lambda \xi_{2}, \quad J \xi_{2}=-\iota U_{2}-\lambda \xi_{1} \tag{2.3}
\end{equation*}
$$

where $\lambda=\lambda_{12}=-\lambda_{21}$. Here, F is a skew-symmetric endomorphism acting on $T(M), U_{a}, a=1,2$ are local tangent vector fields and $u^{a}, a=1,2$ are local one forms on M. We note that u^{1} and u^{2} depend on the choice of normals ξ_{1} and ξ_{2}, but the function λ^{2}, where $\lambda=\bar{g}\left(J \xi_{1}, \xi_{2}\right)$, does not depend on the choice of ξ_{1} and ξ_{2}. More precisely, if we choose another pair of mutually orthogonal unit normals: ξ_{1}^{\prime} and ξ_{2}^{\prime}, then $\xi_{1}^{\prime}=\xi_{1} \cos \theta-\xi_{2} \sin \theta, \xi_{2}^{\prime}=\xi_{1} \sin \theta+\xi_{2} \cos \theta$, or $\xi_{1}^{\prime}=\xi_{1} \cos \theta+\xi_{2} \sin \theta$, $\xi_{2}^{\prime}=\xi_{1} \sin \theta-\xi_{2} \cos \theta$, for some θ. Consequently, if the orientation is preserved, then $\lambda^{\prime}=\bar{g}\left(J \xi_{1}^{\prime}, \xi_{2}^{\prime}\right)=\lambda$. In the same manner we can see that $\lambda^{\prime}=-\lambda$ if the orientation is not preserved.

Now, applying J to (2.1) and (2.2), we have

$$
\begin{align*}
& -l X={ }_{l} F^{2} X+\sum_{b=1}^{2} u^{b}(F X) \xi_{b}+\sum_{a=1}^{2} u^{a}(X)\left(-{ }_{l} U_{a}+\sum_{b=1}^{2} \lambda_{a b} \xi_{b}\right), \tag{2.4}\\
& -\xi_{a}=-l\left(F U_{a}+\sum_{b=1}^{2} \lambda_{a b} U_{b}\right)-\sum_{c=1}^{2}\left\{u^{c}\left(U_{a}\right)-\sum_{b=1}^{2} \lambda_{a b} \lambda_{b c}\right\} \xi_{c} . \tag{2.5}
\end{align*}
$$

Comparing the tangential parts in (2.4) and (2.5), we obtain

$$
\begin{align*}
& F^{2} X=-X+\sum_{a=1}^{2} u^{a}(X) U_{a}=-X+u^{1}(X) U_{1}+u^{2}(X) U_{2} \tag{2.6}\\
& F U_{a}=-\sum_{b=1}^{2} \lambda_{a b} U_{b} \tag{2.7}
\end{align*}
$$

that is,

$$
\begin{equation*}
F U_{1}=-\lambda U_{2}, \quad F U_{2}=\lambda U_{1} \tag{2.8}
\end{equation*}
$$

Also, using (2.5), we get $-\delta_{a}^{b}=-u^{b}\left(U_{a}\right)+\sum_{c=1}^{2} \lambda_{a c} \lambda_{c b}$ and therefore

$$
\begin{equation*}
u^{1}\left(U_{1}\right)=u^{2}\left(U_{2}\right)=1-\lambda^{2}, \quad u^{1}\left(U_{2}\right)=u^{2}\left(U_{1}\right)=0 \tag{2.9}
\end{equation*}
$$

Since J is a skew-symmetric operator, we calculate

$$
\begin{equation*}
g\left(U_{a}, X\right)=u^{a}(X), \quad a=1,2, \tag{2.10}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
g\left(U_{1}, U_{1}\right)=g\left(U_{2}, U_{2}\right)=1-\lambda^{2}, \quad g\left(U_{1}, U_{2}\right)=0 \tag{2.11}
\end{equation*}
$$

The subspace $H_{x}(M)=J T_{x}(M) \cap T_{x}(M)$ of the tangent space $T_{x}(M)$ is called the holomorphic tangent space. It is wellknown that a holomorphic tangent space is the maximal J-invariant subspace of $T_{x}(M)$. If the dimension of the holomorphic tangent space is constant with respect to $x \in M$, the submanifold is called $C R$ submanifold and its complex dimension is called the $C R$ dimension of the submanifold [3,6]. Every n-dimensional real hypersurface of a complex manifold is a CR submanifold of CR dimension $\frac{n-1}{2}$.

Proposition 2.1. Let M be a real submanifold of codimension 2 of a complex manifold \bar{M} and let λ be the function defined by (2.3). Then:
(1) M is a complex hypersurface if and only if $\lambda^{2}(x)=1$ for any $x \in M$.
(2) M is a $C R$ submanifold of $C R$ dimension $\frac{n-2}{2}$ if $\lambda(x)=0$ for any $x \in M$.

Proof. From (2.11) we conclude that $\lambda^{2}=1$ implies $U_{1}=U_{2}=0$. Using (2.1) and (2.6), we compute $J_{l} X={ }_{\imath} F X$ and $F^{2} X=-X$. Thus, M is a J-invariant submanifold and F is the induced almost complex structure from J. Since the ambient manifold is a complex manifold, the J-invariant submanifold M is a complex manifold, that is, a complex hypersurface.

Let $\lambda=0$. Then, using (2.2) it follows $J_{l} U_{a}=\xi_{a}$. For all X orthogonal to U_{1} and U_{2}, using (2.1) and (2.10), it follows $J_{\imath} X={ }_{\imath} F X$. Consequently, $J T_{x}(M) \cap T_{x}(M)=\left\{X \in T_{x}(M) \mid X \perp \operatorname{span}\left\{U_{1}, U_{2}\right\}\right\}$ and therefore $\operatorname{dim}_{R} H_{x}(M)=n-2$ for any $x \in M$.

Remark 1. In the following example we show that in (2) of Proposition 2.1 the converse is not true, that is, for a CR submanifold of $C R$ dimension $\frac{n-2}{2}$ the function λ does not always vanish.

Example 2.1. Let M be an $n(=2 m)$-dimensional submanifold of a complex Euclidean space \mathbf{C}^{m+1} defined by

$$
\operatorname{Re} z^{m+1}=\operatorname{Im} z^{m}, \quad \operatorname{Im} z^{m+1}=0
$$

that is, using the real coordinate system $\left(x^{1}, y^{1}, \ldots, x^{m+1}, y^{m+1}\right), M$ is defined by

$$
\left(x^{1}, y^{1}, \ldots, x^{m-1}, y^{m-1}, x^{m}, y^{m}, y^{m}, 0\right)
$$

Then M is a CR submanifold of $C R$ dimension $\frac{n-2}{2}$ and for the orthonormal vectors

$$
\xi_{1}=\frac{\partial}{\partial y^{m+1}}, \quad \xi_{2}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial y^{m}}-\frac{\partial}{\partial x^{m+1}}\right)
$$

normal to M we compute $\lambda=\left\langle J \xi_{1}, \xi_{2}\right\rangle=\frac{1}{\sqrt{2}}$.
Let $\bar{\nabla}$ be the covariant differentiation with respect to the Hermitian metric \bar{g} of \bar{M}. Then the Gauss and Weingarten formulae are the following

$$
\begin{align*}
& \bar{\nabla}_{X}{ }_{l} Y={ }_{\imath} \nabla_{X} Y+h(X, Y)={ }_{l} \nabla_{X} Y+\sum_{a=1}^{2} h^{a}(X, Y) \xi_{a}, \tag{2.12}\\
& \bar{\nabla}_{X} \xi_{a}=-{ }_{l} A_{a} X+\sum_{b=1}^{2} s_{a b}(X) \xi_{b}, \tag{2.13}
\end{align*}
$$

where $h(X, Y)$ is the second fundamental form, A_{a} the shape operator with respect to the normal ξ_{a} and $s_{a b}$ the third fundamental form. If we put $s=s_{12}$, then $s_{21}=-s$ and relation (2.13) reduces to

$$
\begin{equation*}
\bar{\nabla}_{X} \xi_{1}=-\imath A_{1} X+s(X) \xi_{2}, \quad \bar{\nabla}_{X} \xi_{2}=-\imath A_{2} X-s(X) \xi_{1} \tag{2.14}
\end{equation*}
$$

