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1. Introduction

Let M be a real submanifold of a complex manifold M and ] be the natural almost complex structure of M. If the
holomorphic tangent space Hy(M) = JTx(M) N Tx(M) has constant dimension with respect to x € M, the submanifold M is
called a CR submanifold and the constant complex dimension is called the CR dimension of M [3,6].

In this paper we study real submanifolds of codimension 2 of a complex manifold. It is clear that the codimension 2 case
is fundamental in the study of even-dimensional real submanifolds of a complex manifold. In this direction, in [8], K. Yano
and the second author of this paper studied submanifolds of codimension 2 of a complex Euclidean space. The known results
show that the situation for submanifolds of codimension 2 is more complicated than in the case of real hypersurfaces. For
example, a complex hypersurface, which is a CR submanifold of CR dimension % is a real submanifold of codimension 2,
but there also exist real submanifolds of codimension 2 which are not CR submanifolds (for example, an even-dimensional
sphere of codimension 2 of an even-dimensional Euclidean space, see [8]). The aim of this paper is to extend the results
obtained in [8] for complex Euclidean space and, moreover, to investigate real submanifolds of codimension 2, but not only
of complex Euclidean space but also of other complex space forms.

In Section 2 we develop the theory of submanifolds of codimension 2 of a Kihler manifold and we derive some fun-
damental formulae for later use. We also prove that if a complex hypersurface satisfies the algebraic condition on the
(1, 1)-tensor, induced from the almost complex structure J, and the second fundamental form of the submanifold, then the

submanifold is a totally geodesic complex hypersurface. In Section 3, we restrict our investigation to the case when the
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ambient manifold is a non-Euclidean complex space form. When the ambient manifold is a complex Euclidean space, in
Section 4, we obtain similar, but more rigorous results than those presented in [8].

From the results derived in Sections 3 and 4, we conclude that the case A = 0 is significant, where X is a function defined
on the real submanifold of codimension 2. Therefore, in Section 5 we examine submanifolds M of a complex Euclidean
space, with A =0, and in Section 6 we study even more particular case, when there exists a totally umbilical hypersurface
M’ of a complex Euclidean space such that M c M’. We recall here that K. Yano studied in [7] hypersurfaces of an odd-
dimensional sphere satisfying a certain algebraic condition. However, the results obtained in [7] establish some properties of
a vector field defined on the hypersurface and not of the hypersurface itself. Our purpose is to give a classification theorem

for hypersurfaces M c M’ C '3,
Throughout this paper we assume that all submanifolds are connected.

2. Submanifolds of codimension 2 of a complex manifold

Let M be a real (n+2)-dimensional complex manifold, J its natural almost complex structure and g its Hermitian metric.
Further, let M be an n-dimensional submanifold of M with the immersion : of M into M where we also denote by : the
differential of the immersion, or we omit to mention ¢, for brevity of notation. Then the tangent bundle T (M) is identified
with a subbundle of T(M) and a Riemannian metric g of M is induced from the Riemannian metric g of M in such a way
that g(X,Y)=g(X,1Y) where X,Y € T(M). Let &; and & be mutually orthogonal unit normals to M. Then

2
JIX=1FX+ Y u'(X)k = 1FX +u' (X)& + u*(X)éa, (2.1)
a=1
2
Jéa=—1Ua+)_avép = —1Ua + raré1 + ha2a, (2.2)
b=1
that is,
J&1=—1Uy +2&,  J&=—1U; — A&, (2.3)
where A = A1 = —A1. Here, F is a skew-symmetric endomorphism acting on T(M), Uy, a =1, 2 are local tangent vector

fields and u%, a =1, 2 are local one forms on M. We note that u! and u? depend on the choice of normals & and &, but
the function A2, where A = g(J£&1, &), does not depend on the choice of £ and &,. More precisely, if we choose another pair
of mutually orthogonal unit normals: & and &, then & = £; cos0 — &, sin@, &, = £;sinf + &, cos 6, or & =& cosf +&sind,
&) =& sinf —& cos6, for some 6. Consequently, if the orientation is preserved, then A’ = g(J&;, &) = A. In the same manner
we can see that A’ = —A if the orientation is not preserved.

