Journal of Computational and Applied Mathematics 43 (1992) 81-98 81
North-Holland

CAM 1243

On the Gibbs phenomenon I: recovering
exponential accuracy from the Fourier partial

"' M TAMNAWVI™

David Gottlieb, Chi-Wang Shu, Alex Solomonoff and Hervé Vandeven **
Division of Applied Mathematics, Brown University, Providence, RI 02912, United States

Received 3 January 1992

Abstract

Gottlicb, D., C.-W. Shu, A. Solomonoff and H. Vandeven, On the Gibbs phenomenon I: recovering
exponential accuracy from the Fourier partial sum of a nonperiodic analytic function, Journal of Computa-
tional and Applied Mathematics 43 (1992) 81-98.

It is well known that the Fourier series of an analytic and periodic function, truncated after 2N +1 terms,
converges exponentially with N, even in the maximum norm. It is also known that if the function is rot
periodic, the rate of convergence deteriorates; in particular, there is no convergence in the maximum norm,
although the function is still analytic. This is known as the Gibbs phenomenon. In this paper we show that the
first 2N +1 Fourier coefficients contain enough information about the function, so that an exponentially
convergent approximation (in the maximum norm) can be constructed. The proof is a constructive one and
makes use of the Gegenbauer polynomials C(x). It consists of two steps. In the first step w show that the
first m coefficients of the Gegenbauer expansion (based on C}(x), for 0 < n < m) of any L, function can be
obtained, ithin exponential accuracy, provided that both A and m are proportional to (but smaller than) N.
In the seccnd step we construct the Gegenbauer expansion based on C2, 0 <n<m, from the coefficients
found in the first step. We show that this series converges exponentially with N, provided that the original
function is analytic (though nonperiodic). Thus we prove that the Gibbs phenomenon can be completely
overcome.

Keywords: Gibbs phenomenon; Fourier series; Gegenbauer polynomials; exponential accuracy.

1. Introduction

We deal, in this paper, with a prototype of the Gibbs phenomenon, and show how to
eliminate it. Consider an analytic but nonperiodic function f(x) defined in [—1, 1]. Notice that
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f(x) has a discontinuity at the boundary x = + 1 if it is extended periodically with period 2. The
Fourier coefficients of f(x) are defined by

flk)= %f_llf(x) e ™ dx. (1.1)

Assume that the first 2N + 1 Fourier coefficients f(k), | k| <N, are known but the function
f(x) is not. Our objective is to recover the function f(x) for —1<x <1 with exponential
accuracy in the maximum norm. The traditional Fourier partial sum using the first 2N +1
modes

N
fulx)= X f(k)e*™ (1.2)
= -N
does a poor job: it produces a first-order approximation to f(x) with an error O(1/N) away
from the boundary x = +1, and shows G{1) spurious oscillations near the boundary x = +1,
known as the Gibbs phenomenon. Thus there is no convergence in the maximum norm. When
one uses a filter in the Fourier space

N

fan)= ¥ alflk) e, (13)

k=-N

where o,¥ =0, are suitably defined real or complex numbers which tend to zero when |4}
tends to N, the situation becomes better: one can get exponeitial accuracy away from the
boundary x= +1 if oY are chosen as suitable real numbers [7,9,10,12), or one can get
exponential accuracy up to one boundary x=—1 or x=1 if akN are chosen as suitable
complex numbers [3]. In these cases the approximation is still in the space spanned by tlie first
2N + 1 trigonometric polynomials and is a convolution of the original Fourier partial sum with
some filter kernel which is an approximate two-sided or one-sided é-function, hence it cannot
be exponentially accurate in the meximum norm for —1<x < 1. For the cne-sided filters
introduced in [3] one can use two diffcient approximations in —1<x <9 and in 0<x<1,
right-sided for the former and left-sided for the latter, to obtain exponential convergence
globally.

In this paper we adopt a different point of view. The idea is the following: we realize that the
problem wiih the Fourier approximation is the nonperiodicity of the function and the fact that
the functions ¢**™* are the solutions of a regular Sturm-Liouville problem. In [6] it is shown
that expanding an analytic, nonperiodic function f(x) by the eigenfunctions of a singular
Sturm-Liouville problem yields rapid convergence. For example, a Chebyshev or Legendre
expansion of f(x) converges exponentially. Thus, if the first 2N + 1 Fourier coefficients can
provide enough information to reconstruct the coefficients of an expansion based on a singular
Sturm-Liouville problem, we might recover the accuracy. Unfortunately, one can not recover
the coefficients of the Chebyshiev or the Legendre expansion within high enough accuracy.