Using $\bar{g}\left(\iota Y, \xi_{a}\right)=0$, (2.12) and (2.13), we compute $h^{a}(X, Y)=g\left(A_{a} X, Y\right)$ and therefore

$$
\begin{equation*}
h(X, Y)=\sum_{a=1}^{2} g\left(A_{a} X, Y\right) \xi_{a} \tag{2.15}
\end{equation*}
$$

In what follows we assume that the ambient manifold \bar{M} is a Kähler manifold. Then, since $\bar{\nabla} J=0$, applying $\bar{\nabla}$ to $J_{l} Y$, using (2.1), (2.2), (2.12), (2.13) and comparing the tangential and normal components of the obtained relations, we obtain

$$
\begin{aligned}
& \left(\nabla_{X} F\right) Y=\sum_{a=1}^{2}\left\{u^{a}(Y) A_{a} X-g\left(A_{a} X, Y\right) U_{a}\right\}, \\
& \left(\nabla_{X} u^{a}\right)(Y)=-g\left(A_{a} X, F Y\right)+\sum_{b=1}^{2}\left\{g\left(A_{b} X, Y\right) \lambda_{b a}-u^{b}(Y) s_{b a}(X)\right\} .
\end{aligned}
$$

Now, applying $\bar{\nabla}$ to $J \xi_{a}$, using (2.2), (2.13), (2.1), (2.12) and comparing the tangential and normal components of the obtained relations, we get

$$
\begin{align*}
& \nabla_{X} U_{a}=F A_{a} X+\sum_{b=1}^{2}\left\{s_{a b}(X) U_{b}-\lambda_{a b} A_{b} X\right\}, \tag{2.16}\\
& X \lambda_{a b}=g\left(A_{b} U_{a}-A_{a} U_{b}, X\right)-\sum_{c=1}^{2}\left\{\lambda_{a c} s_{c b}(X)-\lambda_{c b} S_{a c}(X)\right\}, \tag{2.17}
\end{align*}
$$

that is,

$$
\begin{align*}
& \nabla_{X} U_{1}=F A_{1} X-\lambda A_{2} X+s(X) U_{2}, \quad \nabla_{X} U_{2}=F A_{2} X+\lambda A_{1} X-s(X) U_{1}, \tag{2.18}\\
& X \lambda=g\left(A_{2} U_{1}-A_{1} U_{2}, X\right), \tag{2.19}
\end{align*}
$$

where we used the fact that $\lambda_{a b}$ and $s_{a b}$ are both skew-symmetric with respect to a and b.
Now we assume that M satisfies the condition

$$
\begin{equation*}
h(F X, Y)+h(X, F Y)=0, \quad \text { for all } X, Y \in T(M) . \tag{2.20}
\end{equation*}
$$

Using (2.15) it follows that the condition (2.20) is equivalent to

$$
\begin{equation*}
A_{a} F=F A_{a}, \quad a=1,2, \tag{2.21}
\end{equation*}
$$

that is, the linear map F commutes with both shape operators, A_{1} and A_{2}.
We begin our investigation with the case when the submanifold M is a complex hypersurface, i.e. when the tangent space $T_{x}(M)$ and the normal space $T^{\perp}(M)$ are J-invariant. Consequently, we can choose the orthonormal vectors ξ_{1}, ξ_{2} which are normal to M in such a way that $\xi_{2}=J \xi_{1}$. Using (2.14) we conclude $\bar{\nabla}_{X} \xi_{2}=J \bar{\nabla}_{X} \xi_{1}=-J \iota A_{1} X+s(X) J \xi_{2}=-\iota F A_{1} X-s(X) \xi_{1}$ and therefore $A_{2}=F A_{1}$.

Moreover, if a complex hypersurface M satisfies the condition (2.21), it follows $A_{2}^{2}=F A_{1} F A_{1}=F^{2} A_{1}^{2}=-A_{1}^{2}$. Since A_{1} and A_{2} are both symmetric, the last equation shows that $A_{1}=A_{2}=0$, namely, we have proved

Theorem 2.1. If a complex hypersurface M^{n} of a Kähler manifold \bar{M}^{n+2} satisfies the condition (2.20), then M^{n} is a totally geodesic submanifold.

Now, we consider the following open submanifold of M defined by

$$
\begin{equation*}
M_{0}=\left\{x \in M \mid \lambda(x)\left(\lambda^{2}(x)-1\right) \neq 0\right\} . \tag{2.22}
\end{equation*}
$$

Lemma 2.1. Let M_{0} be an opened submanifold of $M^{n} \subset \bar{M}^{n+2}$ defined by (2.22). If the condition (2.20) is satisfied, then U_{1} and U_{2} are eigenvectors of both A_{1} and A_{2} in M_{0}. More precisely,

$$
\begin{equation*}
A_{a} U_{b}=\alpha_{a} U_{b}, \tag{2.23}
\end{equation*}
$$

that is,

$$
\begin{equation*}
A_{a} U_{1}=\alpha_{a} U_{1}, \quad A_{a} U_{2}=\alpha_{a} U_{2}, \quad a=1,2 . \tag{2.24}
\end{equation*}
$$

Proof. From (2.7) and (2.21), it follows $F A_{a} U_{b}=-\sum_{c=1}^{2} \lambda_{b c} A_{a} U_{c}$ and $F^{2} A_{a} U_{b}=\sum_{c, d=1}^{2} \lambda_{b c} \lambda_{c d} A_{a} U_{d}$. Therefore, using (2.6), we obtain

$$
\begin{equation*}
-A_{a} U_{b}+\sum_{c=1}^{2} u^{c}\left(A_{a} U_{b}\right) U_{c}=\sum_{c, d=1}^{2} \lambda_{b c} \lambda_{c d} A_{a} U_{d} \tag{2.25}
\end{equation*}
$$

Putting $b=1$ in (2.25), we obtain

$$
\begin{equation*}
\left(1-\lambda^{2}\right) A_{a} U_{1}=g\left(A_{a} U_{1}, U_{1}\right) U_{1}+g\left(A_{a} U_{2}, U_{1}\right) U_{2} . \tag{2.26}
\end{equation*}
$$

In entirely the same way, putting $b=2$ in (2.25), we obtain

$$
\begin{equation*}
\left(1-\lambda^{2}\right) A_{a} U_{2}=g\left(A_{a} U_{1}, U_{2}\right) U_{1}+g\left(A_{a} U_{2}, U_{2}\right) U_{2} \tag{2.27}
\end{equation*}
$$

Hence, in M_{0}, we have

$$
\begin{equation*}
A_{a} U_{1}=\alpha_{11}^{a} U_{1}+\alpha_{12}^{a} U_{2}, \quad A_{a} U_{2}=\alpha_{12}^{a} U_{1}+\alpha_{22}^{a} U_{2}, \quad a=1,2 \tag{2.28}
\end{equation*}
$$

since A_{1} and A_{2} are symmetric operators. Applying F to Eqs. (2.28) and using (2.8), we find

$$
F A_{a} U_{1}=\lambda\left(-\alpha_{11}^{a} U_{2}+\alpha_{12}^{a} U_{1}\right)
$$

On the other hand, from (2.21) and (2.8), it follows

$$
F A_{a} U_{1}=A_{a} F U_{1}=-\lambda A_{a} U_{2}=-\lambda\left(\alpha_{12}^{a} U_{1}+\alpha_{22}^{a} U_{2}\right)
$$

Comparing the above two equations, we obtain $\alpha_{11}^{a}=\alpha_{22}^{a}$ and $\alpha_{12}^{a}=0$, since $\lambda \neq 0$ in M_{0}. Hence, using (2.28), we obtain (2.23).