Now, applying J to (2.1) and (2.2), we have

2 2 2
—IX=1FX+ Y uP(FX)& + Y u’(X) (-wa + Zxabsb>, (2.4)

b=1 a=1 b=1

2 2 2
—Eg=—1 (Fua + me) - Z{uC(UG) - Zxabxbc]sc. (2.5)

b=1 c=1 b=1
Comparing the tangential parts in (2.4) and (2.5), we obtain

2
F2X=—X+Zu“(X)Ua=—X+u1(X)U1 +u?(X)U,, (2.6)
a=1
2
FUa:_Z)LabUbs (2.7)
b=1
that is,
FU1 =—AU>y, FU, = AU4. (2.8)

Also, using (2.5), we get —53 =—ubUy) + Zgzl Aacicp and therefore
u'Un=u’U)=1-2%  u'(Uy)=u’(Uy)=0. (2.9)
Since | is a skew-symmetric operator, we calculate

gWUq, X)=u'(X), a=1,2, (2.10)
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and consequently

g(U1,U) =g(Us, Ux)=1—2%  g(Uy,Uz) =0. (2.11)

The subspace Hy(M) = JTx(M) N Tx(M) of the tangent space Tx(M) is called the holomorphic tangent space. It is well-
known that a holomorphic tangent space is the maximal J-invariant subspace of Tx(M). If the dimension of the holomorphic
tangent space is constant with respect to x € M, the submanifold is called CR submanifold and its complex dimension is
called the CR dimension of the submanifold [3,6]. Every n-dimensional real hypersurface of a complex manifold is a CR

n

submanifold of CR dimension %]

Proposition 2.1. Let M be a real submanifold of codimension 2 of a complex manifold M and let A be the function defined by (2.3).
Then:

(1) M is a complex hypersurface if and only if \2(x) = 1 for any x € M.
(2) M is a CR submanifold of CR dimension % if A(x) =0 for any x € M.

Proof. From (2.11) we conclude that A% =1 implies U; = U, = 0. Using (2.1) and (2.6), we compute JiX =:FX and
F2X = —X. Thus, M is a J-invariant submanifold and F is the induced almost complex structure from J. Since the ambient
manifold is a complex manifold, the J-invariant submanifold M is a complex manifold, that is, a complex hypersurface.

Let A = 0. Then, using (2.2) it follows JiUg; = &,. For all X orthogonal to U; and Us, using (2.1) and (2.10), it follows
JiX =1FX. Consequently, JTx(M) N Tx(M) ={X € Tx(M) | X L span{Uq, U,}} and therefore dimg Hy(M) =n — 2 for any
xeM. O

Remark 1. In the following example we show that in (2) of Proposition 2.1 the converse is not true, that is, for a CR

submanifold of CR dimension % the function A does not always vanish.

Example 2.1. Let M be an n(= 2m)-dimensional submanifold of a complex Euclidean space C™*! defined by

m+1

Rez™ 1 =Imz",  ImZ"! =0,

that is, using the real coordinate system (x!, y!,...,x™*t1 ym+1y M is defined by
(x' yl Xy KTy YT 0).

Then M is a CR submanifold of CR dimension % and for the orthonormal vectors

K 109 i
Sl—ayTH, gz—ﬁ 8y—m_8xm—+1’

normal to M we compute A = (J§1, &) = %Fz

Let V be the covariant differentiation with respect to the Hermitian metric § of M. Then the Gauss and Weingarten
formulae are the following

2
VxtY =1VxY —|—h(X,Y)=zVXY+Zha(X, Y)&,, (212)
a=1
2
Vxéa=—1AcX+)_ sab(X)%p, (213)
b=1

where h(X,Y) is the second fundamental form, A, the shape operator with respect to the normal & and sg the third
fundamental form. If we put s =s1,, then s3; = —s and relation (2.13) reduces to

Vxé1 = —1A1X +5(X)&, V€ = —1A2X — s(X)&;. (2.14)
Using g(1Y,&;) =0, (2.12) and (2.13), we compute h?(X,Y) = g(AqX,Y) and therefore
2
h(X,Y) =" g(AdX,Y)&. (215)
a=1

In what follows we assume that the ambient manifold M is a Kihler manifold. Then, since V J =0, applying V to J:Y,
using (2.1), (2.2), (2.12), (2.13) and comparing the tangential and normal components of the obtained relations, we obtain
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2
(VxF)Y =) {u’(Y)AaX — g(AaX, Y)Uq},
a=1
2
(Vxu®)(Y) = —g(AdX, FY) + > {2(ApX, Y)pa — u(V)$pa(X)}.
b=1

Now, applying V to J&, using (2.2), (2.13), (2.1), (2.12) and comparing the tangential and normal components of the ob-
tained relations, we get

2
VxUa=FAdX + Y {sa(X)Up — AapAp X}, (216)
b=1
2
Xhap = 8(ApUa — AaUp, X) = > {hacSch(X) — AepSac(X)}. (217)
c=1
that is,
VxU1 =FA1 X —AAX +s(X)U3, VxUy =FA2X + L A1 X —s(X)Uq, (2.18)
X1 =g(AU1 — A1U2, X), (2.19)

where we used the fact that A4, and sg, are both skew-symmetric with respect to a and b.
Now we assume that M satisfies the condition

h(FX,Y)+h(X,FY)=0, forallX,Y eT(M). (2.20)
Using (2.15) it follows that the condition (2.20) is equivalent to
AF=FA,;, a=1,2, (2.21)

that is, the linear map F commutes with both shape operators, A1 and Aj.