In this paper we show that from the first 2N + 1 Fourier coefficients of an analytic but
nonperiodic function, one can get the first m ~ N coefficients in the Gegenbauer expansion
based on the Gegenbauer polynomials C(x), provided that the parameter A, appcaring in the

weight function (1 —x2)*~1/2, grows with the number of Fourier modes N. We prove that this
yields exponential accuracy in the maximum norm.
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Our proof consists of two separate and independent steps. The first step (Section 3) is to
show that given the Fourier partial sum of the first 2N + 1 Fourier modes, of an arbitrary
L,-function f(x), it is possible to recover the partial sum of the first m terms in the
Gegenbauer expansion of the same function to exponential accuracy (in the maximum norm) by
letting the narameter A and number of terms m in the Gegenbauer expansion grow linearly
with N. In this step f(x) needs not be smooth. Any L,-function will do. We denoie tie error
between the exact Gegenbauer coefficients and the one obtained from the Fourier coefficients
the truncation error. The results of this section are summarized in Theorem 3.4.

In the second step (called the regularization error), we prove the exponential convergence, in
the maximum norm, of the Gegenbauer expansion of an analytic function when A grows
iinearly with m. This is done in Section 4. The second step has its own interest: it is an
exponential convergence proof in the maximum norm for such Gegenbauer expansions of
analytic functions, where A increases with the number of the terms used in the approximation.
The results of this section are summarized in Theorem 4.5.

In Section 2 we bring some results concerning Gegenbauer polynomials that are relevant to
the proof and the computations.

Finally, in Section 5, we bring the main theorem demonstrating that one can construct an
exponentially convergent approximation to an analytic, nonperiodic function, from its first
2N + 1 Fourier coefficients.

In Section 6 we demonstrate the theory with some numerical examples. Of special interest is
Example 6.1, concerning the function f(x)=x. This function was used originally (in 1898) to
demonstrate the Gibbs phenomenon.

We will use A or 4 for a generic constant independent of ali the grocwing parameters
throughout this paper. The actual value of A or 4 may be different in different iccations.

2. Preliminaries

In this section we will introduce the Gegenbauer polynomials and discuss some of their
asymptotic behavior. We rely heavily on the standardization of [2], although for our purpose a
different scaling might have been more natural.

We start by defining the Gegenbauer polynomials C2(x) in the following definition.

Definition 2.1. The Gegenbauer poiynomial C}(x) is the polvnomial of order n that satisfies

f_l](l —x2) V2CM)CNx) dx =0, k#n, (2.1)
and (for A > 0)
I'(n+2A)
AT 22
CH1) = s @2)

Note that the Gegenbauer polynomials thus defined are not ortiionormal. In fact, the norm
of CX(x) is given by the following lemma.
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Lemma 2.2. The Gegenbauer polynomials defined above satisfy

[ (=52 2CA(x)CA(x) dx =, (23)
-1
where
1
BA -.-—.TUZC“’I‘M. (2.4)
" "Ir(A)(n+2)

For the proof see [2, p.174).
We are ready now to deal with the asymptotics of the Gegenbauer polynomials for large n
and A. For this we need the next lemma.

Lemma 2.3 (Stirling). For anv number x such that x > 1 we have
F{x+1iy<2w)x=+12 g~x el/12, (2.5)
M(x+1)>Q2w)x= 172 e, (2.6)
Lemma 2.4. There exists a constant A independent of A and n such that
AI/Z
hli<A — C)1), (2.7
(n+2)
[\1/2
h")A_l CA 1). 2.8
A vy W (28)

The proof follows from (2.4) and the Stirling formula (2.5), (2.6).
Finally we would like to quote the Rodrigues’ formula [2, p.175).