3. Certain real submanifolds of codimension 2 of a complex space form

From now on, we assume that the ambient manifold \bar{M} is a complex space form. Then the curvature tensor \bar{R} of \bar{M} is given by

$$
\bar{R}(\bar{X}, \bar{Y}) \bar{Z}=k\{\bar{g}(\bar{Y}, \bar{Z}) \bar{X}-\bar{g}(\bar{X}, \bar{Z}) \bar{Y}+\bar{g}(J \bar{Y}, \bar{Z}) J \bar{X}-\bar{g}(J \bar{X}, \bar{Z}) J \bar{Y}-2 \bar{g}(J \bar{X}, \bar{Y}) J \bar{Z}\},
$$

for some constant k and the Codazzi equation becomes

$$
\begin{equation*}
\left(\nabla_{X} A_{a}\right) Y-\left(\nabla_{Y} A_{a}\right) X=k\left\{u^{a}(X) F Y-u^{a}(Y) F X-2 g(F X, Y) U_{a}\right\}+\sum_{b=1}^{2}\left\{s_{a b}(X) A_{b} Y-s_{a b}(Y) A_{b} X\right\} \tag{3.1}
\end{equation*}
$$

Differentiating (2.23) covariantly and using (2.16) and (2.23), we obtain

$$
\begin{equation*}
\left(\nabla_{X} A_{a}\right) U_{b}+F A_{a} A_{b} X-\sum_{c=1}^{2} \lambda_{b c} A_{a} A_{c} X=\left(X \alpha_{a}\right) U_{b}+\alpha_{a}\left(F A_{b} X-\sum_{c=1}^{2} \lambda_{b c} A_{c} X\right) \tag{3.2}
\end{equation*}
$$

Since $\nabla_{X} A_{a}$ is a symmetric operator, it follows

$$
\begin{align*}
& g\left(\left(\nabla_{X} A_{a}\right) Y-\left(\nabla_{Y} A_{a}\right) X, U_{b}\right)+g\left(F A_{a} A_{b} X, Y\right)-g\left(F A_{a} A_{b} Y, X\right)-\sum_{c=1}^{2}\left\{\lambda_{b c} g\left(A_{a} A_{c} X, Y\right)-\lambda_{b c} g\left(A_{a} A_{c} Y, X\right)\right\} \\
& \quad=\left(X \alpha_{a}\right) u^{b}(Y)-\left(Y \alpha_{a}\right) u^{b}(X)+\alpha_{a}\left\{g\left(F A_{b} X, Y\right)-g\left(F A_{b} Y, X\right)\right\} \tag{3.3}
\end{align*}
$$

Further, using (2.21) and (2.7), the Codazzi equation (3.1) and relation (3.3) imply

$$
\begin{align*}
& k\left\{u^{a}(X) \sum_{c=1}^{2} \lambda_{b c} u^{c}(Y)-u^{a}(Y) \sum_{c=1}^{2} \lambda_{b c} u^{c}(X)-2\left(1-\lambda^{2}\right) g(F X, Y) \delta_{a b}\right\}+\sum_{c=1}^{2} \alpha_{c}\left\{s_{a c}(X) u^{b}(Y)-s_{a c}(Y) u^{b}(X)\right\} \\
& \quad+g\left(F\left(A_{a} A_{b}+A_{b} A_{a}\right) X, Y\right)-\sum_{c=1}^{2} \lambda_{b c} g\left(\left(A_{a} A_{c}-A_{c} A_{a}\right) X, Y\right) \\
& =\left(X \alpha_{a}\right) u^{b}(Y)-\left(Y \alpha_{a}\right) u^{b}(X)+2 \alpha_{a} g\left(F A_{b} X, Y\right) . \tag{3.4}
\end{align*}
$$

Lemma 3.1. Let M_{0} be an open submanifold of $M^{n} \subset \bar{M}^{n+2}$ defined by (2.22). Then the eigenvalues α_{1} and α_{2}, defined by (2.23), satisfy the following equations:

$$
\begin{equation*}
X \alpha_{1}-\alpha_{2} s(X)=-3 k \lambda u^{2}(X), \quad X \alpha_{2}+\alpha_{1} s(X)=3 k \lambda u^{1}(X) \tag{3.5}
\end{equation*}
$$

Proof. Regarding relation (3.4), there are several cases to consider: $a=1, b=2 ; a=2, b=1 ; a=b=1$ and $a=b=2$. Therefore, we compute respectively:

$$
\begin{align*}
& \left\{X \alpha_{1}-\alpha_{2} s(X)\right\} u^{2}(Y)-\left\{Y \alpha_{1}-\alpha_{2} s(Y)\right\} u^{2}(X)=-2 \alpha_{1} g\left(F A_{2} X, Y\right)+g\left(F\left(A_{1} A_{2}+A_{2} A_{1}\right) X, Y\right), \tag{3.6}\\
& \left\{X \alpha_{2}+\alpha_{1} s(X)\right\} u^{1}(Y)-\left\{Y \alpha_{2}+\alpha_{1} s(Y)\right\} u^{1}(X)=-2 \alpha_{2} g\left(F A_{1} X, Y\right)+g\left(F\left(A_{2} A_{1}+A_{1} A_{2}\right) X, Y\right), \tag{3.7}\\
& k\left\{\lambda u^{1}(X) u^{2}(Y)-\lambda u^{1}(Y) u^{2}(X)-2\left(1-\lambda^{2}\right) g(F X, Y)\right\}+2 g\left(F A_{1}^{2} X, Y\right)-\lambda g\left(\left(A_{1} A_{2}-A_{2} A_{1}\right) X, Y\right) \\
& \quad=\left\{X \alpha_{1}-\alpha_{2} s(X)\right\} u^{1}(Y)-\left\{Y \alpha_{1}-\alpha_{2} s(Y)\right\} u^{1}(X)+2 \alpha_{1} g\left(F A_{1} X, Y\right), \tag{3.8}\\
& k\left\{\lambda u^{1}(X) u^{2}(Y)-\lambda u^{1}(Y) u^{2}(X)-2\left(1-\lambda^{2}\right) g(F X, Y)\right\}+2 g\left(F A_{2}^{2} X, Y\right)-\lambda g\left(\left(A_{1} A_{2}-A_{2} A_{1}\right) X, Y\right) \\
& \quad=\left\{X \alpha_{2}+\alpha_{1} s(X)\right\} u^{2}(Y)-\left\{Y \alpha_{2}+\alpha_{1} s(Y)\right\} u^{2}(X)+2 \alpha_{2} g\left(F A_{2} X, Y\right) . \tag{3.9}
\end{align*}
$$

Putting $X=U_{1}$ in (3.6), we obtain $\left\{U_{1} \alpha_{1}-\alpha_{2} s\left(U_{1}\right)\right\} u^{2}(Y)=0$ and consequently

$$
\begin{equation*}
U_{1} \alpha_{1}-\alpha_{2} s\left(U_{1}\right)=0 \tag{3.10}
\end{equation*}
$$

In the same way, putting $X=U_{2}$ in (3.7), we get

$$
\begin{equation*}
U_{2} \alpha_{2}+\alpha_{1} s\left(U_{2}\right)=0 \tag{3.11}
\end{equation*}
$$

Then, putting $X=U_{1}$ in (3.8), $X=U_{2}$ in (3.9), and using (3.10) and (3.11), we obtain (3.5).
Further, substituting (3.5) into (3.6) and (3.7) we get

$$
F\left(A_{1} A_{2}+A_{2} A_{1}\right) X=2 \alpha_{1} F A_{2} X, \quad F\left(A_{1} A_{2}+A_{2} A_{1}\right) X=2 \alpha_{2} F A_{1} X
$$

i.e. $\alpha_{1} F A_{2} X=\alpha_{2} F A_{1} X$. Consequently, relation (2.6) implies

$$
\begin{equation*}
\alpha_{1} A_{2} X=\alpha_{2} A_{1} X \tag{3.12}
\end{equation*}
$$