We begin our investigation with the case when the submanifold M is a complex hypersurface, i.e. when the tangent space
Tx(M) and the normal space T+ (M) are J-invariant. Consequently, we can choose the orthonormal vectors &;, £& which are
normal to M in such a way that & = J&;. Using (2.14) we conclude Vx& = JVx& = — JiA1 X +5(X) J& = —1FA1 X —s(X)&
and therefore Ay = FA;.

Moreover, if a complex hypersurface M satisfies the condition (2.21), it follows A3 = FA1FA; = F2A? = —A2. Since A;
and A; are both symmetric, the last equation shows that A; = A, =0, namely, we have proved

Theorem 2.1. If a complex hypersurface M" of a Kahler manifold M2 satisfies the condition (2.20), then M" is a totally geodesic
submanifold.

Now, we consider the following open submanifold of M defined by
Mo = {xe M | x(x)(A*(x) — 1) #0}. (2.22)
Lemma 2.1. Let Mg be an opened submanifold of M™ C M™2 defined by (2.22). If the condition (2.20) is satisfied, then Uy and U,
are eigenvectors of both A1 and A; in M. More precisely,
AqUp = aqUp, (2.23)
that is,

AU =aqUq, AUy =a Uy, a=1,2. (2.24)

Proof. From (2.7) and (2.21), it follows FA,Up = — 25:1 ApcAqUce and F2A.Up, = Z?,dﬂ AbcrcdAqUyg. Therefore, using (2.6),
we obtain

2 2
~AqUp + D u(AUp)Uc = ) hpchedAala. (2.25)
c=1 c,d=1

Putting b =1 in (2.25), we obtain

(1=2%)AqU1 = g(AqU1, U1)U1 + g(AqUa, U1)Us. (2.26)
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In entirely the same way, putting b =2 in (2.25), we obtain

(1= 2%)AqUz = g(AqU1, U2)U1 + g(AqU2, U2)Us. (2.27)

Hence, in My, we have

AaU1:Ol‘1]lU1+Ol‘1]2U2, AaU2:(X‘]12U] +C(32U2, a=1,2, (2.28)

since A1 and A are symmetric operators. Applying F to Eqs. (2.28) and using (2.8), we find

FAqU1 =A(—af Uz + af,Uq).
On the other hand, from (2.21) and (2.8), it follows

FAU1 = AgFUy = —1AqUz = —A(a§, U1 + a5,U>).
Comparing the above two equations, we obtain of, = af, and «f, =0, since 1 # 0 in Mo. Hence, using (2.28), we ob-
tain (2.23). O

3. Certain real submanifolds of codimension 2 of a complex space form

From now on, we assume that the ambient manifold M is a complex space form. Then the curvature tensor R of M is
given by
RX.NZ=k{g(Y, D)X -8X,2)Y +E(JY, D)X -8UX,Z)JY —28(JX,Y)]Z},

for some constant k and the Codazzi equation becomes

2
(VxAd)Y — (VyA) X =k{u®(X)FY —u®(Y)FX —2g(FX,Y)Uq} + Z{sab(X)AbY —Sap(Y)ApX}. (3.1)
b=1

Differentiating (2.23) covariantly and using (2.16) and (2.23), we obtain

2 2
(VxA)Up + FAApX = Y hpcAaAcX = (Xaa)Up + g (FAbX - ZkbCACX) (3.2)

c=1 c=1

Since VxAq is a symmetric operator, it follows

2
2((VxA)Y — (VYA X, Up) + g(FAaAL X, Y) — 8(FAGARY, X) = > {Apc8(AdAcX.Y) — Apcg(AaAcY, X)}

c=1
= (Xagu" (V) = (Yau’ (X) + aa{g(FApX, Y) — g(FARY, X)}. (33)
Further, using (2.21) and (2.7), the Codazzi equation (3.1) and relation (3.3) imply

2 2 2
kA ut(X) Y Aot (Y) —u(Y) Y apet(X) — 2(1 = 23)g(FX, V)b { + Y ete{sac (U’ (Y) = sqe(V)u (X)}
c=1 c=1 c=1
2
+ 8(F(AaAp + ApA)X. Y) = Y hpc&((AaAc — AcAd)X. Y)
c=1
= (Xag)u?(Y) = (Yag)uP (X) + 20,8 (FAp X, Y). (3.4)

