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1. Introduction

Let M be a real submanifold of a complex manifold M and J be the natural almost complex structure of M . If the
holomorphic tangent space Hx(M) = J Tx(M) ∩ Tx(M) has constant dimension with respect to x ∈ M , the submanifold M is
called a CR submanifold and the constant complex dimension is called the CR dimension of M [3,6].

In this paper we study real submanifolds of codimension 2 of a complex manifold. It is clear that the codimension 2 case
is fundamental in the study of even-dimensional real submanifolds of a complex manifold. In this direction, in [8], K. Yano
and the second author of this paper studied submanifolds of codimension 2 of a complex Euclidean space. The known results
show that the situation for submanifolds of codimension 2 is more complicated than in the case of real hypersurfaces. For
example, a complex hypersurface, which is a CR submanifold of CR dimension n−2

2 , is a real submanifold of codimension 2,
but there also exist real submanifolds of codimension 2 which are not CR submanifolds (for example, an even-dimensional
sphere of codimension 2 of an even-dimensional Euclidean space, see [8]). The aim of this paper is to extend the results
obtained in [8] for complex Euclidean space and, moreover, to investigate real submanifolds of codimension 2, but not only
of complex Euclidean space but also of other complex space forms.

In Section 2 we develop the theory of submanifolds of codimension 2 of a Kähler manifold and we derive some fun-
damental formulae for later use. We also prove that if a complex hypersurface satisfies the algebraic condition on the
(1,1)-tensor, induced from the almost complex structure J , and the second fundamental form of the submanifold, then the
submanifold is a totally geodesic complex hypersurface. In Section 3, we restrict our investigation to the case when the
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ambient manifold is a non-Euclidean complex space form. When the ambient manifold is a complex Euclidean space, in
Section 4, we obtain similar, but more rigorous results than those presented in [8].

From the results derived in Sections 3 and 4, we conclude that the case λ = 0 is significant, where λ is a function defined
on the real submanifold of codimension 2. Therefore, in Section 5 we examine submanifolds M of a complex Euclidean
space, with λ = 0, and in Section 6 we study even more particular case, when there exists a totally umbilical hypersurface
M ′ of a complex Euclidean space such that M ⊂ M ′ . We recall here that K. Yano studied in [7] hypersurfaces of an odd-
dimensional sphere satisfying a certain algebraic condition. However, the results obtained in [7] establish some properties of
a vector field defined on the hypersurface and not of the hypersurface itself. Our purpose is to give a classification theorem

for hypersurfaces M ⊂ M ′ ⊂ C
n+2

2 .
Throughout this paper we assume that all submanifolds are connected.

2. Submanifolds of codimension 2 of a complex manifold

Let M be a real (n+2)-dimensional complex manifold, J its natural almost complex structure and g its Hermitian metric.
Further, let M be an n-dimensional submanifold of M with the immersion ı of M into M where we also denote by ı the
differential of the immersion, or we omit to mention ı , for brevity of notation. Then the tangent bundle T (M) is identified
with a subbundle of T (M) and a Riemannian metric g of M is induced from the Riemannian metric g of M in such a way
that g(X, Y ) = g(ı X, ıY ) where X, Y ∈ T (M). Let ξ1 and ξ2 be mutually orthogonal unit normals to M . Then

J ı X = ıF X +
2∑

a=1

ua(X)ξa = ıF X + u1(X)ξ1 + u2(X)ξ2, (2.1)

Jξa = −ıUa +
2∑

b=1

λabξb = −ıUa + λa1ξ1 + λa2ξ2, (2.2)

that is,

Jξ1 = −ıU1 + λξ2, Jξ2 = −ıU2 − λξ1, (2.3)

where λ = λ12 = −λ21. Here, F is a skew-symmetric endomorphism acting on T (M), Ua , a = 1,2 are local tangent vector
fields and ua , a = 1,2 are local one forms on M . We note that u1 and u2 depend on the choice of normals ξ1 and ξ2, but
the function λ2, where λ = g( Jξ1, ξ2), does not depend on the choice of ξ1 and ξ2. More precisely, if we choose another pair
of mutually orthogonal unit normals: ξ ′

1 and ξ ′
2, then ξ ′

1 = ξ1 cos θ − ξ2 sin θ , ξ ′
2 = ξ1 sin θ + ξ2 cos θ , or ξ ′

1 = ξ1 cos θ + ξ2 sin θ ,
ξ ′

2 = ξ1 sin θ −ξ2 cos θ , for some θ . Consequently, if the orientation is preserved, then λ′ = g( Jξ ′
1, ξ

′
2) = λ. In the same manner

we can see that λ′ = −λ if the orientation is not preserved.
Now, applying J to (2.1) and (2.2), we have

−ı X = ıF 2 X +
2∑

b=1

ub(F X)ξb +
2∑

a=1

ua(X)

(
−ıUa +

2∑
b=1

λabξb

)
, (2.4)

−ξa = −ı

(
F Ua +

2∑
b=1

λabUb

)
−

2∑
c=1

{
uc(Ua) −

2∑
b=1

λabλbc

}
ξc. (2.5)

Comparing the tangential parts in (2.4) and (2.5), we obtain

F 2 X = −X +
2∑

a=1

ua(X)Ua = −X + u1(X)U1 + u2(X)U2, (2.6)

F Ua = −
2∑

b=1

λabUb, (2.7)

that is,

F U1 = −λU2, F U2 = λU1. (2.8)