Lemma 3.2. Under the above assumptions, if the complex space form \bar{M} is not a complex Euclidean space, then $M_{0}=\emptyset$.
Proof. Differentiating (3.12) covariantly and using (3.5) it follows

$$
\left\{3 k \lambda u^{1}(X)-\alpha_{1} s(X)\right\} A_{1} Y+\alpha_{2}\left(\nabla_{X} A_{1}\right) Y=\left\{-3 k \lambda u^{2}(X)+\alpha_{2} s(X)\right\} A_{2} Y+\alpha_{1}\left(\nabla_{X} A_{2}\right) Y
$$

Interchanging X and Y and subtracting the obtained equations, we get

$$
\begin{aligned}
& \left\{3 k \lambda u^{1}(X)-\alpha_{1} s(X)\right\} A_{1} Y-\left\{3 k \lambda u^{1}(Y)-\alpha_{1} s(Y)\right\} A_{1} X+\alpha_{2}\left\{\left(\nabla_{X} A_{1}\right) Y-\left(\nabla_{Y} A_{1}\right) X\right\} \\
& \quad=\left\{-3 k \lambda u^{2}(X)+\alpha_{2} s(X)\right\} A_{2} Y-\left\{-3 k \lambda u^{2}(Y)+\alpha_{2} s(Y)\right\} A_{2} X+\alpha_{1}\left\{\left(\nabla_{X} A_{2}\right) Y-\left(\nabla_{Y} A_{2}\right) X\right\} .
\end{aligned}
$$

Substituting (3.1) into the above equation, we compute

$$
\begin{align*}
& 3 k \lambda\left\{u^{1}(X) A_{1} Y-u^{1}(Y) A_{1} X\right\}+\alpha_{2} k\left\{u^{1}(X) F Y-u^{1}(Y) F X-2 g(F X, Y) U_{1}\right\} \\
& \quad=-3 k \lambda\left\{u^{2}(X) A_{2} Y-u^{2}(Y) A_{2} X\right\}+\alpha_{1} k\left\{u^{2}(X) F Y-u^{2}(Y) F X-2 g(F X, Y) U_{2}\right\} \tag{3.13}
\end{align*}
$$

Putting $X=U_{1}$ in (3.13) and making use of (2.8), (2.9) and (2.24), we obtain

$$
\begin{equation*}
\left(1-\lambda^{2}\right) k\left\{3 \lambda A_{1} Y+\alpha_{2} F Y\right\}-k \lambda\left\{3 \alpha_{1} u^{1}(Y)+\alpha_{2} u^{2}(Y)\right\} U_{1}+k \lambda\left\{-3 \alpha_{1} u^{2}(Y)+\alpha_{2} u^{1}(Y)\right\} U_{2}=0 \tag{3.14}
\end{equation*}
$$

Since $\operatorname{dim} M \geqslant 4$, we can choose the eigenvector Y of A_{1} which is orthogonal to both U_{1} and U_{2}. As $F Y$ is orthogonal to U_{1} and U_{2}, it follows that $A_{1} Y, F Y, U_{1}, U_{2}$ are linearly independent and hence (3.14) implies

$$
\begin{equation*}
\alpha_{2} k\left(1-\lambda^{2}\right)=0 \tag{3.15}
\end{equation*}
$$

Next putting $X=U_{2}$ in (3.13), we compute

$$
\left(1-\lambda^{2}\right) k\left\{3 \lambda A_{2} Y-\alpha_{1} F Y\right\}-k \lambda\left\{3 \alpha_{2} u^{1}(Y)-\alpha_{1} u^{2}(Y)\right\} U_{1}-k \lambda\left\{3 \alpha_{2} u^{2}(Y)+\alpha_{1} u^{1}(Y)\right\} U_{2}=0
$$

Here we take the eigenvector Y of A_{2} and proceeding in entirely in the same way as to get (3.15), we obtain

$$
\begin{equation*}
\alpha_{1} k\left(1-\lambda^{2}\right)=0 \tag{3.16}
\end{equation*}
$$

If M is a non-Euclidean complex space form, namely $k \neq 0$, relations (3.15) and (3.16) imply $\alpha_{1}=\alpha_{2}=0$ on M_{0}, contrary to (3.5). Hence $M_{0}=\emptyset$.

Theorem 3.1. Let \bar{M} be a non-Euclidean complex space form. If a real submanifold M of codimension two satisfies the condition (2.20), then one of the following holds.
(1) M is a totally geodesic complex hypersurface.
(2) M is a CR submanifold of $C R$ dimension $\frac{n-2}{2}$ with $\lambda=0$.

Proof. By Lemma 3.2, it follows $M_{0}=\emptyset$ which means that $1-\lambda^{2}=0$ or $\lambda=0$ in M. Combining this with Proposition 2.1 and Theorem 2.1, the theorem follows.

4. Certain real submanifolds of codimension 2 of a complex Euclidean space

In this section, we consider a real submanifold M^{n} of codimension 2 of a complex Euclidean space $\mathbf{C}^{\frac{n+2}{2}}$, which satisfies relation (2.20). Especially, we investigate its opened submanifold M_{0}, defined by relation (2.22).

Lemma 4.1. Under the above assumptions, the sum $\alpha_{1}^{2}+\alpha_{2}^{2}$ is constant, where α_{1} and α_{2} are defined by (2.23).
Proof. Since the ambient manifold is a complex Euclidean space, the holomorphic sectional curvature vanishes identically, that is $k=0$ and the equations in (3.5) become

$$
\begin{equation*}
X \alpha_{1}=\alpha_{2} s(X), \quad X \alpha_{2}=-\alpha_{1} s(X) \tag{4.1}
\end{equation*}
$$

Therefore, $X\left(\alpha_{1}^{2}+\alpha_{2}^{2}\right)=2\left(\alpha_{1} X \alpha_{1}+\alpha_{2} X \alpha_{2}\right)=0$, which completes the proof.
We continue considering first the case $\alpha_{1}^{2}+\alpha_{2}^{2} \neq 0$. It is clear that

$$
\xi_{1}^{\prime}=\frac{1}{\sqrt{\alpha_{1}^{2}+\alpha_{2}^{2}}}\left(\alpha_{1} \xi_{1}+\alpha_{2} \xi_{2}\right), \quad \xi_{2}^{\prime}=-\frac{1}{\sqrt{\alpha_{1}^{2}+\alpha_{2}^{2}}}\left(\alpha_{2} \xi_{1}-\alpha_{1} \xi_{2}\right)
$$

are orthonormal normals to M_{0} for which $J \xi_{1}^{\prime}={ }_{l} U_{1}^{\prime}+\lambda \xi_{2}^{\prime}, J \xi_{2}^{\prime}=-{ }_{l} U_{2}^{\prime}-\lambda \xi_{1}^{\prime}$, where

$$
\begin{equation*}
U_{1}^{\prime}=\frac{1}{\sqrt{\alpha_{1}^{2}+\alpha_{2}^{2}}}\left(\alpha_{1} U_{1}+\alpha_{2} U_{2}\right), \quad U_{2}^{\prime}=-\frac{1}{\sqrt{\alpha_{1}^{2}+\alpha_{2}^{2}}}\left(\alpha_{2} U_{1}-\alpha_{1} U_{2}\right) \tag{4.2}
\end{equation*}
$$