Lemma 3.1. Let Mg be an open submanifold of M™ c M™"+2 defined by (2.22). Then the eigenvalues o1 and o, defined by (2.23),
satisfy the following equations:

Xog — oas(X) = =3kau?(X),  Xo + a15(X) = 3kaul (X). (3.5)

Proof. Regarding relation (3.4), there are several cases to consider: a=1,b=2;a=2,b=1;a=b=1and a=b=2.
Therefore, we compute respectively:
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{Xay —aas(X) Ju?(Y) — {Yar — aas(Y) Ju?(X) = —2018(FA2X, V) + g(F(A1A2 + A2ADX, Y), (3.6)
{Xaz +a1s(X)Jul (V) — {Yor + ars(V) Ju (X) = —2028(FA1X, Y) + g(F(A2A1 + A1A2)X.Y), (3.7)
k{au' (Xu(Y) — au' (Vu?(X) —2(1 —22)g(FX, Y)} +2g(FATX.Y) — Ag((A1A2 — A2ADX. Y)

= {Xo1 — aasCO Jul (V) — {Yar — aas(V) Ju' (X) + 201 g(FA1 X, Y), (3.8)
k{au' (Xu?(Y) — au' (Vu?(X) —2(1 —22)g(FX, Y)} +2g(FA3X.Y) — 2g((A1A2 — A2ADX. Y)

= {Xaz + 15O Ju? (V) — {Ya + a1s(Y) Ju? (X) + 2028(FA2 X, Y). (3.9)

Putting X = U in (3.6), we obtain {Ujo; — as(U7)}u?(Y) = 0 and consequently

Ujag —aps(Uqp) =0. (3.10)
In the same way, putting X = U, in (3.7), we get

Uyoz + a1s(Up) =0. (3.11)

Then, putting X = U4 in (3.8), X =U; in (3.9), and using (3.10) and (3.11), we obtain (3.5). O

Further, substituting (3.5) into (3.6) and (3.7) we get
F(A1Ay + AyA1)X =201 FA X, F(A1Ay + A2A1)X =2aFA1 X,
i.e. w1 FA2X = ap FA1 X. Consequently, relation (2.6) implies

a1Ar2 X =0 A1 X. (312)
Lemma 3.2. Under the above assumptions, if the complex space form M is not a complex Euclidean space, then Mg = (.

Proof. Differentiating (3.12) covariantly and using (3.5) it follows
{3kau' (X) — a1s(X)}A1Y + a2 (VxADY = {=3kiu? (X) + a2s(X) JA2Y + a1 (VxA2)Y.
Interchanging X and Y and subtracting the obtained equations, we get
{3kau' (X) — a1s(X)}A1Y — {3kau' (V) — a1s(Y)} A1 X + a2 { (VxA1)Y — (Vy ADX]
= {=3kau?(X) + a2s(X) }A2Y — {=3kau? (V) + a2s(Y) } A2 X + a1 { (VxA2)Y — (Vy Ap) X}
Substituting (3.1) into the above equation, we compute
3ka{ul X)ATY —ul (Y)A1 X} + aok{u' (X)FY —u' (Y)FX — 2g(FX, Y)U4 }
= =3k {u? (X)A2Y — u?(Y) A X} + ank{u?(X)FY — u?(Y)FX — 2g(FX, Y)U>}. (3.13)
Putting X = U in (3.13) and making use of (2.8), (2.9) and (2.24), we obtain
(1= A2)k{31A1Y + a2 FY} — ka{30qu’ (V) + oau? (V) } Uy + ka{=3a1u?(Y) + apu’ (Y)} U2 = 0. (3.14)

Since dim M > 4, we can choose the eigenvector Y of A; which is orthogonal to both U; and U;,. As FY is orthogonal to
Uq and Uy, it follows that A{Y, FY, Uy, U, are linearly independent and hence (3.14) implies

azk(1—2%) =0. (3.15)
Next putting X = U3 in (3.13), we compute

(1= 22)k{31A2Y — a1 FY} — ka{30ou’ (V) — a1u? ()} Uy — ka{3au®(Y) + aqu’ (Y)}U = 0.
Here we take the eigenvector Y of A, and proceeding in entirely in the same way as to get (3.15), we obtain

aik(1—2%) =0. (3.16)

If M is a non-Euclidean complex space form, namely k # 0, relations (3.15) and (3.16) imply o1 = oy =0 on M, contrary
to (3.5). Hence Mg=0. O

Theorem 3.1. Let M be a non-Euclidean complex space form. If a real submanifold M of codimension two satisfies the condition (2.20),
then one of the following holds.
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(1) M is a totally geodesic complex hypersurface.
(2) M is a CR submanifold of CR dimension % with .. =0.