Lemma 2.5. The Gegenbauer polynomials are explicitly given by

23A—1/2 (_1)ﬁ
(=23 CNx) = S

dn
2\R+A-1/2
G(r, m)g— -3, (2.9)
where G(A, n) is defined by
[(A+ 1) (n +22)

GlA. n) = FEOT(n+A+1)" (2.10)

3. The truncation error

In this section we consider an arbitrary L,-function f(x) defined in [~ 1, 1]. We assume that
the first 2N + 1 Fourier coefficients f(k), as defined in (1.1), are given. We are interested in
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recovering (within exponential accuracy in the maximum norm) the first m coefficients in the
Gegenbauer expansion of f(x):

f(x)= L fANCHx), (3.1)
1=0
where the Gegenbauer coefficients are defined by
A 1 4 _
P =5 [ =R 00N ds, (3:2)

with A} given by (2.4).
Smce we do not know the function f(x), but rather its truncated Fourier serie:. fy(x)
(defined in (1.2)), we have only an approximation to f fA(1), which we denote by g*(), ; ven by

VIS 1 A=1/2 4, g
=1z [ (16 i) d (33)
1 7-1
Notice that £*(I) depends on N. At this stage we would like to define the truncation error
m )
(f (1) —&*())Ci(x)|- (34)
The truncation error is the dlfference between the Gegenbauer expansion (with m terms) of
the function f(x) and that of the truncated Fourier series fy(x). It measur.s the error in the
finite Gegenbauer expansion due to truncating the Fourier series.

In the next two theorems we bound the truncation error in terms of the number of given
Fourier coefficients N, the number of Gegenbauer polynomials m, and A.

TE(A, m, N)= max

-1<xx1

Theorem 3.1. If f(x) is an L,function on [—1, 1], then there exists a constant A which is
independent of A, m and N, such that the truncation error defined in (3.4), satisfies the following
estimate:

TE(A, m, N} <A

(m + ) (m +23)T'(}) (’TZN ) (35)

(m—=1)!T'(2A)

Proof. As a first step we consider the special function f(x)=e"™* with | n| > N. In this special
case fyfx)=0 and we obtain

(PO =g m)cin == 2l [ (=) e d (3.6)

Roughly speaking, one can argue that this integral is rapidly decreasing when n increases;
this is so because the integral is proportional to the nth Fourier coefficient of the function
(1 —xH*V 2C,"(x) which is analytic and has A periodic derivatives. It is nice to know that an
explicit expression of this integral appears in the literature [2, p.213]:

A

i f (1=x?)"" e (x) dx = m)( : ) i(1+ A (), (3.7)
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where J (x) is the Bessel function. Since {J(x)] < 1liorall x and v > 0[1, p.362], we have, for
0<i<sm,

(F) - **(1))Cf(l)l<c,*(1)r(h)( )(m)

_(+nru+ 2)\)1‘(,\) 2 \l"
I r \wlnlj

(m+M)(m+2A)CA)( 2 \*
m! T(21) \=1n1 ] °

(3.8)

where in the second step we used the formula (2.2) for C/(1), and in the last step we used the
fact that (I + A)I(I + 2A) /1! is an increasing function of l
We now return to the general function f(x), which satisfies

FE) = fux)= X fln) e (39)

Since f(x) is an L ,-function, its Fourier coefficients f(n) are uniformly bounded:

| f(n)] <A. (3.10)

We thus have, using the result for the special case "™ in (3.8),

(A -\ )| <a

(m+2A)F(m +2A)T(A) ( 2 )"
Inl>N

m! I'(2A) w|n|

A.(m +A)C(m+20)r(A){ 2 !
m! T(2X) (-n-N,

N

(3.11)

forall 0</<m.
We can now estimate the truncation error (3.4) by

TE(A, m, N)<m max max |(fA(!)-&"(1))C}x)|

O<lsm —l1<sxgl

<m max |(f1(1)-2*10)|ci)

(m+M)T(m+2X)L(A) [ 2 !
m! I'{(2A) ('nN)

(m+A)F(m+20)C(A) [ 2 \*!
(m—1)!T'(2)) (‘rrN) ’
where in the second step we used the fact that |CMx)| < C}(1) for all —1 <x <1 [2, p.206],

and in the third step we used (3.11).
The theorem is now proven. 0O
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Remark 3.2. The approximate Gegenbauer coefficients £*(/) in (3.3) can be explicitly expressed
in terms of the Fourier coefficients f(k) as

O<|kl<N

n 2\ .
B(1)=3,f0) + TV +v) ¥ Jm.(wk)(w—k) flk). (3.12)

Equation (3.12) follows immediately from thc definition (3.3) of £*(/) and the integration
formula (3.7).

For fixed A, the truncation error (3.5) decays algebraically as O(1 /N*~!). However, if both A
and m grow linearly with N, the truncation error can be made exponentiaily smaii. In fact, we
can state the following theorem.