Also, using (2.5), we get −δb
a = −ub(Ua) + ∑2

c=1 λacλcb and therefore

u1(U1) = u2(U2) = 1 − λ2, u1(U2) = u2(U1) = 0. (2.9)

Since J is a skew-symmetric operator, we calculate

g(Ua, X) = ua(X), a = 1,2, (2.10)
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and consequently

g(U1, U1) = g(U2, U2) = 1 − λ2, g(U1, U2) = 0. (2.11)

The subspace Hx(M) = J Tx(M) ∩ Tx(M) of the tangent space Tx(M) is called the holomorphic tangent space. It is well-
known that a holomorphic tangent space is the maximal J -invariant subspace of Tx(M). If the dimension of the holomorphic
tangent space is constant with respect to x ∈ M , the submanifold is called CR submanifold and its complex dimension is
called the CR dimension of the submanifold [3,6]. Every n-dimensional real hypersurface of a complex manifold is a CR
submanifold of CR dimension n−1

2 .

Proposition 2.1. Let M be a real submanifold of codimension 2 of a complex manifold M and let λ be the function defined by (2.3).
Then:

(1) M is a complex hypersurface if and only if λ2(x) = 1 for any x ∈ M.
(2) M is a CR submanifold of CR dimension n−2

2 if λ(x) = 0 for any x ∈ M.

Proof. From (2.11) we conclude that λ2 = 1 implies U1 = U2 = 0. Using (2.1) and (2.6), we compute J ı X = ıF X and
F 2 X = −X . Thus, M is a J -invariant submanifold and F is the induced almost complex structure from J . Since the ambient
manifold is a complex manifold, the J -invariant submanifold M is a complex manifold, that is, a complex hypersurface.

Let λ = 0. Then, using (2.2) it follows J ıUa = ξa . For all X orthogonal to U1 and U2, using (2.1) and (2.10), it follows
J ı X = ıF X . Consequently, J Tx(M) ∩ Tx(M) = {X ∈ Tx(M) | X ⊥ span{U1, U2}} and therefore dimR Hx(M) = n − 2 for any
x ∈ M . �
Remark 1. In the following example we show that in (2) of Proposition 2.1 the converse is not true, that is, for a CR
submanifold of CR dimension n−2

2 the function λ does not always vanish.

Example 2.1. Let M be an n(= 2m)-dimensional submanifold of a complex Euclidean space Cm+1 defined by

Re zm+1 = Im zm, Im zm+1 = 0,

that is, using the real coordinate system (x1, y1, . . . , xm+1, ym+1), M is defined by(
x1, y1, . . . , xm−1, ym−1, xm, ym, ym,0

)
.

Then M is a CR submanifold of CR dimension n−2
2 and for the orthonormal vectors

ξ1 = ∂

∂ ym+1
, ξ2 = 1√

2

(
∂

∂ ym
− ∂

∂xm+1

)
,

normal to M we compute λ = 〈 Jξ1, ξ2〉 = 1√
2

.

Let ∇ be the covariant differentiation with respect to the Hermitian metric g of M . Then the Gauss and Weingarten
formulae are the following

∇ X ıY = ı∇X Y + h(X, Y ) = ı∇X Y +
2∑

a=1

ha(X, Y )ξa, (2.12)

∇ Xξa = −ı Aa X +
2∑

b=1

sab(X)ξb, (2.13)

where h(X, Y ) is the second fundamental form, Aa the shape operator with respect to the normal ξa and sab the third
fundamental form. If we put s = s12, then s21 = −s and relation (2.13) reduces to

∇ Xξ1 = −ı A1 X + s(X)ξ2, ∇ Xξ2 = −ı A2 X − s(X)ξ1. (2.14)

Using g(ıY , ξa) = 0, (2.12) and (2.13), we compute ha(X, Y ) = g(Aa X, Y ) and therefore

h(X, Y ) =
2∑

a=1

g(Aa X, Y )ξa. (2.15)

In what follows we assume that the ambient manifold M is a Kähler manifold. Then, since ∇ J = 0, applying ∇ to J ıY ,
using (2.1), (2.2), (2.12), (2.13) and comparing the tangential and normal components of the obtained relations, we obtain



20 M. Djorić, M. Okumura / Differential Geometry and its Applications 31 (2013) 17–28
(∇X F )Y =
2∑

a=1

{
ua(Y )Aa X − g(Aa X, Y )Ua

}
,

(∇X ua)(Y ) = −g(Aa X, F Y ) +
2∑

b=1

{
g(Ab X, Y )λba − ub(Y )sba(X)

}
.

Now, applying ∇ to Jξa , using (2.2), (2.13), (2.1), (2.12) and comparing the tangential and normal components of the ob-
tained relations, we get

∇X Ua = F Aa X +
2∑

b=1

{
sab(X)Ub − λab Ab X

}
, (2.16)

Xλab = g(AbUa − AaUb, X) −
2∑

c=1

{
λacscb(X) − λcbsac(X)

}
, (2.17)

that is,

∇X U1 = F A1 X − λA2 X + s(X)U2, ∇X U2 = F A2 X + λA1 X − s(X)U1, (2.18)

Xλ = g(A2U1 − A1U2, X), (2.19)

where we used the fact that λab and sab are both skew-symmetric with respect to a and b.
Now we assume that M satisfies the condition

h(F X, Y ) + h(X, F Y ) = 0, for all X, Y ∈ T (M). (2.20)

Using (2.15) it follows that the condition (2.20) is equivalent to

Aa F = F Aa, a = 1,2, (2.21)

that is, the linear map F commutes with both shape operators, A1 and A2.
We begin our investigation with the case when the submanifold M is a complex hypersurface, i.e. when the tangent space

Tx(M) and the normal space T ⊥(M) are J -invariant. Consequently, we can choose the orthonormal vectors ξ1, ξ2 which are
normal to M in such a way that ξ2 = Jξ1. Using (2.14) we conclude ∇ Xξ2 = J∇ Xξ1 = − J ı A1 X + s(X) Jξ2 = −ıF A1 X − s(X)ξ1
and therefore A2 = F A1.