Proof. By Lemma 3.2, it follows Mg = @ which means that 1 — A% =0 or A =0 in M. Combining this with Proposition 2.1
and Theorem 2.1, the theorem follows. 0O

4. Certain real submanifolds of codimension 2 of a complex Euclidean space

In this section, we consider a real submanifold M" of codimension 2 of a complex Euclidean space C#, which satisfies
relation (2.20). Especially, we investigate its opened submanifold My, defined by relation (2.22).

Lemma 4.1. Under the above assumptions, the sum a12 + oz% is constant, where o1 and o are defined by (2.23).

Proof. Since the ambient manifold is a complex Euclidean space, the holomorphic sectional curvature vanishes identically,
that is k =0 and the equations in (3.5) become

Xop = as(X), Xoy = —15(X). (4.1)

Therefore, X(oz]2 + oz%) =2(o1 Xa1 + o Xap) = 0, which completes the proof. O

We continue considering first the case a% + a% #0. It is clear that

1 1
£ = ————= (161 + 0282), & = ————(a2é1 — 01£2)
l Jo? + o2 ? Joi +aol

are orthonormal normals to Mo for which J§ = —1U} + A&, J&§, = —1U% — A&, where

U’—i1 S
Y 22 22
af +aj oy +oj

Also, using (2.14) and (4.1), we compute

(U1 +apUp),  Uj (U1 —a1Uy). (4.2)

_ —1 — 1
Vx€ = ———=1(@1A1 + @2A2)X, V&)= ———1(a2A1 — @1A2)X,
Joi +ad Joi +ol
that is,
/ 1 / 1
Al X = ———= (1 A1 + 2 A2) X, AYX = ————(anA1 — 1 A2)X, (4.3)
Jo? +a2 vei+e3
and
s'(X) =0, (44)

which means that we have chosen the orthonormal normals £; and &, in such a way that the normal connection is trivial.
Using relations (2.24) and (4.3), we compute AjU,; = ‘/af +a§Ua, A\Uq = 0. Consequently, using (4.2), we obtain

A U, = Ja? +a2U;, A,U, = 0. This shows that the corresponding eigenvalues o}, oy of A, for U} are

of = /a2 + a3, ab =0. (4.5)

Since in all the considerations throughout the previous sections the orthonormal normals &; and &, were arbitrary, the
corresponding relations are also satisfied for the orthonormal normals &{ and &). Hence from (3.12) and (4.5), it follows

AX=0. (4.6)
Therefore, as alz +ot§ # 0, we conclude that the first normal space Ni(X) of Mg in " s span{&1}. Using (4.4), we

conclude that Nq(x) is invariant under parallel translation with respect to the normal connection. Therefore, we can apply
the codimension reduction theorem by Erbacher [2] and obtain
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Lemma 4.2. Under the above assumptions, there exists an (n + 1)-dimensional totally geodesic Euclidean subspace E™+1 of c"% such
that My is a hypersurface of E**1,

According to Lemma 4.2, we can regard the submanifold Mg as a hypersurface of a Euclidean space E™t!. Let us denote

by i1 the immersion of Mg into E™! and by i, the totally geodesic immersion of E™t! into C"*. Then from the Gauss
formula (2.12), it follows V{i1Y =11 VxY + g(AX, Y)£”, where £” is a unit normal vector field to Mg in E"1 and A is the
corresponding shape operator. Thus, using the Gauss formula and 1 =15 o011, we derive

Vxizot1Y =13Vii1Y =12(11VxY + g(AX, Y)E"), (4.7)

since E"™! is totally geodesic in ', Comparing relation (4.7) with relation (2.12) and using (4.6), it follows & =12£” and
A=A
1
Using relation (3.8) it follows FA;ZX =0 FA| X and therefore

APX =d| A X. (4.8)

We conclude from (4.8), (4.5) and Lemma 4.1 that A} has at most two constant distinct eigenvalues: oj and 0. Thus,
from the hypersurface theory of Euclidean space (see for example Theorem 11.4 [1]), we conclude that My is one of the
following: open submanifold of an n-dimensional hypersphere S", of n-dimensional hyperplane E", of the product manifold
of an r-dimensional sphere and an (n—r)-dimensional Euclidean space " x E*™". On the other hand, since A} = A, it follows
A|F = FA}, which implies that if X is an eigenvector of A}, then FX is also an eigenvector of A} for the corresponding
eigenvalue for X. Therefore, the multiplicities of the eigenvalues o} and 0 are both even numbers.