Thoanvam 22 JIf ) — N 7m0 r’m_—:

Theorem 3.3. If A =aN and m = BN, where a and B are positive constants, then the truncation
error defined in (3.4) satisfies
TE(aN, BN, N) <AN*g", (3.13)
where
(B +2a)f**

(2w e) a’BP
In particular, if a =B = $w = §, then
g=e /M =08<1.

Proof. We use the Stirling formula {2.5), (2.6) to obtain, from the previous estimates on the
truncation error in (3.5) and some simple algebra,

F((ﬁ+2a)N)r(aN)( 2 )aN—l
TN

TE(aN, BN, N) <A(B + )N =00 T Gan)

with g defined by (3.14). If we take a = in (3.14), we obtain
( 278
\211' e’

which attains its minimum value g=e 2"/ at = £w. O

q=

We would like to point out that we choose @ =B in Theorem 3.3 simply tc show that it is
possible to obtain exponentially small truncation errors. This may not be the best choice in
practice. We can easily verify that. for fixed a, (3.14) defines a g which is an increasing
function of B. This is not surprising since the truncation error should be bigger if there are
more terms in the Gegenbauer expansion to approximate. However, we will see in the next
section that the regularization error will be smaller if m is bigger. In practice one might try to
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choose m to maintain some balance between these two errors. For a fixed B, (3.14) defines a g
which atiains its minimum at

a={m-28+ /7= —18)), (3.15)

if B < iw. For example, if 8 = &7 and «a = 1.33 is chosen according to (3.15), then q given by
(3.14) is approximately 0.49, much smaiier than the minimum value 0.8 obtained with the
restriction a = .

We summarize the results of this section in the next theorem.

Theorem 3.4 (The exponential decay of the truncation error). Let f(x)_be an L, -1, 1}-func-
tion, and f(k) —N <k < N, its Fourier coefficients defined in (1.1). Let f FA(1) be the Gegenbauer
expansion coefficients of f(x) defined in (3.2), and let £*(I) be the Gegenbauer coefficients of the
truncated Fourier series f\(x) defined in (1.2), §*(1) are given explicitly in (3.12).

Then, if A=m =N, where B < 2%-rre, the tiuncation error decays exponentially with the
number of Fourier modes N, i.e.,

TE(BN, BN, N)= max | T (fA(1) —8*(1))C}(x)| <AN’q", (3.16)
—lIsx<l|, g
with
(278 B .
q-(Z'n'e) <%

4. The regularization error

In this section we would like to establish error estimates for approximating an analytic
function f(x) on [—1, 1] by its Gegenbauer expansion based on the Gegenbauer polynomials
C2{x). Since our goal is to remove the Gibbs phenomenon, we will use the maximum norm. In
the last section we have shown that we can get the Gegenbauer partia! sum of the first m terms
of any Lz-function from its Fourier partial sum of the first 2N + 1 modes with expcnential
accuracy in the maximum norm, if A and m are boih growing linearly with N. Thus in this
section we will consider the case of large A and m.

We will assume that f(x) is an analytic function on [-1, 1], satisfying the following
assumptions.

Assumption 4.1. There exist constants p > 1 and C(p) such that, for every k > 0,

d* k!
max <C(p)— - (4.1)
P

-I<rxl

o) <

This is a standard assumption for analytic functions. p is actually the distance from [—1, 1]

to the nearest singularity of f(x) in the complex plane (see, for example, [8]). The assumption
can be modified using the techniques in [S].
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Let us consider the Gegenbauer partial sum of the fitst m terms for the function f(x) given

by (3.1), with the Gegenbauer coefficierus f*(/) defined by (3.2). We want to estimate the
regularization error in the maximum norm:

m
RE(A, m)= max_|f(x)= ¥ FA(UCHx)|- (42)
—lsx< 1=0
We start by estimating the Gegenbauer coefficients f(i).