Moreover, if a complex hypersurface M satisfies the condition (2.21), it follows A2
2 = F A1 F A1 = F 2 A2

1 = −A2
1. Since A1

and A2 are both symmetric, the last equation shows that A1 = A2 = 0, namely, we have proved

Theorem 2.1. If a complex hypersurface Mn of a Kähler manifold Mn+2 satisfies the condition (2.20), then Mn is a totally geodesic
submanifold.

Now, we consider the following open submanifold of M defined by

M0 = {
x ∈ M

∣∣ λ(x)
(
λ2(x) − 1

) �= 0
}
. (2.22)

Lemma 2.1. Let M0 be an opened submanifold of Mn ⊂ Mn+2 defined by (2.22). If the condition (2.20) is satisfied, then U1 and U2
are eigenvectors of both A1 and A2 in M0 . More precisely,

AaUb = αaUb, (2.23)

that is,

AaU1 = αaU1, AaU2 = αaU2, a = 1,2. (2.24)

Proof. From (2.7) and (2.21), it follows F AaUb = −∑2
c=1 λbc AaUc and F 2 AaUb = ∑2

c,d=1 λbcλcd AaUd . Therefore, using (2.6),
we obtain

−AaUb +
2∑

c=1

uc(AaUb)Uc =
2∑

c,d=1

λbcλcd AaUd. (2.25)

Putting b = 1 in (2.25), we obtain(
1 − λ2)AaU1 = g(AaU1, U1)U1 + g(AaU2, U1)U2. (2.26)



M. Djorić, M. Okumura / Differential Geometry and its Applications 31 (2013) 17–28 21
In entirely the same way, putting b = 2 in (2.25), we obtain

(
1 − λ2)AaU2 = g(AaU1, U2)U1 + g(AaU2, U2)U2. (2.27)

Hence, in M0, we have

AaU1 = αa
11U1 + αa

12U2, AaU2 = αa
12U1 + αa

22U2, a = 1,2, (2.28)

since A1 and A2 are symmetric operators. Applying F to Eqs. (2.28) and using (2.8), we find

F AaU1 = λ
(−αa

11U2 + αa
12U1

)
.

On the other hand, from (2.21) and (2.8), it follows

F AaU1 = Aa F U1 = −λAaU2 = −λ
(
αa

12U1 + αa
22U2

)
.

Comparing the above two equations, we obtain αa
11 = αa

22 and αa
12 = 0, since λ �= 0 in M0. Hence, using (2.28), we ob-

tain (2.23). �
3. Certain real submanifolds of codimension 2 of a complex space form

From now on, we assume that the ambient manifold M is a complex space form. Then the curvature tensor R of M is
given by

R(X, Y )Z = k
{

g(Y , Z)X − g(X, Z)Y + g( J Y , Z) J X − g( J X, Z) J Y − 2g( J X, Y ) J Z
}
,

for some constant k and the Codazzi equation becomes

(∇X Aa)Y − (∇Y Aa)X = k
{

ua(X)F Y − ua(Y )F X − 2g(F X, Y )Ua
} +

2∑
b=1

{
sab(X)AbY − sab(Y )Ab X

}
. (3.1)

Differentiating (2.23) covariantly and using (2.16) and (2.23), we obtain

(∇X Aa)Ub + F Aa Ab X −
2∑

c=1

λbc Aa Ac X = (Xαa)Ub + αa

(
F Ab X −

2∑
c=1

λbc Ac X

)
. (3.2)

Since ∇X Aa is a symmetric operator, it follows

g
(
(∇X Aa)Y − (∇Y Aa)X, Ub

) + g(F Aa Ab X, Y ) − g(F Aa AbY , X) −
2∑

c=1

{
λbc g(Aa Ac X, Y ) − λbc g(Aa Ac Y , X)

}
= (Xαa)ub(Y ) − (Yαa)ub(X) + αa

{
g(F Ab X, Y ) − g(F AbY , X)

}
. (3.3)

Further, using (2.21) and (2.7), the Codazzi equation (3.1) and relation (3.3) imply

k

{
ua(X)

2∑
c=1

λbcuc(Y ) − ua(Y )

2∑
c=1

λbcuc(X) − 2
(
1 − λ2)g(F X, Y )δab

}
+

2∑
c=1

αc
{

sac(X)ub(Y ) − sac(Y )ub(X)
}

+ g
(

F (Aa Ab + Ab Aa)X, Y
) −

2∑
c=1

λbc g
(
(Aa Ac − Ac Aa)X, Y

)
= (Xαa)ub(Y ) − (Yαa)ub(X) + 2αa g(F Ab X, Y ). (3.4)

Lemma 3.1. Let M0 be an open submanifold of Mn ⊂ Mn+2 defined by (2.22). Then the eigenvalues α1 and α2 , defined by (2.23),
satisfy the following equations:

Xα1 − α2s(X) = −3kλu2(X), Xα2 + α1s(X) = 3kλu1(X). (3.5)

Proof. Regarding relation (3.4), there are several cases to consider: a = 1, b = 2; a = 2, b = 1; a = b = 1 and a = b = 2.
Therefore, we compute respectively:
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{
Xα1 − α2s(X)

}
u2(Y ) − {

Yα1 − α2s(Y )
}

u2(X) = −2α1 g(F A2 X, Y ) + g
(

F (A1 A2 + A2 A1)X, Y
)
, (3.6){

Xα2 + α1s(X)
}

u1(Y ) − {
Yα2 + α1s(Y )

}
u1(X) = −2α2 g(F A1 X, Y ) + g

(
F (A2 A1 + A1 A2)X, Y

)
, (3.7)

k
{
λu1(X)u2(Y ) − λu1(Y )u2(X) − 2

(
1 − λ2)g(F X, Y )

} + 2g
(

F A2
1 X, Y

) − λg
(
(A1 A2 − A2 A1)X, Y

)
= {

Xα1 − α2s(X)
}

u1(Y ) − {
Yα1 − α2s(Y )

}
u1(X) + 2α1 g(F A1 X, Y ), (3.8)

k
{
λu1(X)u2(Y ) − λu1(Y )u2(X) − 2

(
1 − λ2)g(F X, Y )

} + 2g
(

F A2
2 X, Y

) − λg
(
(A1 A2 − A2 A1)X, Y

)
= {

Xα2 + α1s(X)
}

u2(Y ) − {
Yα2 + α1s(Y )

}
u2(X) + 2α2 g(F A2 X, Y ). (3.9)

Putting X = U1 in (3.6), we obtain {U1α1 − α2s(U1)}u2(Y ) = 0 and consequently

U1α1 − α2s(U1) = 0. (3.10)

In the same way, putting X = U2 in (3.7), we get

U2α2 + α1s(U2) = 0. (3.11)

Then, putting X = U1 in (3.8), X = U2 in (3.9), and using (3.10) and (3.11), we obtain (3.5). �
Further, substituting (3.5) into (3.6) and (3.7) we get

F (A1 A2 + A2 A1)X = 2α1 F A2 X, F (A1 A2 + A2 A1)X = 2α2 F A1 X,

i.e. α1 F A2 X = α2 F A1 X . Consequently, relation (2.6) implies

α1 A2 X = α2 A1 X . (3.12)

Lemma 3.2. Under the above assumptions, if the complex space form M is not a complex Euclidean space, then M0 = ∅.

Proof. Differentiating (3.12) covariantly and using (3.5) it follows{
3kλu1(X) − α1s(X)

}
A1Y + α2(∇X A1)Y = {−3kλu2(X) + α2s(X)

}
A2Y + α1(∇X A2)Y .

Interchanging X and Y and subtracting the obtained equations, we get{
3kλu1(X) − α1s(X)

}
A1Y − {

3kλu1(Y ) − α1s(Y )
}

A1 X + α2
{
(∇X A1)Y − (∇Y A1)X

}
= {−3kλu2(X) + α2s(X)

}
A2Y − {−3kλu2(Y ) + α2s(Y )

}
A2 X + α1

{
(∇X A2)Y − (∇Y A2)X

}
.

Substituting (3.1) into the above equation, we compute

3kλ
{

u1(X)A1Y − u1(Y )A1 X
} + α2k

{
u1(X)F Y − u1(Y )F X − 2g(F X, Y )U1

}
= −3kλ

{
u2(X)A2Y − u2(Y )A2 X

} + α1k
{

u2(X)F Y − u2(Y )F X − 2g(F X, Y )U2
}
. (3.13)

Putting X = U1 in (3.13) and making use of (2.8), (2.9) and (2.24), we obtain(
1 − λ2)k{3λA1Y + α2 F Y } − kλ

{
3α1u1(Y ) + α2u2(Y )

}
U1 + kλ

{−3α1u2(Y ) + α2u1(Y )
}

U2 = 0. (3.14)

Since dim M � 4, we can choose the eigenvector Y of A1 which is orthogonal to both U1 and U2. As F Y is orthogonal to
U1 and U2, it follows that A1Y , F Y , U1, U2 are linearly independent and hence (3.14) implies

α2k
(
1 − λ2) = 0. (3.15)

Next putting X = U2 in (3.13), we compute(
1 − λ2)k{3λA2Y − α1 F Y } − kλ

{
3α2u1(Y ) − α1u2(Y )

}
U1 − kλ

{
3α2u2(Y ) + α1u1(Y )

}
U2 = 0.

Here we take the eigenvector Y of A2 and proceeding in entirely in the same way as to get (3.15), we obtain

α1k
(
1 − λ2) = 0. (3.16)

If M is a non-Euclidean complex space form, namely k �= 0, relations (3.15) and (3.16) imply α1 = α2 = 0 on M0, contrary
to (3.5). Hence M0 = ∅. �
Theorem 3.1. Let M be a non-Euclidean complex space form. If a real submanifold M of codimension two satisfies the condition (2.20),
then one of the following holds.
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(1) M is a totally geodesic complex hypersurface.
(2) M is a CR submanifold of CR dimension n−2

2 with λ = 0.