Now we consider the case Ol% + a% =0, that is, ®y = ap = 0. Taking k =0 and o1 = o3 =0 in (3.4), we obtain

2
F(AaAp + ApA)X — Y hvc(AaAc — AcAg)X = 0. (4.9)

c=1

Puttinga=b=1,a=b=2 and a=1, b =2 in (4.9) we get, respectively,

2FA2X — A(A1A; — A2A1)X =0, (4.10)
2FA3X — A(A1A; — A2ADX =0, (411)
(A1A2 + A2A1)FX =0. (412)

Using (4.10), (4.11) and (2.21), it follows A3FX = A2FX and since a1 = o = 0, we conclude

A3X =A3X,  (A1Ar+AA1)X=0. (413)

Substituting the second equation of (4.13) into the first equation of (4.10) and using (2.21), we compute

ATFX = —AA2A1X. (414)

Now, let us suppose that there exists a non-zero eigenvalue 8 of A; and let X be the corresponding eigenvector, that is,
A1 X = BX. Then, (2.21) yields that FX is also an eigenvector of Ay, corresponding to 8. Therefore, using (4.14), we compute
B*FX = —)BA:X and B2A,FX = —)BAZX = —ABA2X, that is,

AsFX = —ABX. (4.15)

On the other hand, from the second equation of (4.13), it follows A1A2FX = —AyA1FX = —BA,F X. Substituting (4.15)
into the last equation, we have 248X = 0 and hence X = 0. Then from (4.10), we conclude Af = A% =0, since B8 #0.
Consequently, A; = Ay =0, submanifold My is totally geodesic and all eigenvalues of A; and A, are 0, which contradicts
our assumption that there exists a non-zero eigenvalue 8 of Aj.

A slight change in the proof shows that there does not exist a non-zero eigenvalue of A,. Therefore, it follows that Mg
is totally geodesic and My is an open submanifold of an n-dimensional Euclidean space E".

Theorem 4.1. Let M be a connected real submanifold of codimension 2 of a complex Euclidean space M = 5. If M satisfies the
condition (2.20), then M is one of the following:

(1) n-dimensional sphere S",

(2) n-dimensional Euclidean space E",

(3) product manifold of an r-dimensional sphere and an (n — r)-dimensional Euclidean space S" x E"~", where r is an even number,
(4) CR submanifold of CR dimension % with A =0.
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Proof. Let My = {x € M | A(x)(1 — A2(x)) = 0}. Then, M = Mg U My, Mg N My = @. If M; is an open set, then M = M; or
M = My, since M is connected. When M = M7, then on M we have A =0 or A2 = 1. Using the first case in Proposition 2.1,
we obtain (4) and using the second case, it follows that M is a complex hypersurface E", which is a special case of (2).
When M = My, we have (1), (2), (3). If M; is not an open set, then by definition, M; is a closed set in M and dimM; <n
and M; is a subset of measure 0 in M. Hence, M is one of (1), (2), (3), which completes the proof. O

5. Real submanifolds of codimension 2 of a complex space form, with A =0

Having in mind the facts and theorems proved in Sections 3 and 4, we proceed with the study of real submanifolds of
codimension 2 of a complex space form, with A = 0.

The following example provides a large class of real submanifolds of codimension 2 of a complex space form satisfying
A =0, since there are many real hypersurfaces of a complex Euclidean space.

Example 5.1. Let M} and M/, be complex manifolds and J; and J, the natural almost complex structure of M} and M

respectively. Then M = M) x M}, is a complex manifold with the almost complex structure | = J; ® Jo. For real hyper-
surfaces Mg of M}, a =1,2 with unit normals &, to Mg, the product M = M; x M, is a submanifold of codimension 2 of
M and & = (51’, 0) and & = (0, Eé) are orthonormal unit normals to M. Then M is a submanifold of codimension 2 with

A = 0. Especially, for a complex Euclidean space C%, the product manifold M of respective real hypersurfaces My and M
of mutually orthogonal complex subspaces CP and C? is a submanifold of codimension 2 with A =0.

If we take A =0 in (2.26) and (2.27), we obtain

2
AdUp=> afUc, ab=12. (5.1)

c=1
Since A, is symmetric, it follows agc =g(AqUp,Up) = Olgb. Differentiating relation (5.1) covariantly, we compute
2
(VxA)Up + AdVxUp = Y {Xef Uc + af VxUc}. (5.2)

c=1

Substituting (2.18) into (5.2) and using (2.26), (2.27), (2.21) and A =0, we obtain

