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Given a finite dimensional hereditary connected (basic-) algebra A of
infinite representation type the finite dimensional indecomposable modules
divide into three classes: preprojective, regular, and preinjective modules.
The preprojective modules yield the torsion class of #*-torsion modules.
Here a module M € Mod-A4 is called a 22> -torsion module if M maps only
trivially into preprojectives, equivalently, if M has no non-zero preprojec-
tive direct summand. This torsion theory was first introduced by Ringel
[14, 2.4-2.7] (note that he called #*-torsionfree modules preprojective).

We will show that the full subcategory of 2 -torsion modules has enough
projective objects, so-called 2 *-projective modules. The 2*-projectives
divide into finitely many classes whose number depends on the number of
regular partial tilting modules.

As an application of these results we show that every torsionfree module
(for the defintion see, e.g., [14]) of countable rank is a direct sum of a
P>-torsion and a #>-torsionfree module. Restricting this result to Baer
modules we see that every Baer module of countable rank is the direct sum
of a #*-projective and a #*-torsionfree module. Finally it should be noted
that every purely simple module of infinite rank has to be a #Z*-projective
module.

This work is part of my Diplom-Arbeit [8]. My sincere gratitude to my
teacher O. Kerner for his guidance and support during the preparation of
this work. I thank W. Kochers for his assistance in translating this paper.

Notation. The word algebra always denotes a finite dimensional,
unitary basic algebra over some commutative field k. The letter 4 normally
is reserved for a tame hereditary, connected algebra.

If A is an algebra, Mod-4 (mod-A) denotes the category of (finitely
generated) right 4-modules. For a class % of modules we define Add(%)

18

0021-8693/93 $5.00

Copyright © 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.



A CLASS OF INFINITE-RANK MODULES 19

(add(#)) as the class of all direct summands of (finite) direct sums of
modules from &. We write Gen(%) for the class of all modules generated
by modules of Add(.%).

By a torsion theory in Mod-4 (mod-A4) we understand a pair (%, 7)),
were F is the class of rorsionfree modules and the class 7 consists of the
torsion modules, together with the following properties:

(1) Gen(J )=
(ii) The class 7 is closed under extensions.

Every module M has a largest submodule 4 which is a torsion module.
J can be regarded as a subfunctor of the identity functor and is called the
torsion radical of the torsion theory. For every module M we have
T MeT and M/T # e€F. To express that we are dealing with a fixed
torsion theory (#,7) we will write “7 -torsion (resp. 7 -torsionfree)
modules.” A F -torsion module X is called J -projective if Ext'(X, 7) is
zero for all i> 1.

By I'(4) we denote the Auslander-Reiten quiver of 4. The Auslander—
Reiten translation will be denoted by t and 7 ~; to emphasize the algebra,
we sometimes add a subscript, e.g., 1,4, 75.

We define the right- (left-) perpendicular category &+ (+.%), where & is
some class of modules in Mod-A4 in the sense of Geigle and Lenzing [6]
as the full subcategory of all modules M in Mod-4 with Hom(%, M)=0
and Ext!(¥, M)=0 (Hom(M, &¥)=Ext'(M, #)=0).

An indecomposable partial tilting module is called stone. If & is a quasi-
simple module over a tame hereditary algebra we denote by (i) the
indecomposable regular module of quasi-length / and quasi-socle .

In general we follow the notations used in [14] with one difference:
The word “preprojective” is reseved for finitely generated (not necessary
indecomposable) modules.

1. BASIC PROPERTIES AND DEFINITIONS

In the first section we draw attention to the functors 2, 2, and 2~
defined by Ringel in [14]. The functor 2* gives rise to a torsion theory;
with respect to this torsion theory we will call the torsionfree modules
P> -torsionfree modules. Furthermore, we introduce the rank function,
needed in the last section of this paper. In the following sections we
concentrate our interest on the projective objects in the torsion class of the
functor 2*; we will call them 2 *-projectives. As usefull tools we will
therefore recall (1.3) and (1.4) from [9].