Also, using (2.14) and (4.1), we compute

$$
\bar{\nabla}_{X} \xi_{1}^{\prime}=\frac{-1}{\sqrt{\alpha_{1}^{2}+\alpha_{2}^{2}}} l\left(\alpha_{1} A_{1}+\alpha_{2} A_{2}\right) X, \quad \bar{\nabla}_{X} \xi_{2}^{\prime}=\frac{1}{\sqrt{\alpha_{1}^{2}+\alpha_{2}^{2}}} l\left(\alpha_{2} A_{1}-\alpha_{1} A_{2}\right) X
$$

that is,

$$
\begin{equation*}
A_{1}^{\prime} X=\frac{1}{\sqrt{\alpha_{1}^{2}+\alpha_{2}^{2}}}\left(\alpha_{1} A_{1}+\alpha_{2} A_{2}\right) X, \quad A_{2}^{\prime} X=-\frac{1}{\sqrt{\alpha_{1}^{2}+\alpha_{2}^{2}}}\left(\alpha_{2} A_{1}-\alpha_{1} A_{2}\right) X \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
s^{\prime}(X)=0 \tag{4.4}
\end{equation*}
$$

which means that we have chosen the orthonormal normals ξ_{1}^{\prime} and ξ_{2}^{\prime} in such a way that the normal connection is trivial.
Using relations (2.24) and (4.3), we compute $A_{1}^{\prime} U_{a}=\sqrt{\alpha_{1}^{2}+\alpha_{2}^{2}} U_{a}, A_{2}^{\prime} U_{a}=0$. Consequently, using (4.2), we obtain $A_{1}^{\prime} U_{a}^{\prime}=\sqrt{\alpha_{1}^{2}+\alpha_{2}^{2}} U_{a}^{\prime}, A_{2}^{\prime} U_{a}^{\prime}=0$. This shows that the corresponding eigenvalues $\alpha_{1}^{\prime}, \alpha_{2}^{\prime}$ of A_{a}^{\prime} for U_{a}^{\prime} are

$$
\begin{equation*}
\alpha_{1}^{\prime}=\sqrt{\alpha_{1}^{2}+\alpha_{2}^{2}}, \quad \alpha_{2}^{\prime}=0 \tag{4.5}
\end{equation*}
$$

Since in all the considerations throughout the previous sections the orthonormal normals ξ_{1} and ξ_{2} were arbitrary, the corresponding relations are also satisfied for the orthonormal normals ξ_{1}^{\prime} and ξ_{2}^{\prime}. Hence from (3.12) and (4.5), it follows

$$
\begin{equation*}
A_{2}^{\prime} X=0 \tag{4.6}
\end{equation*}
$$

Therefore, as $\alpha_{1}^{2}+\alpha_{2}^{2} \neq 0$, we conclude that the first normal space $N_{1}(X)$ of M_{0} in $\mathbf{C}^{\frac{n+2}{2}}$ is $\operatorname{span}\left\{\xi_{1}\right\}$. Using (4.4), we conclude that $N_{1}(x)$ is invariant under parallel translation with respect to the normal connection. Therefore, we can apply the codimension reduction theorem by Erbacher [2] and obtain

Lemma 4.2. Under the above assumptions, there exists an $(n+1)$-dimensional totally geodesic Euclidean subspace \mathbf{E}^{n+1} of $\mathbf{C}^{\frac{n+2}{2}}$ such that M_{0} is a hypersurface of \mathbf{E}^{n+1}.

According to Lemma 4.2, we can regard the submanifold M_{0} as a hypersurface of a Euclidean space \mathbf{E}^{n+1}. Let us denote by l_{1} the immersion of M_{0} into \mathbf{E}^{n+1} and by l_{2} the totally geodesic immersion of \mathbf{E}^{n+1} into $\mathbf{C}^{\frac{n+2}{2}}$. Then from the Gauss formula (2.12), it follows $\nabla_{X}^{\prime} \iota_{1} Y=\iota_{1} \nabla_{X} Y+g(A X, Y) \xi^{\prime \prime}$, where $\xi^{\prime \prime}$ is a unit normal vector field to M_{0} in \mathbf{E}^{n+1} and A is the corresponding shape operator. Thus, using the Gauss formula and $t=l_{2} \circ t_{1}$, we derive

$$
\begin{equation*}
\bar{\nabla}_{X l_{2} \circ l_{1} Y=l_{2} \nabla_{X}^{\prime} \iota_{1} Y=l_{2}\left(l_{1} \nabla_{X} Y+g(A X, Y) \xi^{\prime \prime}\right), ~, ~}^{\text {and }} \tag{4.7}
\end{equation*}
$$

since \mathbf{E}^{n+1} is totally geodesic in $\mathbf{C}^{\frac{n+2}{2}}$. Comparing relation (4.7) with relation (2.12) and using (4.6), it follows $\xi_{1}^{\prime}=l_{2} \xi^{\prime \prime}$ and $A=A_{1}^{\prime}$.

Using relation (3.8) it follows $F A_{1}^{\prime 2} X=\alpha_{1}^{\prime} F A_{1}^{\prime} X$ and therefore

$$
\begin{equation*}
A_{1}^{\prime 2} X=\alpha_{1}^{\prime} A_{1}^{\prime} X \tag{4.8}
\end{equation*}
$$

We conclude from (4.8), (4.5) and Lemma 4.1 that A_{1}^{\prime} has at most two constant distinct eigenvalues: α_{1}^{\prime} and 0 . Thus, from the hypersurface theory of Euclidean space (see for example Theorem 11.4 [1]), we conclude that M_{0} is one of the following: open submanifold of an n-dimensional hypersphere \mathbf{S}^{n}, of n-dimensional hyperplane \mathbf{E}^{n}, of the product manifold of an r-dimensional sphere and an $(n-r)$-dimensional Euclidean space $\mathbf{S}^{r} \times \mathbf{E}^{n-r}$. On the other hand, since $A_{1}^{\prime}=A$, it follows $A_{1}^{\prime} F=F A_{1}^{\prime}$, which implies that if X is an eigenvector of A_{1}^{\prime}, then $F X$ is also an eigenvector of A_{1}^{\prime} for the corresponding eigenvalue for X. Therefore, the multiplicities of the eigenvalues α_{1}^{\prime} and 0 are both even numbers.

Now we consider the case $\alpha_{1}^{2}+\alpha_{2}^{2}=0$, that is, $\alpha_{1}=\alpha_{2}=0$. Taking $k=0$ and $\alpha_{1}=\alpha_{2}=0$ in (3.4), we obtain

$$
\begin{equation*}
F\left(A_{a} A_{b}+A_{b} A_{a}\right) X-\sum_{c=1}^{2} \lambda_{b c}\left(A_{a} A_{c}-A_{c} A_{a}\right) X=0 . \tag{4.9}
\end{equation*}
$$

Putting $a=b=1, a=b=2$ and $a=1, b=2$ in (4.9) we get, respectively,

$$
\begin{align*}
& 2 F A_{1}^{2} X-\lambda\left(A_{1} A_{2}-A_{2} A_{1}\right) X=0 \tag{4.10}\\
& 2 F A_{2}^{2} X-\lambda\left(A_{1} A_{2}-A_{2} A_{1}\right) X=0 \tag{4.11}\\
& \left(A_{1} A_{2}+A_{2} A_{1}\right) F X=0 \tag{4.12}
\end{align*}
$$

Using (4.10), (4.11) and (2.21), it follows $A_{1}^{2} F X=A_{2}^{2} F X$ and since $\alpha_{1}=\alpha_{2}=0$, we conclude

$$
\begin{equation*}
A_{1}^{2} X=A_{2}^{2} X, \quad\left(A_{1} A_{2}+A_{2} A_{1}\right) X=0 \tag{4.13}
\end{equation*}
$$

Substituting the second equation of (4.13) into the first equation of (4.10) and using (2.21), we compute

$$
\begin{equation*}
A_{1}^{2} F X=-\lambda A_{2} A_{1} X \tag{4.14}
\end{equation*}
$$

Now, let us suppose that there exists a non-zero eigenvalue β of A_{1} and let X be the corresponding eigenvector, that is, $A_{1} X=\beta X$. Then, (2.21) yields that $F X$ is also an eigenvector of A_{1}, corresponding to β. Therefore, using (4.14), we compute $\beta^{2} F X=-\lambda \beta A_{2} X$ and $\beta^{2} A_{2} F X=-\lambda \beta A_{2}^{2} X=-\lambda \beta A_{1}^{2} X$, that is,

$$
\begin{equation*}
A_{2} F X=-\lambda \beta X \tag{4.15}
\end{equation*}
$$

On the other hand, from the second equation of (4.13), it follows $A_{1} A_{2} F X=-A_{2} A_{1} F X=-\beta A_{2} F X$. Substituting (4.15) into the last equation, we have $2 \lambda \beta X=0$ and hence $\lambda=0$. Then from (4.10), we conclude $A_{1}^{2}=A_{2}^{2}=0$, since $\beta \neq 0$. Consequently, $A_{1}=A_{2}=0$, submanifold M_{0} is totally geodesic and all eigenvalues of A_{1} and A_{2} are 0 , which contradicts our assumption that there exists a non-zero eigenvalue β of A_{1}.