2 2 2 2
(VxA)Up + FAA X + Y spa(X)ag,Ue = Z{ (Xagd + Zagcscd(X)> Ud} + Y ap FAX. (5.3)
d,e=1 d=1 c=1 c=1
Since Vx A, is symmetric, we have g((VxAq)Y, Up) = g((VxAg)Up, Y). Therefore, using (5.3), we compute
2
g((VxAQY — (VyA)X, Up) + g(FAaAX, Y) — 8(FAALY, X) + Y {sba(X)au® (Y) — spa(Y)arg,u’ (X))
d,e=1
2 2
- Z{ (x(xgd + Zagcscd(X)> ud(y) — (Yagd + Zagcscd(Y)> ut (X)}
d=1 c=1 c=1
2
+) {fig(FAGX.Y) — af,g(FAGY. X)}.
d=1
Using the Codazzi equation (3.1) we have
2
—2kg(FX,Y)8q + g(F(AaAl7 + ApAg) X, Y) -2 Zagcg(FACX, Y)
c=1

2
=y [on;,‘d + D {afsc(X) — alyspe(X) — ozf,dsac(X)}} u(Y)
d=1 c=1
2 2
— Z |:Y(¥gd + Z{agcscd(Y) - Olgdsbc(y) - aﬁdsac(Y)}i|ud(X)- (5.4)
d=1

c=1
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If in (5.4) we put Y = Ue, then, since A =0, relation (2.8) implies

2
Xaf, + Y {of sce(X) — atlespe(X) — tf5ac(X) }
2 - 2
= Z |:Ueagd + Z{agcscd(ue) - agdsbc(ue) - agdsac(ue)}i| ud(x)- (5.5)
d=1 c=1
Substituting (5.5) into (5.4), we obtain
2 2
—2kg(FX. Y)8ap + 8((AaAp + ApAFX.Y) =2 af g(AFX.Y) = Y ySut(Ou(Y), (5.6)
c=1 e,d=1

where

Yebd = Beba — Bape-
2
ﬁgbd = Ueagd + Z{agcscd(ue) - agdsbc(Ue) - agdsac(ue)}-

c=1

Replacing Y by Uy in (5.6) and using (2.21), we obtain

2 2
D VSt X085 = yfpqu(X) =0. (5.7)
d,e=1 d=1

Substituting (5.7) into (5.6), we get

2
—2kg(FX,Y)8ap + 8((AaAp + ApAd)FX,Y) —2 Zaﬂcg(FACX, Y)=0. (5.8)
c=1
Taking a=>b and a # b in (5.8), we compute
2
—kFX + ASFX =) ol AcFX =0, (5.9)
c=1
2
(AaAp + ApA)FX =2 "af AcFX =0, a#b. (5.10)

c=1

Lemma 5.1. Let M be a complex space form. If a real submanifold M of M of codimension 2, with A = 0, satisfies the condition (2.20),
then relations (5.9) and (5.10) hold.

6. The case when M is a hypersurface of a totally umbilical hypersurface M’ c "

In this section, we consider real submanifolds M" of M = "% with & = 0, such that there exists a totally umbilical

hypersurface M’ of C"%* such that M c M.
Let us denote by &] the unit normal vector field of the immersion 11 : M — M’ and by &) the unit normal vector field

of the immersion 15 : M’ — C%. Consequently, the immersion 1 : M — C% is 1 =13 o11. Since M’ is totally umbilical, the
shape operator A’ of M’ satisfies A’ = cI, where I is the identity map and c is constant, since the ambient manifold is a
Euclidean space. Then, using the Weingarten formula (2.13), we have for X € T (M),

§X$£ = —le/llx =—1pcn X =—i1cX. (6.1)
Choosing the orthonormals to M in ¢"# in such a way that £ =12£] and & = £, we obtain

Vxé1 = Vxin€] =1Vié] +h' (11X, &) = —2 0 11 AX +cg' (11X, £1)&) = —1AX, (6.2)

where A is the shape operator of M in M’ and h’ and g’ are respectively the second fundamental form and the induced
Riemannian metric of M’ C '3 Comparing (6.1) and (6.2) with (2.14), we obtain that A = A; and s = 0. Since we discuss
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the case A =0, using (2.19), we compute A Uy = A1U,. Therefore, having in mind the notation from (2.28), it follows
o) =al,=c al,=0and

A1U1:a111U1+CU2, A1Uy =cUq. (6.3)
Since A; =cl, relation (5.9) reduces to

AZFX —al | AiFX —c2FX =0,

for a = 1. In the sequel we use the notation a}l = «. Further, using (6.3), we compute

A2Uq —aAiUq —c*Ug=0, a=1,2.

Thus we proved that

A’X —aAX —*X=0 (6.4)

holds for any X € T(M).

Lemma 6.1. Let M" be a real submanifold of M = C"% which satisfies the condition (2.20), with A = 0, such that there exists a totally
umbilical hypersurface M’ ofc#, ie. A" =cl, with M Cc M. If c # 0, then the function « is constant.