First we define the subfunctors 2, and 2 of the identity functor. We call
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a set o of indecomposable preprojective modules predecessor closed, if for
every indecompocable module P with Hom(P, P’} non-zero for some P' e «
the set o contains a module isomorphic to P. For a predecessor closed set
of preprojective modules we define for every M € Mod-4 the submodule

AM:= () kerf

SiM—-P

with the intersection taken over all P in a. The following was proved in
[14,2.1]: Let « be a finite predecessor closed set of preprojective modules.
Then every module M e Mod-4 has decomposition M =2 M@ M’ with
M’ e Add(«).

If the set a contains all indecomposable preprojective modules we will
write # instead of #,. Note that the functor 2 does not split, in general;
moreover, it does not induce a torsion theory. The problem is that there
exist modules M such that ##M is a proper submodule of #M, see
[14,2.6]. The largest submodule U of M with 2U="U is denoted by
PEM. P is a torsion radical and modules M of the torsion class are
characterized by the property Hom(M, P)=0 for all preprojective modules
P or, equivalently, Ext'(P, M) =0 for all preprojective modules P, see, for
example, [9, 1.5].

Next we define the rank function using an idea of Dean [4]. For every
tame hereditary algebra there exists a generic module—by [15] uniquely
determined—that is, an infinite dimensional indecomposable module Q
which is finitely generated over its endomorphism ring End(Q) which is a
division ring (for the relevance of generic modules see [3]). Defining for a
module M e Mod-A the rank rk M of M as the cardinality of an End(Q)-
basis of Hom(M, Q) we obtain the rank function. This definition coincides
with the usual definition as given, e.g., in [ 14] if and only if M has finite rank.

We write 7 for the torsion class of all modules which are generated by
finite dimensional regular modules. If there is no danger of confusion we
say torsionfree (resp. torsion) if we mean a Z,-torsionfree (7,-torsion)
module. The following lemma is easy to prove (see [5]).

LEMMA 1.1. Let X, Y be torsionfree modules of finite rank and
0-X->Y->Z2->0

be a short exact sequence in Mod-A4:

(a) If Z is torsionfree too, we have rtk X+rk Z=rk Y.

(b) If Z is a torsion module we have rk Y <tk X and the equality only
holds if Z is a regular torsion module.

As an application we prove the following lemma needed in the sequel.
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LEMMA 1.2.  Every P ™-torsionfree module M of finite rank is a direct
sum of finitely many preprojective modules.

Proof. Leta,ca,ca;< --- be an ascending chain of finite predecessor
closed subsets of preprojective modules such that every indecomposable
preprojective module is isomorphic to a module in ),y , This
ascending chain gives a descending chain

PM>PM>PM> -

of direct summands of M. For e¢very i we can find a module
C,,1€Add(a,,,) such that ZM=2_M®C,,,, especially we have
tk ZM>2, M by (1.1{(a)) if 2, M is a proper submodule of Z M.
Since the rank of M is finite, the descending chain #, M>Z M> ...
becomes stationary for some natural number n. Therefore the functors 2
and #, coincide for the module M; that is, M is a direct summand of M.
But then M =2 M =0 and we obtain that M is a direct sum of finitely

many preprojective modules by [14,2.1]. |}

In the following, the next lemma will be helpful.

LemMa 1.3, Let M eMod-A be a module with Ext(M, M")=0 for all
sets 1. Then Gen(M) is a torsion class.

Proof. In the case of M being finite dimensional Gen(M) is a torsion
class (also in Mod-A4) if Ext(M, M)=0 by [2,7]. A straightforward
inspection of this proof, given in [9, 1.1] shows that it remains valid, in
general, if we use the stronger condition Ext(M, M) =0. ]

Given a torsion theory (%, 7) we ask now, if there exist 7 -projective
modules. Assume that there is given a class & of modules with Ext!(%, 7)
=0 for all Se.%. We define the class £(%) as the class of all modules M
which are the well-ordered union of submodules M, such that M;=0,
M, /M,e¥and M;=\J,.; M, if Ais a limit ordinal. For this class we
proved in [9, 3.1]:

THEOREM 1.4. Let (7, %) be a torsion theory in Mod-R, where R is
some ring and & is a class of modules with Ext'(¥, 7 )=0:

(a) For every torsion module M with M e (&) we have Ext'(M, 7)
=0; that is, M is t ,-projective.