Lemma 4.2. The Gegenbauer coefficient f A, as defined in (3.2), of an analytic function
satisfying Assumption 4.1, can be bounded by

C(p)T(A+ $)T'(1+24)

<4 h}2p) TN +A+1)

(4.3)

Proof. We start by using the definition (3.2) for f*(1). We replace the term (1 —x2)*~1/2C}(x)
by the Rodrigues’ formula (2.9), (2.10) to get

1\
f}\(l)=£lh)?§—l(l;\-f f(x ) [(1_ I+a- I/Z]d

where G(A, !) is defined in (2.10). Integrating by parts / times we get

N G ) a d +A=1/2
= h(ﬁ,,!) i df,( )1 -x2) "

We now use Assumption 4.1 to estimate the derivative d'f(x)/dx’, thus obtaining

n G(A, I)C
FRO] Q——(—}T;\E%@fjl l—xz)

Since C}x) =1, the remaining integral is simply 4/** and can be obtained from (2.3), (2.4):
G(A, NC(pWuT(I+A+3)

)21+ M) (1+A) ’
and finally using the definition of G(A, /) from (2.10) we get (4.3). O

dx.

I+A—-1/2

dx.

FROIES

The estimate (4.3) can be used naturally to get an estimate in the weighted L,-norm. This
would have been more transparent if we had adopted an orthogonal Gegenbauer basis rather
than (2.2). However, the aim of this paper is to establish estimates in the maximum norm. We
thus state the following theorem.

Theorem 4.3. If f(x) is an analytic function on [—1, 1] satisfying Assumption 4.1, then the
regularization error defined in (4.2) can be bounded by

C(p)I(A+3)I(m+2A+1)

RE{A, m) <4 mvAx (2p)"C2A)C(m+A)

(4.4)
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Proof. By (4.3) and (2.8) we obtain
C(p)l(A+ 3)I(1+22)

2 C} A . 4.5
If U)l 1(1)< N (2 )11,(2”1,(1 l) ( )
If we define

VA (2p)' T@AMT(I+A)
then clearly for m <1,
B(I+1)  1+2A < 14+2A/m 3 14+2A/m
B(I) 2p(1+A)  p(2+2A/m) ~ 2+2A/m’

We can thus sum (4.5) for m + 1 </ < » to obtain

x

RE(Lm)=| max =L S(OCHx)|< X 1/(DICH)
St =m+ 1 =m+
< i B(I)<B(m+1)2(m—+M

I=m+1
C(p)F(A+ 3 I (m+2A+1)
mVA (2p)"T(2N)(m+A)

where we have used again the fact that |C}x)| < C}N1) for all —1 <x <1 in the second step.
This finishes the proof. 0O

About the size of the regularization error (4.4) when A depends linearly on m, as is the case
in Theorem 3.3 for truncation errors, we can state the following theorem.

Theorem 4.4. If A = ym, where vy is a positive constant, then the regularization error defined in
(4.2) saiisfies

RE(ym, m) <Aq™, (4.6)
where q is giver: by
(1+ 2}')Przy
q= (4.7

= p2l+27".y7(1 +‘y)|+-y 2

which is always less than 1. In particular, if vy =1 and m = BN where B is a positive constant,
then

RE(BN, BN) <Aq", (4.8)
with
27 \#
q=(5 ) : (4.9)
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Proof. We use the Stirling formula (2.5), (7 .5) to © rlace the Gamma functions in (4.4). A little
bi* of algebra brings us to (4.6), (4.7) if A = ... Notice that the constant A in (4.6) contains the
contribution of p related terms. It is easy to venify that g defined by (4.7) is a strictly increasing
function of y and tends to 1/p < 1 when vy tends to infinity. Hence we have g <1/p <1 for all
¥ > 0. As for the proof of (4.8), (4.9), we simply plug in y =1 and m = BN into (4.6), (4.7). O

Finally we summarize the rcsults of this section in the following theorem.

Theorem 4.5 (The exponential decay of regularization error). Let f(x) be an analytic function
on [ —1, 1] satisfying Assumption 4.1. Let f FM(D), 0 <1 <m, be its Gegenbauer coefficients defined
in (3.2). Furthermore assume that A =m = 3N. Then

_max f(x)- if"(l)C,‘(x) <Aq", (4.10)
<x< -0
where
_[27)*
325

5. The main theorem

In this section we bring the main theorem demonstrating that one can construct an
exponentially convergent (in the maximum norm) approximation to an analytic, nonperiodic
function, from its first 2N + 1 Fourier coefficients. The method is indicated in the last two
sections. Namely, first we get, from the Fourier coefficients, an approximation to the first
m = BN Gegenbauer coefficients. This approximation, by virtue of the discussion in Section 3,
converges exponentially fast to the true coefficients, provided that A grows with N. We then
construct the partial Gegenbauer exp: asion which converges exponentially to f(x) by virtue of
the discussion in Section 4.