A slight change in the proof shows that there does not exist a non-zero eigenvalue of A_{2}. Therefore, it follows that M_{0} is totally geodesic and M_{0} is an open submanifold of an n-dimensional Euclidean space \mathbf{E}^{n}.

Theorem 4.1. Let M be a connected real submanifold of codimension 2 of a complex Euclidean space $\bar{M}=\mathbf{C}^{\frac{n+2}{2}}$. If M satisfies the condition (2.20), then M is one of the following:
(1) n-dimensional sphere \mathbf{S}^{n},
(2) n-dimensional Euclidean space \mathbf{E}^{n},
(3) product manifold of an r-dimensional sphere and an $(n-r)$-dimensional Euclidean space $\mathbf{S}^{r} \times \mathbf{E}^{n-r}$, where r is an even number,
(4) $C R$ submanifold of $C R$ dimension $\frac{n-2}{2}$ with $\lambda=0$.

Proof. Let $M_{1}=\left\{x \in M \mid \lambda(x)\left(1-\lambda^{2}(x)\right)=0\right\}$. Then, $M=M_{0} \cup M_{1}, M_{0} \cap M_{1}=\emptyset$. If M_{1} is an open set, then $M=M_{1}$ or $M=M_{0}$, since M is connected. When $M=M_{1}$, then on M we have $\lambda=0$ or $\lambda^{2}=1$. Using the first case in Proposition 2.1, we obtain (4) and using the second case, it follows that M is a complex hypersurface \mathbf{E}^{n}, which is a special case of (2). When $M=M_{0}$, we have (1), (2), (3). If M_{1} is not an open set, then by definition, M_{1} is a closed set in M and $\operatorname{dim} M_{1}<n$ and M_{1} is a subset of measure 0 in M. Hence, M is one of (1), (2), (3), which completes the proof.

5. Real submanifolds of codimension 2 of a complex space form, with $\lambda=0$

Having in mind the facts and theorems proved in Sections 3 and 4, we proceed with the study of real submanifolds of codimension 2 of a complex space form, with $\lambda=0$.

The following example provides a large class of real submanifolds of codimension 2 of a complex space form satisfying $\lambda=0$, since there are many real hypersurfaces of a complex Euclidean space.

Example 5.1. Let M_{1}^{\prime} and M_{2}^{\prime} be complex manifolds and J_{1} and J_{2} the natural almost complex structure of M_{1}^{\prime} and M_{2}^{\prime} respectively. Then $\bar{M}=M_{1}^{\prime} \times M_{2}^{\prime}$ is a complex manifold with the almost complex structure $J=J_{1} \otimes J_{2}$. For real hypersurfaces M_{a} of $M_{a}^{\prime}, a=1,2$ with unit normals ξ_{a}^{\prime} to M_{a}, the product $M=M_{1} \times M_{2}$ is a submanifold of codimension 2 of \bar{M} and $\xi_{1}=\left(\xi_{1}^{\prime}, 0\right)$ and $\xi_{2}=\left(0, \xi_{2}^{\prime}\right)$ are orthonormal unit normals to M. Then M is a submanifold of codimension 2 with $\lambda=0$. Especially, for a complex Euclidean space $\mathbf{C}^{\frac{n+2}{2}}$, the product manifold M of respective real hypersurfaces M_{1} and M_{2} of mutually orthogonal complex subspaces \mathbf{C}^{p} and \mathbf{C}^{q} is a submanifold of codimension 2 with $\lambda=0$.

If we take $\lambda=0$ in (2.26) and (2.27), we obtain

$$
\begin{equation*}
A_{a} U_{b}=\sum_{c=1}^{2} \alpha_{b c}^{a} U_{c}, \quad a, b=1,2 \tag{5.1}
\end{equation*}
$$

Since A_{a} is symmetric, it follows $\alpha_{b c}^{a}=g\left(A_{a} U_{b}, U_{c}\right)=\alpha_{c b}^{a}$. Differentiating relation (5.1) covariantly, we compute

$$
\begin{equation*}
\left(\nabla_{X} A_{a}\right) U_{b}+A_{a} \nabla_{X} U_{b}=\sum_{c=1}^{2}\left\{X \alpha_{b c}^{a} U_{c}+\alpha_{b c}^{a} \nabla_{X} U_{c}\right\} \tag{5.2}
\end{equation*}
$$

Substituting (2.18) into (5.2) and using (2.26), (2.27), (2.21) and $\lambda=0$, we obtain

$$
\begin{equation*}
\left(\nabla_{X} A_{a}\right) U_{b}+F A_{a} A_{b} X+\sum_{d, e=1}^{2} s_{b d}(X) \alpha_{d e}^{a} U_{e}=\sum_{d=1}^{2}\left\{\left(X \alpha_{b d}^{a}+\sum_{c=1}^{2} \alpha_{b c}^{a} s_{c d}(X)\right) U_{d}\right\}+\sum_{c=1}^{2} \alpha_{b c}^{a} F A_{c} X \tag{5.3}
\end{equation*}
$$

Since $\nabla_{X} A_{a}$ is symmetric, we have $g\left(\left(\nabla_{X} A_{a}\right) Y, U_{b}\right)=g\left(\left(\nabla_{X} A_{a}\right) U_{b}, Y\right)$. Therefore, using (5.3), we compute

$$
\begin{aligned}
& g\left(\left(\nabla_{X} A_{a}\right) Y-\left(\nabla_{Y} A_{a}\right) X, U_{b}\right)+g\left(F A_{a} A_{b} X, Y\right)-g\left(F A_{a} A_{b} Y, X\right)+\sum_{d, e=1}^{2}\left\{s_{b d}(X) \alpha_{d e}^{a} u^{e}(Y)-s_{b d}(Y) \alpha_{d e}^{a} u^{e}(X)\right\} \\
& =\sum_{d=1}^{2}\left\{\left(X \alpha_{b d}^{a}+\sum_{c=1}^{2} \alpha_{b c}^{a} s_{c d}(X)\right) u^{d}(Y)-\left(Y \alpha_{b d}^{a}+\sum_{c=1}^{2} \alpha_{b c}^{a} s_{c d}(Y)\right) u^{d}(X)\right\} \\
& \quad+\sum_{d=1}^{2}\left\{\alpha_{b d}^{a} g\left(F A_{d} X, Y\right)-\alpha_{b d}^{a} g\left(F A_{d} Y, X\right)\right\} .
\end{aligned}
$$

Using the Codazzi equation (3.1) we have

$$
\begin{align*}
& -2 k g(F X, Y) \delta_{a b}+g\left(F\left(A_{a} A_{b}+A_{b} A_{a}\right) X, Y\right)-2 \sum_{c=1}^{2} \alpha_{b c}^{a} g\left(F A_{c} X, Y\right) \\
& =\sum_{d=1}^{2}\left[X \alpha_{b d}^{a}+\sum_{c=1}^{2}\left\{\alpha_{b c}^{a} s_{c d}(X)-\alpha_{c d}^{a} s_{b c}(X)-\alpha_{b d}^{c} s_{a c}(X)\right\}\right] u^{d}(Y) \\
& \quad-\sum_{d=1}^{2}\left[Y \alpha_{b d}^{a}+\sum_{c=1}^{2}\left\{\alpha_{b c}^{a} s_{c d}(Y)-\alpha_{c d}^{a} s_{b c}(Y)-\alpha_{b d}^{c} s_{a c}(Y)\right\}\right] u^{d}(X) . \tag{5.4}
\end{align*}
$$