(b) If there exists a short exact sequence
O0—-R->T,—-T,-0

with T\, T, t ,-projective, then Ext'(N, 7 )=0 for every Ne &(F).
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2. CONSTRUCTION OF £ *-PROJECTIVE MODULES
The aim of this section is to prove the following theorem:

THEOREM 2.1. Let A be a tame hereditary algebra:

(a) Let Y be a regular partial tilting module. Then there exists a non-
zero P *-projective module M with Hom(M, Y)=0.

{b) There exists a short exact sequence,
004> A, —A4,./4-0,

with P> -projective modules A . and A ,./A. The module A ,.. is a union
over a chain of finite dimensional modules A, c A,c Ay --- with A,,. /A,
torsionfree for all ne N.

For the proof the lemma will be helpfull

LemMa 2.2. Let P,, P, be nonzero preprojective modules:

(a) There exists a short exact sequence
0P, -Y>Z->0

with Z preprojective and Hom(Y, P,)=0.
(b) There exists Ne N such that 1~ "P, cogenerates P, for all n>= N.
Proof. Assertion (a) is proved in [14, 2.5]; (b) is shown in [9, 6.2]. |}

Before we prove the theorem let us formulate a consequence of the above
lemma which will be needed in the next section:

CoROLLARY 2.3. Every nonzero P*-torsion module N without nonzero
regular and nonzero preinjective submodules cogenerates every preprojective
module.

Proof. By (2.2(b)) it is enough to show that for every ne N, N has
preprojective submodules P with Hom(z "4, P)#0. Since 1~ "4 is a tilting
module there exists a short exact sequence

024-T,-T,-0
with T, T,eadd(t "4). Applying Hom(—, N) to this sequence shows

that Hom(T,, N)#0 as Ext(T,, N)=0 (for Ext!(T,, N)=0 see, for
example, [9, 1.5]). The image of a nonzero map t~"4 — N is preprojective
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because of N having no nonzero regular and no nonzero preinjective
submodules. ]

Proof of Theorem 2.1. By [6] the full subcategory of finitely generated
modules in the left perpendicular category * Y is equivalent to mod-B for
some (not necessarily connected) algebra B. In B-mod there is exactly one
infinite preprojective component which is the preprojective component of a
tame hereditary connected algebra C. It consits of A-preprojective modules.
First we construct a nonzero #*-projective module M in Mod-C. We
define M,=0 and M, =C. When M, is defined we define M, , applying
(2.2(a)) as the middle term of a short exact sequence

O-M,-M,,  —-Z-0

with Z preprojective and Hom(M,,,, . "C) = 0. We consider the
modules M, as modules in mod-4 and define the 4-module

M=) M,

nelN

Given any homomorphism f: M — P with P preprojective in mod-4 by
{2.1(b)) we can find NeN such that P is cogenerated by t."C for all
n> N. By construction we have Hom(M,,, ;, 7} "C)=0 for all n> N and
therefore we obtain f(M,) =0 for all ne N. We see that M is a #*-torsion
module in Mod-4 and now (1.4(a)) implies that M is #>*-projective in
Mod-A. The property Hom(M, Y)=0 is trivial because any M, satisfies it.

(b) If we choose Y=0 in the construction of part (a), we obtain
A ,. = M. The assertion follows now again from (1.4(a)). |

Remark. The first example for a 2> -projective module 7 found in
Okoh’s paper [10, 1.3]. Given the Kronecker algebra over the complex
numbers there is the source map P, — P,@® P, of the simple projective
module P,. If P, -t~ Pj is the source map starting in P, he considers the
sequence of monomorphisms

Pl"’Pg_’(Tipl)Q"’(Tipz)s—"

The union of these modules is 2~ -projective.