We are ready to state the following theocrem.

Theorem 5.1 (Removal of the Gibbs phenomenon). Consider an analytic and nonperiodic
function f(x) on [—1, 1], satisfying

k

W(x)

k!
max <C(p)—, p=>1. (5.1)
p

I<xxl

Assume that the Fourier coefficients

1 4 .
—_ —ikwx
=5 [ fyetmdx

are known for —N <k <N.
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Let M), 0 <! <m, be the Gegenbauer expansion coefficients of fy(x)=L¥__, f(k) ik
explicitly given by

§4(1) =8 f0) + T +A) T J,“(mc)( )f‘(k). (5.2)

0<|kI<N
Then for A =m = BN, where B < 5we,

m
m f(x) = X 8MCMx)| <AN*qY + Aqf, (5.3)
- <‘\ 1=0
where
278 \P | 27 \# .
= < =|—] <L
ar (21re) o RT3,

Proof. We start by noting that (5.2), for the approximate Gegenbauer coefficients g(/), follows
from Remark 3.2.

In order to establish (5.3), we introduce the Gegenbauer coefficients of the function f(x)
and denote them by f(1); they are defined in (3.2).

We have

flx) - Eﬁ‘(’)C/‘(X)

l< <1

<
-—l<x\

flx) = Zf‘(l)C (x)

+ max ;‘f‘*(ncr(x)— 12: S(CN)|.

-1<xxl 1=0

The first term is the regularization error and has been estimated in Theorem 4.5. The second
term is the truncation error and has been estimated in Theorem 3.4. The theorem is thus
proved. O

A few remarks are in order.
Remark 5.2. The proof is constructive: given 2N + i Fourier coefficients f(k), —N<k<N,
one gets explicitly the approximate Gegenbauer coefficients g*(1), 0 <! <m, and the Gegen-

bauer series can be explicitly constructed.

Remark 5.3. The reconstruction is not optimal, since no effort has been spent to optimize the
parameters.

6. Numerical resuits

In this section we demonstrate the theory using numerical examples. We implement the
method in the following way. Assuming that the first 2N + 1 Fourier coefficients of f(x), f( k)
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for —N <k <N, as defined in (1.1), are given. We compute the approximate Gegenbaucr

coefficients g*(1), for 0 <! < m, defined in (3.3), using the following formula given in Remark
3.2:

. 2\,
0 =0fO+TWII+D) T Jwk)| ) F0). (6.1)

0<|k|<N

We compute the Bessel function J(x) using an IMSL routine. Once the approximate
Gegenbauer coefficients g*(/) are obtained, we can compute the approximation to f(x) by
directly summing

gh(x) = L ENDCN(x), (6.2)
1=0
as long as we can compute the Gegenbauer polynomial C}(x) accurately. The formula we used
to compute CA(x) is
I I'(k+A) I'(l-k+A
C}cos 8) = ), ( ) I )
weo K'T(A) (I-k)!'T(A)

which can be found in [1, p.175].

cos(! — 2k)e, (6.3)

0.5

0.0

-0.5}

-1.0 -0.5 0.0 0.5 1.0

Fig. 1. The function f(x)=x (background solid line); the Fourier partial sum fy(x) defined in (1.2) with N=4
(short dashed line), and the approximation gA(x) defined in (6.2) through the Gegenbauer polyncmials with N =4
and m = A =N in the long dashed line.
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Fig. 2. For the function f(x)= x. the errors in the maximum norm, max_, _, ., | f(x)— gA(x)|, where ga(x) is
defined in (6.2), in a logarithmic scale, versus N (2N +1 is the number of Fourier modes given). The squares are for
the case with m = A = }N;; the circles are for the case with m = ;N and A determined by (3.15).

We remark that the implementation described above is subject to roundoff effects for large A
and m. We use a CRAY Y-MP to carry out all the computations. Our implementation can give
accurate result only when the error is no smaller than 10~°. And we will show results only in
those cases. A better way to implement this method might be through Chebyshev polynomials.

For the purpose of testing we take two functions.

Example 6.1. f(x) =x.

This is the original example used in 1898 to show the famous Gibbs phenomenon. For this
particular function there is no regularization error as long as m > 1, hence all the errors
observed result from the truncation error.