Proof. Since s =0 and A =0, relation (5.5) becomes

Xa = pul(X), (6.5)

where 8 = U;«. Then, from the first equation of (2.18) and (2.21), we obtain

[X,Yla = XYo — YXa = (XB)u' (V) — (YB)u' (X) — 2Bg(AFX.Y) + Bu' (X, Y]). (6.6)

Using again (6.5), it follows from (6.6)

XBul(Y) — (YB)u' (X) = 2Bg(AFX, Y). (6.7)

Since A =0, using (2.9) and (2.8), if we put Y = U; in (6.7), we compute X8 = (U;B8)u'(X). Substituting this into (6.7), we
conclude 8 =0 or AFX =0. However, if AFX =0, using (6.4), we get ¢ =0, which is a contradiction. O

Theorem 6.1. Let M" be a real submanifold of codimension two of a complex Euclidean space C"* with ) = 0 which satisfies the
condition (2.20). If there exists a totally umbilical hypersurface M’ ofc#, ie. A'=cl, ¢ #0,such that M C M’, then M is a product
of two odd-dimensional spheres.

Proof. Since the shape operator A satisfies relation (6.4) for a constant o, we can apply Lemma 1.1 in [4] (cited as Theo-
rem 13.2 in [1]) and obtain VA = 0. Hence, by theorem of Ryan [5], we obtain that M is a product of two spheres.

On the other hand, Lemma 6.1 implies that M has exactly two constant principal curvatures ki and k. It is not possible
that A = A7 has only one principal curvature k, because, using (6.3), we compute cU; = kU, which is impossible since U
and U, are mutually orthogonal. Moreover, these principal curvatures satisfy

ki+ky=q, kiky = —c2. (6.8)

For Vi =ki1Uq +cU;, Vo, =cUq —kq U3, using (6.8), it is easily verified that AV; =k1Vq, AVy =k, V. For such an X € T(M)
that AX =kqX, (a =1,2), using (6.4), it follows AFX = k,FX (a = 1,2) respectively. This shows that the distributions
defined by the eigenspaces corresponding to ki and k; are both odd-dimensional. Since the spheres S; and S; are the
integral submanifolds of these distributions (p. 85 in [1]), they are both odd-dimensional, which completes the proof. O

Now we consider the case ¢ = 0. This means that M’ is a totally geodesic hypersurface of C#, that is, there exists a
2 . . .
hyperplane E"™*1 such that M c E"*1 ¢ C"?" and in this case the shape operator A satisfies

A’X —aAX =0. (6.9)

Here, if « =0, M is a totally geodesic hypersurface of E**! and M is a Euclidean space E".
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If a # 0, relation (6.9) implies that M has exactly 2 distinct principal curvatures: o and 0. Let

Mg ={xe M| a(x) #0},
To(x) = {Xx € Tx(Mg) ’ AxXy = lex},
To(x) = {Xx € Tx(Mo) | AxXx =0},

namely, M, is an open submanifold of M, T, (x) and To(x) make distributions T, and Tg of My, respectively.
Further, for X,Y € Ty, using the Codazzi equation for a hypersurface of a Euclidean space, we have

A[X,Y]=AVxY — AVy X = Vx(AY) — (VxA)Y — Vy(AX) + (Vy A)X
= (X)Y +aVxY — (YO)YX —aVyX = (Xa)Y — (Ya) X +«[X, Y],

that is,

(A—aD[X,Y]=(Xa)Y — (Ya)X. (6.10)

Since (A —alD[X,Y]=(A —aoa)([X,Y]e + [X,Y]o) = —a[X, Y]o, the left-hand side of (6.10) belongs to Ty and the
right-hand side belongs to T,. This shows that « is constant on My and A[X, Y] =«[X,Y].

Since « is differentiable, o is constant on M. From (6.3), it follows Uy € To(x) which shows that M cannot be a totally
umbilical hypersurface of E**1. Thus, if o #£ 0, then A has exactly two distinct constant eigenvalues and, by standard
argument, we know that M is a product of m-dimensional sphere and an (n — m)-dimensional Euclidean space. Discussion
similar to that in the proof of Theorem 6.1 shows that the multiplicity of « is the odd number. If @ =0, then M is a totally
geodesic hypersurface. Thus we have proved

Theorem 6.2. Let M be a real submanifold of codimension two of a complex Euclidean space ¢"# with ) = 0 which satisfies the
condition (2.20). If there exists a totally geodesic hypersurface M’ ofc# such that M C M/, then M is one of the following:

(1) n-dimensional hyperplane E",
(2) product manifold of an odd-dimensional sphere and a Euclidean space: $2P+1 x E"—2P—1,
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