If in (5.4) we put $Y=U_{e}$, then, since $\lambda=0$, relation (2.8) implies

$$
\begin{align*}
& X \alpha_{b e}^{a}+\sum_{c=1}^{2}\left\{\alpha_{b c}^{a} s_{c e}(X)-\alpha_{c e}^{a} s_{b c}(X)-\alpha_{b e}^{c} s_{a c}(X)\right\} \\
& \quad=\sum_{d=1}^{2}\left[U_{e} \alpha_{b d}^{a}+\sum_{c=1}^{2}\left\{\alpha_{b c}^{a} s_{c d}\left(U_{e}\right)-\alpha_{c d}^{a} s_{b c}\left(U_{e}\right)-\alpha_{b d}^{c} s_{a c}\left(U_{e}\right)\right\}\right] u^{d}(X) . \tag{5.5}
\end{align*}
$$

Substituting (5.5) into (5.4), we obtain

$$
\begin{equation*}
-2 k g(F X, Y) \delta_{a b}+g\left(\left(A_{a} A_{b}+A_{b} A_{a}\right) F X, Y\right)-2 \sum_{c=1}^{2} \alpha_{b c}^{a} g\left(A_{c} F X, Y\right)=\sum_{e, d=1}^{2} \gamma_{e b d}^{a} u^{d}(X) u^{e}(Y) \tag{5.6}
\end{equation*}
$$

where

$$
\begin{aligned}
& \gamma_{e b d}^{a}=\beta_{e b d}^{a}-\beta_{d b e}^{a}, \\
& \beta_{e b d}^{a}=U_{e} \alpha_{b d}^{a}+\sum_{c=1}^{2}\left\{\alpha_{b c}^{a} s_{c d}\left(U_{e}\right)-\alpha_{c d}^{a} s_{b c}\left(U_{e}\right)-\alpha_{b d}^{c} s_{a c}\left(U_{e}\right)\right\} .
\end{aligned}
$$

Replacing Y by U_{f} in (5.6) and using (2.21), we obtain

$$
\begin{equation*}
\sum_{d, e=1}^{2} \gamma_{e b d}^{a} u^{d}(X) \delta_{f}^{e}=\sum_{d=1}^{2} \gamma_{f b d}^{a} u^{d}(X)=0 \tag{5.7}
\end{equation*}
$$

Substituting (5.7) into (5.6), we get

$$
\begin{equation*}
-2 k g(F X, Y) \delta_{a b}+g\left(\left(A_{a} A_{b}+A_{b} A_{a}\right) F X, Y\right)-2 \sum_{c=1}^{2} \alpha_{b c}^{a} g\left(F A_{c} X, Y\right)=0 \tag{5.8}
\end{equation*}
$$

Taking $a=b$ and $a \neq b$ in (5.8), we compute

$$
\begin{align*}
& -k F X+A_{a}^{2} F X-\sum_{c=1}^{2} \alpha_{a c}^{a} A_{c} F X=0, \tag{5.9}\\
& \left(A_{a} A_{b}+A_{b} A_{a}\right) F X-2 \sum_{c=1}^{2} \alpha_{b c}^{a} A_{c} F X=0, \quad a \neq b \tag{5.10}
\end{align*}
$$

Lemma 5.1. Let \bar{M} be a complex space form. If a real submanifold M of \bar{M} of codimension 2 , with $\lambda=0$, satisfies the condition (2.20), then relations (5.9) and (5.10) hold.

6. The case when M is a hypersurface of a totally umbilical hypersurface $M^{\prime} \subset \mathrm{C}^{\frac{n+2}{2}}$

In this section, we consider real submanifolds M^{n} of $\bar{M}=\mathbf{C}^{\frac{n+2}{2}}$ with $\lambda=0$, such that there exists a totally umbilical hypersurface M^{\prime} of $\mathbf{C}^{\frac{n+2}{2}}$ such that $M \subset M^{\prime}$.

Let us denote by ξ_{1}^{\prime} the unit normal vector field of the immersion $l_{1}: M \rightarrow M^{\prime}$ and by ξ_{2}^{\prime} the unit normal vector field of the immersion $t_{2}: M^{\prime} \rightarrow \mathbf{C}^{\frac{n+2}{2}}$. Consequently, the immersion $t: M \rightarrow \mathbf{C}^{\frac{n+2}{2}}$ is $t=t_{2} \circ t_{1}$. Since M^{\prime} is totally umbilical, the shape operator A^{\prime} of M^{\prime} satisfies $A^{\prime}=c I$, where I is the identity map and c is constant, since the ambient manifold is a Euclidean space. Then, using the Weingarten formula (2.13), we have for $X \in T(M)$,

$$
\begin{equation*}
\bar{\nabla}_{X} \xi_{2}^{\prime}=-l_{2} A^{\prime} \iota_{1} X=-l_{2} c l_{1} X=-\iota c X \tag{6.1}
\end{equation*}
$$

Choosing the orthonormals to M in $\mathbf{C}^{\frac{n+2}{2}}$ in such a way that $\xi_{1}=l_{2} \xi_{1}^{\prime}$ and $\xi_{2}=\xi_{2}^{\prime}$, we obtain

$$
\begin{equation*}
\bar{\nabla}_{X} \xi_{1}=\bar{\nabla}_{X l_{2}} \xi_{1}^{\prime}=l_{2} \nabla_{X}^{\prime} \xi_{1}^{\prime}+h^{\prime}\left(\iota_{1} X, \xi_{1}^{\prime}\right)=-l_{2} \circ \iota_{1} A X+c g^{\prime}\left(\iota_{1} X, \xi_{1}\right) \xi_{2}^{\prime}=-\imath A X \tag{6.2}
\end{equation*}
$$

where A is the shape operator of M in M^{\prime} and h^{\prime} and g^{\prime} are respectively the second fundamental form and the induced Riemannian metric of $M^{\prime} \subset \mathbf{C}^{\frac{n+2}{2}}$. Comparing (6.1) and (6.2) with (2.14), we obtain that $A=A_{1}$ and $s=0$. Since we discuss
the case $\lambda=0$, using (2.19), we compute $A_{2} U_{1}=A_{1} U_{2}$. Therefore, having in mind the notation from (2.28), it follows $\alpha_{21}^{1}=\alpha_{12}^{1}=c, \alpha_{22}^{1}=0$ and

$$
\begin{equation*}
A_{1} U_{1}=\alpha_{11}^{1} U_{1}+c U_{2}, \quad A_{1} U_{2}=c U_{1} \tag{6.3}
\end{equation*}
$$

Since $A_{2}=c I$, relation (5.9) reduces to

$$
A_{1}^{2} F X-\alpha_{11}^{1} A_{1} F X-c^{2} F X=0
$$

for $a=1$. In the sequel we use the notation $\alpha_{11}^{1}=\alpha$. Further, using (6.3), we compute

$$
A_{1}^{2} U_{a}-\alpha A_{1} U_{a}-c^{2} U_{a}=0, \quad a=1,2
$$

Thus we proved that

$$
\begin{equation*}
A^{2} X-\alpha A X-c^{2} X=0 \tag{6.4}
\end{equation*}
$$

holds for any $X \in T(M)$.

Lemma 6.1. Let M^{n} be a real submanifold of $\bar{M}=\mathbf{C}^{\frac{n+2}{2}}$ which satisfies the condition (2.20), with $\lambda=0$, such that there exists a totally umbilical hypersurface M^{\prime} of $\mathbf{C}^{\frac{n+2}{2}}$, i.e. $A^{\prime}=c I$, with $M \subset M^{\prime}$. If $c \neq 0$, then the function α is constant.