In Fig. 1, we show the exact function f(x)=x in the solid line, the Fourier partial sum
fy(x) with N =4 in the short dashed line, and the approximation through the Gegenbauer
polynomials gA(x), as defined in (6.2), with N =4 and m = A = 1N in the long dashed line. We
can clearly see that the Fourier partial sum f,(x) shows the Gibbs oscillations, while the
approximation gA(x) through the Gegenbauer polynomials is uniformly accurate. In Fig. 2 we
draw the errors in the maximum norm, with a logarithmic scale, versus N (recall that 2N + 1 is
the number of Fourier modes given), both with m = A = 1N (squares) and with m = 1N and A
determined by (3.15) (circles). This picture confirms our estimates in (3.13)-(3.15) for the
exponential convergence of the truncation errors.
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Fig. 3. For the function f(x)= x, in a logarithmic scale, the pointwise errors | f(x)— gM(x)|, where g)(x) is defined
in (6.2), of the case m=A = IN for N=4, 8, 16, 32.
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Fig. 4. For the function f(x)= x, in a logarithmic scale, the pointwise errors | f(x)— gM(x)], where g (x) is defined
in (6.2), of the case m = $N and A determined by (3.15), for N =4, 8, 16.
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Fig. 5. For the function f(x)=cos{1.4 w(x + 1)}, the errors in the maximum norm, max_; ¢, 1 | f(x)— g2,
where g)(x) is defined in (6.2), in a logarithmic scale versus N (2N +1 is the number of Fourier modes given). The
squares are for the case with m = A = 1N; the circles are for the case with m = A =IN.
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Fig. 6. For the function f(x)= cos{1.4 =(x +1)], in a logarithmic scale, the pointwise errors | f(x)— g, (x)|, where
g {x) is defined in (6.2), of the case m = A =N for N =24, 36, 52, 76.
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Fig. 7. For the function f(x)= cos[i.4 w(x +1)}, in a logarithmic scale, the pointwise errors | f(x)— gA(x)|, wiere
gA(x) is defined in (6.2), of the case m = A = ZN for N = 16, 24, 36, 52.

Next, we show the pointwise errors of the approximation with m =A = ;‘,—N for N=4, 8, 16,
32 in Fig. 3, and the pointwise errors with n = 1N and A determined by (3.15), for N =4, 8, 16,
in Fig. 4, again both in logarithmic scales. We can observe exponential convergence both inside
the interval and near the boundary, although the absolute error is several magnitudes smaller
inside the interval than at the boundary.

We have also run the test for f(x)=x" with #=2,...,9, obtaining similar results (not
shown here).

Example 6.2. f(x) = cos[1.4 w(x + 1)].

This function satisfies Assumption 4.1 with arbitrary p > 1. Both truncation and regulariza-
tion error will be present. The choice m =\ = ;N gives the exponential convergence as
expected. The choice m = A = 2N gives better results in this case.

In Fig. 5 we draw the errors in the maximum norm versus N, with a logarithmic scale, both
with m =A = N (squares) and with m =A = 2N (circles). The choice of m={N and A
determined by (3.15) does not converge in this case, indicating that (3.15) is probably a bad
choice for the regularization errors.

Finally, again in logarithmic scaies, we show the pointwise errors in the approximations with
m=A=1N for N=24, 36, 52, 76 in Fig. 6, and the pointwise errors with m =A = ZN for
N =16, 24, 36, 52 in Fig. 7. We again observe exponential convergence both inside the interval
and at the boundary, and the several magnitudes difference in the absolute errors inside the
interval and at the boundary.
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7. Further remarks

There are several topics which are not addressed in this paper and will be discussed in a
future paper.

(i) Other choices of polynomiais such as the Laguerre polynomials and He:mite polynomi-
als.

(2) Algebraic convergence for C* but not analytic functions.

(3) The casc with exponential recovery in a subinterval [a, b] of [ 1, 1]. That is, given the
first 2N + 1 Fourier modes for a function defined on [—1, 1], find its Gegenbauer partial sum
of the first m terms based on the scaled Gegenbauer polynomials on {«, b], in which thc
function f(x) is analytic. This would allow one to handle multiple discontinuities and disconti-
nuittes of unknown location.

(4) The procedure realized in the Fourier space as a convolution, similar to the approach
used in [3].

(5) Eiiicient and stable numerical implementation of tliose methods.

(6) Exiension to collocation techniques and other than the Fourier basis functions.
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