Proof. By Lemma 3.2, it follows M0 = ∅ which means that 1 − λ2 = 0 or λ = 0 in M . Combining this with Proposition 2.1
and Theorem 2.1, the theorem follows. �
4. Certain real submanifolds of codimension 2 of a complex Euclidean space

In this section, we consider a real submanifold Mn of codimension 2 of a complex Euclidean space C
n+2

2 , which satisfies
relation (2.20). Especially, we investigate its opened submanifold M0, defined by relation (2.22).

Lemma 4.1. Under the above assumptions, the sum α2
1 + α2

2 is constant, where α1 and α2 are defined by (2.23).

Proof. Since the ambient manifold is a complex Euclidean space, the holomorphic sectional curvature vanishes identically,
that is k = 0 and the equations in (3.5) become

Xα1 = α2s(X), Xα2 = −α1s(X). (4.1)

Therefore, X(α2
1 + α2

2) = 2(α1 Xα1 + α2 Xα2) = 0, which completes the proof. �
We continue considering first the case α2

1 + α2
2 �= 0. It is clear that

ξ ′
1 = 1√

α2
1 + α2

2

(α1ξ1 + α2ξ2), ξ ′
2 = − 1√

α2
1 + α2

2

(α2ξ1 − α1ξ2)

are orthonormal normals to M0 for which Jξ ′
1 = −ıU ′

1 + λξ ′
2, Jξ ′

2 = −ıU ′
2 − λξ ′

1, where

U ′
1 = 1√

α2
1 + α2

2

(α1U1 + α2U2), U ′
2 = − 1√

α2
1 + α2

2

(α2U1 − α1U2). (4.2)

Also, using (2.14) and (4.1), we compute

∇ Xξ ′
1 = −1√

α2
1 + α2

2

ı(α1 A1 + α2 A2)X, ∇ Xξ ′
2 = 1√

α2
1 + α2

2

ı(α2 A1 − α1 A2)X,

that is,

A′
1 X = 1√

α2
1 + α2

2

(α1 A1 + α2 A2)X, A′
2 X = − 1√

α2
1 + α2

2

(α2 A1 − α1 A2)X, (4.3)

and

s′(X) = 0, (4.4)

which means that we have chosen the orthonormal normals ξ ′
1 and ξ ′

2 in such a way that the normal connection is trivial.

Using relations (2.24) and (4.3), we compute A′
1Ua =

√
α2

1 + α2
2 Ua , A′

2Ua = 0. Consequently, using (4.2), we obtain

A′
1U ′

a =
√

α2
1 + α2

2 U ′
a , A′

2U ′
a = 0. This shows that the corresponding eigenvalues α′

1, α′
2 of A′

a for U ′
a are

α′
1 =

√
α2

1 + α2
2, α′

2 = 0. (4.5)

Since in all the considerations throughout the previous sections the orthonormal normals ξ1 and ξ2 were arbitrary, the
corresponding relations are also satisfied for the orthonormal normals ξ ′

1 and ξ ′
2. Hence from (3.12) and (4.5), it follows

A′
2 X = 0. (4.6)

Therefore, as α2
1 + α2

2 �= 0, we conclude that the first normal space N1(X) of M0 in C
n+2

2 is span{ξ1}. Using (4.4), we
conclude that N1(x) is invariant under parallel translation with respect to the normal connection. Therefore, we can apply
the codimension reduction theorem by Erbacher [2] and obtain
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Lemma 4.2. Under the above assumptions, there exists an (n + 1)-dimensional totally geodesic Euclidean subspace En+1 of C
n+2

2 such
that M0 is a hypersurface of En+1 .

According to Lemma 4.2, we can regard the submanifold M0 as a hypersurface of a Euclidean space En+1. Let us denote

by ı1 the immersion of M0 into En+1 and by ı2 the totally geodesic immersion of En+1 into C
n+2

2 . Then from the Gauss
formula (2.12), it follows ∇′

X ı1Y = ı1∇X Y + g(A X, Y )ξ ′′ , where ξ ′′ is a unit normal vector field to M0 in En+1 and A is the
corresponding shape operator. Thus, using the Gauss formula and ı = ı2 ◦ ı1, we derive

∇ X ı2 ◦ ı1Y = ı2∇′
X ı1Y = ı2

(
ı1∇X Y + g(A X, Y )ξ ′′), (4.7)

since En+1 is totally geodesic in C
n+2

2 . Comparing relation (4.7) with relation (2.12) and using (4.6), it follows ξ ′
1 = ı2ξ

′′ and
A = A′

1.

Using relation (3.8) it follows F A′
1

2 X = α′
1 F A′

1 X and therefore

A′
1

2 X = α′
1 A′

1 X . (4.8)

We conclude from (4.8), (4.5) and Lemma 4.1 that A′
1 has at most two constant distinct eigenvalues: α′

1 and 0. Thus,
from the hypersurface theory of Euclidean space (see for example Theorem 11.4 [1]), we conclude that M0 is one of the
following: open submanifold of an n-dimensional hypersphere Sn , of n-dimensional hyperplane En , of the product manifold
of an r-dimensional sphere and an (n−r)-dimensional Euclidean space Sr ×En−r . On the other hand, since A′

1 = A, it follows
A′

1 F = F A′
1, which implies that if X is an eigenvector of A′

1, then F X is also an eigenvector of A′
1 for the corresponding

eigenvalue for X . Therefore, the multiplicities of the eigenvalues α′
1 and 0 are both even numbers.