Proof. Since $s=0$ and $\lambda=0$, relation (5.5) becomes

$$
\begin{equation*}
X \alpha=\beta u^{1}(X) \tag{6.5}
\end{equation*}
$$

where $\beta=U_{1} \alpha$. Then, from the first equation of (2.18) and (2.21), we obtain

$$
\begin{equation*}
[X, Y] \alpha=X Y \alpha-Y X \alpha=(X \beta) u^{1}(Y)-(Y \beta) u^{1}(X)-2 \beta g(A F X, Y)+\beta u^{1}([X, Y]) \tag{6.6}
\end{equation*}
$$

Using again (6.5), it follows from (6.6)

$$
\begin{equation*}
(X \beta) u^{1}(Y)-(Y \beta) u^{1}(X)=2 \beta g(A F X, Y) \tag{6.7}
\end{equation*}
$$

Since $\lambda=0$, using (2.9) and (2.8), if we put $Y=U_{1}$ in (6.7), we compute $X \beta=\left(U_{1} \beta\right) u^{1}(X)$. Substituting this into (6.7), we conclude $\beta=0$ or $A F X=0$. However, if $A F X=0$, using (6.4), we get $c=0$, which is a contradiction.

Theorem 6.1. Let M^{n} be a real submanifold of codimension two of a complex Euclidean space $\mathbf{C}^{\frac{n+2}{2}}$ with $\lambda=0$ which satisfies the condition (2.20). If there exists a totally umbilical hypersurface M^{\prime} of $\mathbf{C}^{\frac{n+2}{2}}$, i.e. $A^{\prime}=c I, c \neq 0$, such that $M \subset M^{\prime}$, then M is a product of two odd-dimensional spheres.

Proof. Since the shape operator A satisfies relation (6.4) for a constant α, we can apply Lemma 1.1 in [4] (cited as Theorem 13.2 in [1]) and obtain $\nabla A=0$. Hence, by theorem of Ryan [5], we obtain that M is a product of two spheres.

On the other hand, Lemma 6.1 implies that M has exactly two constant principal curvatures k_{1} and k_{2}. It is not possible that $A=A_{1}$ has only one principal curvature k, because, using (6.3), we compute $c U_{1}=k U_{2}$, which is impossible since U_{1} and U_{2} are mutually orthogonal. Moreover, these principal curvatures satisfy

$$
\begin{equation*}
k_{1}+k_{2}=\alpha, \quad k_{1} k_{2}=-c^{2} \tag{6.8}
\end{equation*}
$$

For $V_{1}=k_{1} U_{1}+c U_{2}, V_{2}=c U_{1}-k_{1} U_{2}$, using (6.8), it is easily verified that $A V_{1}=k_{1} V_{1}, A V_{2}=k_{2} V_{2}$. For such an $X \in T(M)$ that $A X=k_{a} X,(a=1,2)$, using (6.4), it follows $A F X=k_{a} F X(a=1,2)$ respectively. This shows that the distributions defined by the eigenspaces corresponding to k_{1} and k_{2} are both odd-dimensional. Since the spheres S_{1} and S_{2} are the integral submanifolds of these distributions (p. 85 in [1]), they are both odd-dimensional, which completes the proof.

Now we consider the case $c=0$. This means that M^{\prime} is a totally geodesic hypersurface of $\mathbf{C}^{\frac{n+2}{2}}$, that is, there exists a hyperplane \mathbf{E}^{n+1} such that $M \subset \mathbf{E}^{n+1} \subset \mathbf{C}^{\frac{n+2}{2}}$ and in this case the shape operator A satisfies

$$
\begin{equation*}
A^{2} X-\alpha A X=0 \tag{6.9}
\end{equation*}
$$

Here, if $\alpha=0, M$ is a totally geodesic hypersurface of \mathbf{E}^{n+1} and M is a Euclidean space \mathbf{E}^{n}.

If $\alpha \neq 0$, relation (6.9) implies that M has exactly 2 distinct principal curvatures: α and 0 . Let

$$
\begin{aligned}
& M_{\alpha}=\{x \in M \mid \alpha(x) \neq 0\} \\
& T_{\alpha}(x)=\left\{X_{x} \in T_{x}\left(M_{\alpha}\right) \mid A_{x} X_{x}=\alpha X_{x}\right\}, \\
& T_{0}(x)=\left\{X_{x} \in T_{x}\left(M_{0}\right) \mid A_{x} X_{x}=0\right\},
\end{aligned}
$$

namely, M_{α} is an open submanifold of $M, T_{\alpha}(x)$ and $T_{0}(x)$ make distributions T_{α} and T_{0} of M_{α}, respectively.
Further, for $X, Y \in T_{\alpha}$, using the Codazzi equation for a hypersurface of a Euclidean space, we have

$$
\begin{aligned}
A[X, Y] & =A \nabla_{X} Y-A \nabla_{Y} X=\nabla_{X}(A Y)-\left(\nabla_{X} A\right) Y-\nabla_{Y}(A X)+\left(\nabla_{Y} A\right) X \\
& =(X \alpha) Y+\alpha \nabla_{X} Y-(Y \alpha) Y X-\alpha \nabla_{Y} X=(X \alpha) Y-(Y \alpha) X+\alpha[X, Y]
\end{aligned}
$$

that is,

$$
\begin{equation*}
(A-\alpha I)[X, Y]=(X \alpha) Y-(Y \alpha) X \tag{6.10}
\end{equation*}
$$

Since $(A-\alpha I)[X, Y]=(A-\alpha I)\left([X, Y]_{\alpha}+[X, Y]_{0}\right)=-\alpha[X, Y]_{0}$, the left-hand side of (6.10) belongs to T_{0} and the right-hand side belongs to T_{α}. This shows that α is constant on M_{α} and $A[X, Y]=\alpha[X, Y]$.

Since α is differentiable, α is constant on M. From (6.3), it follows $U_{2} \in T_{0}(x)$ which shows that M cannot be a totally umbilical hypersurface of \mathbf{E}^{n+1}. Thus, if $\alpha \neq 0$, then A has exactly two distinct constant eigenvalues and, by standard argument, we know that M is a product of m-dimensional sphere and an $(n-m)$-dimensional Euclidean space. Discussion similar to that in the proof of Theorem 6.1 shows that the multiplicity of α is the odd number. If $\alpha=0$, then M is a totally geodesic hypersurface. Thus we have proved

Theorem 6.2. Let M be a real submanifold of codimension two of a complex Euclidean space $\mathbf{C}^{\frac{n+2}{2}}$ with $\lambda=0$ which satisfies the condition (2.20). If there exists a totally geodesic hypersurface M^{\prime} of $\mathbf{C}^{\frac{n+2}{2}}$ such that $M \subset M^{\prime}$, then M is one of the following:
(1) n-dimensional hyperplane \mathbf{E}^{n},
(2) product manifold of an odd-dimensional sphere and a Euclidean space: $\mathbf{S}^{2 p+1} \times \mathbf{E}^{n-2 p-1}$.

Acknowledgements

The first author is partially supported by Ministry of Education, Science and Technological Development, Republic of Serbia, project 174012. The first author acknowledges support from IHÉS, France.

References

[1] M. Djorić, M. Okumura, CR Submanifolds of Complex Projective Space, Dev. Math., vol. 19, Springer, 2009.
[2] J. Erbacher, Reduction of the codimension of an isometric immersion, J. Differential Geom. 5 (1971) 333-340.
[3] R. Nirenberg, R.O. Wells Jr., Approximation theorems on differentiable submanifolds of a complex manifold, Trans. Amer. Math. Soc. 142 (1965) 15-35.
[4] M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975) 355-364.
[5] P.J. Ryan, Homogeneity and some curvature conditions for hypersurfaces, Tôhoku Math. J. 21 (1969) 363-388.
[6] A.E. Tumanov, The geometry of CR manifolds, in: Several Complex Variables III, in: Encyclopaedia Math. Sci., vol. 9 VI, Springer-Verlag, 1986, pp. 201221.
[7] K. Yano, On (f, g, u, v, λ)-structure induced on a hypersurface of an odd-dimensional sphere, Tôhoku Math. J. 23 (1971) 671-679.
[8] K. Yano, M. Okumura, On normal (f, g, u, v, λ)-structures on submanifolds of codimension 2 in an even-dimensional Euclidean space, Kōdai Math. Sem. Rep. 23 (1971) 172-197.

[^0]: * Corresponding author.

 E-mail addresses: mdjoric@matf.bg.ac.rs (M. Djorić), mokumura@h8.dion.ne.jp (M. Okumura).