Now we consider the case α2
1 + α2

2 = 0, that is, α1 = α2 = 0. Taking k = 0 and α1 = α2 = 0 in (3.4), we obtain

F (Aa Ab + Ab Aa)X −
2∑

c=1

λbc(Aa Ac − Ac Aa)X = 0. (4.9)

Putting a = b = 1, a = b = 2 and a = 1, b = 2 in (4.9) we get, respectively,

2F A2
1 X − λ(A1 A2 − A2 A1)X = 0, (4.10)

2F A2
2 X − λ(A1 A2 − A2 A1)X = 0, (4.11)

(A1 A2 + A2 A1)F X = 0. (4.12)

Using (4.10), (4.11) and (2.21), it follows A2
1 F X = A2

2 F X and since α1 = α2 = 0, we conclude

A2
1 X = A2

2 X, (A1 A2 + A2 A1)X = 0. (4.13)

Substituting the second equation of (4.13) into the first equation of (4.10) and using (2.21), we compute

A2
1 F X = −λA2 A1 X . (4.14)

Now, let us suppose that there exists a non-zero eigenvalue β of A1 and let X be the corresponding eigenvector, that is,
A1 X = β X . Then, (2.21) yields that F X is also an eigenvector of A1, corresponding to β . Therefore, using (4.14), we compute
β2 F X = −λβ A2 X and β2 A2 F X = −λβ A2

2 X = −λβ A2
1 X , that is,

A2 F X = −λβ X . (4.15)

On the other hand, from the second equation of (4.13), it follows A1 A2 F X = −A2 A1 F X = −β A2 F X . Substituting (4.15)
into the last equation, we have 2λβ X = 0 and hence λ = 0. Then from (4.10), we conclude A2

1 = A2
2 = 0, since β �= 0.

Consequently, A1 = A2 = 0, submanifold M0 is totally geodesic and all eigenvalues of A1 and A2 are 0, which contradicts
our assumption that there exists a non-zero eigenvalue β of A1.

A slight change in the proof shows that there does not exist a non-zero eigenvalue of A2. Therefore, it follows that M0
is totally geodesic and M0 is an open submanifold of an n-dimensional Euclidean space En .

Theorem 4.1. Let M be a connected real submanifold of codimension 2 of a complex Euclidean space M = C
n+2

2 . If M satisfies the
condition (2.20), then M is one of the following:

(1) n-dimensional sphere Sn,
(2) n-dimensional Euclidean space En,
(3) product manifold of an r-dimensional sphere and an (n − r)-dimensional Euclidean space Sr × En−r , where r is an even number,
(4) CR submanifold of CR dimension n−2

2 with λ = 0.
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Proof. Let M1 = {x ∈ M | λ(x)(1 − λ2(x)) = 0}. Then, M = M0 ∪ M1, M0 ∩ M1 = ∅. If M1 is an open set, then M = M1 or
M = M0, since M is connected. When M = M1, then on M we have λ = 0 or λ2 = 1. Using the first case in Proposition 2.1,
we obtain (4) and using the second case, it follows that M is a complex hypersurface En , which is a special case of (2).
When M = M0, we have (1), (2), (3). If M1 is not an open set, then by definition, M1 is a closed set in M and dim M1 < n
and M1 is a subset of measure 0 in M . Hence, M is one of (1), (2), (3), which completes the proof. �
5. Real submanifolds of codimension 2 of a complex space form, with λ = 0

Having in mind the facts and theorems proved in Sections 3 and 4, we proceed with the study of real submanifolds of
codimension 2 of a complex space form, with λ = 0.

The following example provides a large class of real submanifolds of codimension 2 of a complex space form satisfying
λ = 0, since there are many real hypersurfaces of a complex Euclidean space.

Example 5.1. Let M ′
1 and M ′

2 be complex manifolds and J1 and J2 the natural almost complex structure of M ′
1 and M ′

2
respectively. Then M = M ′

1 × M ′
2 is a complex manifold with the almost complex structure J = J1 ⊗ J2. For real hyper-

surfaces Ma of M ′
a , a = 1,2 with unit normals ξ ′

a to Ma , the product M = M1 × M2 is a submanifold of codimension 2 of
M and ξ1 = (ξ ′

1,0) and ξ2 = (0, ξ ′
2) are orthonormal unit normals to M . Then M is a submanifold of codimension 2 with

λ = 0. Especially, for a complex Euclidean space C
n+2

2 , the product manifold M of respective real hypersurfaces M1 and M2
of mutually orthogonal complex subspaces Cp and Cq is a submanifold of codimension 2 with λ = 0.

If we take λ = 0 in (2.26) and (2.27), we obtain

AaUb =
2∑

c=1

αa
bcUc, a,b = 1,2. (5.1)

Since Aa is symmetric, it follows αa
bc = g(AaUb, Uc) = αa

cb . Differentiating relation (5.1) covariantly, we compute

(∇X Aa)Ub + Aa∇X Ub =
2∑

c=1

{
Xαa

bcUc + αa
bc∇X Uc

}
. (5.2)

Substituting (2.18) into (5.2) and using (2.26), (2.27), (2.21) and λ = 0, we obtain

(∇X Aa)Ub + F Aa Ab X +
2∑

d,e=1

sbd(X)αa
de Ue =

2∑
d=1

{(
Xαa

bd +
2∑

c=1

αa
bcscd(X)

)
Ud

}
+

2∑
c=1

αa
bc F Ac X . (5.3)

Since ∇X Aa is symmetric, we have g((∇X Aa)Y , Ub) = g((∇X Aa)Ub, Y ). Therefore, using (5.3), we compute

g
(
(∇X Aa)Y − (∇Y Aa)X, Ub

) + g(F Aa Ab X, Y ) − g(F Aa AbY , X) +
2∑

d,e=1

{
sbd(X)αa

deue(Y ) − sbd(Y )αa
deue(X)

}

=
2∑

d=1

{(
Xαa

bd +
2∑

c=1

αa
bcscd(X)

)
ud(Y ) −

(
Yαa

bd +
2∑

c=1

αa
bcscd(Y )

)
ud(X)

}

+
2∑

d=1

{
αa

bd g(F Ad X, Y ) − αa
bd g(F AdY , X)

}
.

Using the Codazzi equation (3.1) we have

−2kg(F X, Y )δab + g
(

F (Aa Ab + Ab Aa)X, Y
) − 2

2∑
c=1

αa
bc g(F Ac X, Y )

=
2∑

d=1

[
Xαa

bd +
2∑

c=1

{
αa

bcscd(X) − αa
cdsbc(X) − αc

bdsac(X)
}]

ud(Y )

−
2∑[

Yαa
bd +

2∑{
αa

bcscd(Y ) − αa
cdsbc(Y ) − αc

bdsac(Y )
}]

ud(X). (5.4)

d=1 c=1
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If in (5.4) we put Y = Ue , then, since λ = 0, relation (2.8) implies

Xαa
be +

2∑
c=1

{
αa

bcsce(X) − αa
cesbc(X) − αc

besac(X)
}

=
2∑

d=1

[
Ueα

a
bd +

2∑
c=1

{
αa

bcscd(Ue) − αa
cdsbc(Ue) − αc

bdsac(Ue)
}]

ud(X). (5.5)

Substituting (5.5) into (5.4), we obtain

−2kg(F X, Y )δab + g
(
(Aa Ab + Ab Aa)F X, Y

) − 2
2∑

c=1

αa
bc g(Ac F X, Y ) =

2∑
e,d=1

γ a
ebdud(X)ue(Y ), (5.6)

where

γ a
ebd = βa

ebd − βa
dbe,

βa
ebd = Ueα

a
bd +

2∑
c=1

{
αa

bcscd(Ue) − αa
cdsbc(Ue) − αc

bdsac(Ue)
}
.

Replacing Y by U f in (5.6) and using (2.21), we obtain

2∑
d,e=1

γ a
ebdud(X)δe

f =
2∑

d=1

γ a
f bdud(X) = 0. (5.7)

Substituting (5.7) into (5.6), we get

−2kg(F X, Y )δab + g
(
(Aa Ab + Ab Aa)F X, Y

) − 2
2∑

c=1

αa
bc g(F Ac X, Y ) = 0. (5.8)

Taking a = b and a �= b in (5.8), we compute

−kF X + A2
a F X −

2∑
c=1

αa
ac Ac F X = 0, (5.9)

(Aa Ab + Ab Aa)F X − 2
2∑

c=1

αa
bc Ac F X = 0, a �= b. (5.10)

Lemma 5.1. Let M be a complex space form. If a real submanifold M of M of codimension 2, with λ = 0, satisfies the condition (2.20),
then relations (5.9) and (5.10) hold.

6. The case when M is a hypersurface of a totally umbilical hypersurface M ′ ⊂ C
n+2

2

In this section, we consider real submanifolds Mn of M = C
n+2

2 with λ = 0, such that there exists a totally umbilical

hypersurface M ′ of C
n+2

2 such that M ⊂ M ′ .
Let us denote by ξ ′

1 the unit normal vector field of the immersion ı1 : M → M ′ and by ξ ′
2 the unit normal vector field

of the immersion ı2 : M ′ → C
n+2

2 . Consequently, the immersion ı : M → C
n+2

2 is ı = ı2 ◦ ı1. Since M ′ is totally umbilical, the
shape operator A′ of M ′ satisfies A′ = cI , where I is the identity map and c is constant, since the ambient manifold is a
Euclidean space. Then, using the Weingarten formula (2.13), we have for X ∈ T (M),

∇ Xξ ′
2 = −ı2 A′ı1 X = −ı2cı1 X = −ıc X . (6.1)

Choosing the orthonormals to M in C
n+2

2 in such a way that ξ1 = ı2ξ
′
1 and ξ2 = ξ ′

2, we obtain

∇ Xξ1 = ∇ X ı2ξ
′
1 = ı2∇′

Xξ ′
1 + h′(ı1 X, ξ ′

1

) = −ı2 ◦ ı1 A X + cg′(ı1 X, ξ1)ξ
′
2 = −ı A X, (6.2)

where A is the shape operator of M in M ′ and h′ and g′ are respectively the second fundamental form and the induced

Riemannian metric of M ′ ⊂ C
n+2

2 . Comparing (6.1) and (6.2) with (2.14), we obtain that A = A1 and s = 0. Since we discuss
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the case λ = 0, using (2.19), we compute A2U1 = A1U2. Therefore, having in mind the notation from (2.28), it follows
α1

21 = α1
12 = c, α1

22 = 0 and

A1U1 = α1
11U1 + cU2, A1U2 = cU1. (6.3)

Since A2 = cI , relation (5.9) reduces to

A2
1 F X − α1

11 A1 F X − c2 F X = 0,

for a = 1. In the sequel we use the notation α1
11 = α. Further, using (6.3), we compute

A2
1Ua − αA1Ua − c2Ua = 0, a = 1,2.

Thus we proved that

A2 X − αA X − c2 X = 0 (6.4)

holds for any X ∈ T (M).

Lemma 6.1. Let Mn be a real submanifold of M = C
n+2

2 which satisfies the condition (2.20), with λ = 0, such that there exists a totally

umbilical hypersurface M ′ of C
n+2

2 , i.e. A′ = cI , with M ⊂ M ′ . If c �= 0, then the function α is constant.

Proof. Since s = 0 and λ = 0, relation (5.5) becomes

Xα = βu1(X), (6.5)

where β = U1α. Then, from the first equation of (2.18) and (2.21), we obtain

[X, Y ]α = XYα − Y Xα = (Xβ)u1(Y ) − (Y β)u1(X) − 2βg(A F X, Y ) + βu1([X, Y ]). (6.6)

Using again (6.5), it follows from (6.6)

(Xβ)u1(Y ) − (Y β)u1(X) = 2βg(A F X, Y ). (6.7)

Since λ = 0, using (2.9) and (2.8), if we put Y = U1 in (6.7), we compute Xβ = (U1β)u1(X). Substituting this into (6.7), we
conclude β = 0 or A F X = 0. However, if A F X = 0, using (6.4), we get c = 0, which is a contradiction. �
Theorem 6.1. Let Mn be a real submanifold of codimension two of a complex Euclidean space C

n+2
2 with λ = 0 which satisfies the

condition (2.20). If there exists a totally umbilical hypersurface M ′ of C
n+2

2 , i.e. A′ = cI , c �= 0, such that M ⊂ M ′ , then M is a product
of two odd-dimensional spheres.

Proof. Since the shape operator A satisfies relation (6.4) for a constant α, we can apply Lemma 1.1 in [4] (cited as Theo-
rem 13.2 in [1]) and obtain ∇ A = 0. Hence, by theorem of Ryan [5], we obtain that M is a product of two spheres.

On the other hand, Lemma 6.1 implies that M has exactly two constant principal curvatures k1 and k2. It is not possible
that A = A1 has only one principal curvature k, because, using (6.3), we compute cU1 = kU2, which is impossible since U1
and U2 are mutually orthogonal. Moreover, these principal curvatures satisfy

k1 + k2 = α, k1k2 = −c2. (6.8)

For V 1 = k1U1 + cU2, V 2 = cU1 −k1U2, using (6.8), it is easily verified that AV 1 = k1 V 1, AV 2 = k2 V 2. For such an X ∈ T (M)

that A X = ka X , (a = 1,2), using (6.4), it follows A F X = ka F X (a = 1,2) respectively. This shows that the distributions
defined by the eigenspaces corresponding to k1 and k2 are both odd-dimensional. Since the spheres S1 and S2 are the
integral submanifolds of these distributions (p. 85 in [1]), they are both odd-dimensional, which completes the proof. �

Now we consider the case c = 0. This means that M ′ is a totally geodesic hypersurface of C
n+2

2 , that is, there exists a

hyperplane En+1 such that M ⊂ En+1 ⊂ C
n+2

2 and in this case the shape operator A satisfies

A2 X − αA X = 0. (6.9)

Here, if α = 0, M is a totally geodesic hypersurface of En+1 and M is a Euclidean space En .
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If α �= 0, relation (6.9) implies that M has exactly 2 distinct principal curvatures: α and 0. Let

Mα = {
x ∈ M

∣∣ α(x) �= 0
}
,

Tα(x) = {
Xx ∈ Tx(Mα)

∣∣ Ax Xx = αXx
}
,

T0(x) = {
Xx ∈ Tx(M0)

∣∣ Ax Xx = 0
}
,

namely, Mα is an open submanifold of M , Tα(x) and T0(x) make distributions Tα and T0 of Mα , respectively.
Further, for X, Y ∈ Tα , using the Codazzi equation for a hypersurface of a Euclidean space, we have

A[X, Y ] = A∇X Y − A∇Y X = ∇X (AY ) − (∇X A)Y − ∇Y (A X) + (∇Y A)X

= (Xα)Y + α∇X Y − (Yα)Y X − α∇Y X = (Xα)Y − (Yα)X + α[X, Y ],
that is,

(A − α I)[X, Y ] = (Xα)Y − (Yα)X . (6.10)

Since (A − α I)[X, Y ] = (A − α I)([X, Y ]α + [X, Y ]0) = −α[X, Y ]0, the left-hand side of (6.10) belongs to T0 and the
right-hand side belongs to Tα . This shows that α is constant on Mα and A[X, Y ] = α[X, Y ].

Since α is differentiable, α is constant on M . From (6.3), it follows U2 ∈ T0(x) which shows that M cannot be a totally
umbilical hypersurface of En+1. Thus, if α �= 0, then A has exactly two distinct constant eigenvalues and, by standard
argument, we know that M is a product of m-dimensional sphere and an (n − m)-dimensional Euclidean space. Discussion
similar to that in the proof of Theorem 6.1 shows that the multiplicity of α is the odd number. If α = 0, then M is a totally
geodesic hypersurface. Thus we have proved

Theorem 6.2. Let M be a real submanifold of codimension two of a complex Euclidean space C
n+2

2 with λ = 0 which satisfies the

condition (2.20). If there exists a totally geodesic hypersurface M ′ of C
n+2

2 such that M ⊂ M ′ , then M is one of the following:

(1) n-dimensional hyperplane En,
(2) product manifold of an odd-dimensional sphere and a Euclidean space: S2p+1 × En−2p−1 .
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