3. CLASSIFICATION OF Z *-PROJECTIVE MODULES

In the second section we have constructed nonzero £ >-projective
modules, but there seems to be no hope to find nonzero 2™ -projective
modules with a local endomorphisms ring. Given two #™-projective
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modules M, N we therefore consider the classes Add(M) and Add(N) and
we want to find out conditions for one of these classes being a subclass of
the other. As a main result of this section we obtain the following
criterium:

Theorem 3.1. Let M, N be two nonzero P™-projective modules. Then
the following are equivalent:

(i) Add(N)c Add(M)

(i1) If S is a regular partial tilting module with Hom(M, S)=0 then
Hom(¥, S)=0.

Given a tame hereditary algebra 4, the module category mod-A contains
only finitely many regular stones. This implies that there exist only finitely
many different classes of 2 *-projective modules. In case 4 is a tame
hereditary algebra with only two simple modules, we know that Add(M)
contains every 2 -projective module, if M is nonzero 2~ -projective. Note
that this holds for every wild hereditary algebra, too [9, 6.17]. The proof of
the theorem will use the following lemmas:

LeMMA 3.2. Let M, N be two nonzero P> -projective modules. Then the
following are equivalent:
(i) NeGen{M)
(1) NeAdd(M).

Especially, every 2= -projective module is contained in Add(A ).

Proof. Assume M generates N. This implies that the homomorphism
(f.): M — N is an epimorphism if (f;),., is a k-basis of Hom(M, N). We
apply the functor Hom(M, — ) to the short exact sequence

0-K-MDS NSO

and obtain

(M, (fi)
—_—

o (M, M) (M, N) — Ext(M, K)

- Ext(M, M) - ...

Since (f;) is a k-basis of Hom(M, N) the map (M, (f;)) is surjective.
This gives Ext(M, K)=0 as Ext(M, M")=0. By (2.3) we know that
M cogenerates every preprojective module. As an application we obtain
that K is a #*-torsion module and the above sequence splits by the
P>=-projectivity of N.
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It remains to show that A4 . generates every #*-torsion module N.
Applying the functor Hom(—, ¥} to the short exact sequence of (2.1)

0-A4-A4,.2A4,./4—-0,
we obtain the exact sequence
- —»Hom(A4 .., N) > Hom(A4, N) - Ext'(4,./4, N)— ---

As N is P> -torsion we obtain Ext(A4,., N)=0 and therefore every
map 4— N can be extended to a map A4,.— N, especially we have
NeGen(4,-). |

LEMMA 3.3 Let M be a nonzero P ™ -projective module:

(a) If N is a nonzero P~ -torsion module without nonzero regular and
nonzero preinjective submodules then Hom(M, N) is nonzero.

(b) Every regular tube IT if I'(A) contains at least one quasi-simple
module S with §Se Gen(M).

(c) Every P*-torsion module Y with Hom(M, Y)=0 is a direct sum
of regular stones.

Proof. For (b) it is enough to show that every regular tube of I(4)
contains a module N; with Hom(M, N;)#0, since the image of every
nonzero map M — N, has to be a regular module. We use the following
common property of the modules in a regular tube and the module N in
part (a) to prove (a) and (b) simultaneously:

(2) N cogenerates every preprojective module

(B) For every preprojective module P and every regular tube I7 there
exists a monomorphism P — X into a module X of add(/7).

By (3.2) M is in Add(A4,.), so we only have to construct a mono-
morphism A4 ,. — Z for some Ze Add(N) (Z e Add(IT), respectively). We
use the filtration of A . described in (2.1(b)) and choose monomorphisms

fl:A_)Zh fZ:AZ/A_}ZZ’"".fn+l:An+l/An—‘)Zn+17"'

for Z,eAdd(N) (Z,eAdd(IT), respectively) for all n>=1. Applying
Hom(—, Z, . ,) to the short exact sequence

O_’An+l/An_’AJ*/AH—’A;#I‘/An«»l -0

and using that 4 ,./4,,, is #™-projective we see that f, can be lifted to
a map

];1: A;?"U/An—+2n+1'
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Defining
&n: A.}’" _)Af’r/An - le+l’

where A ,. — A _./A, Is the canonical projection, we obtain the mono-
morphism

(gn)

Ay —20 @ Z,.

neN

(c) First we prove that Y is a torsion module. If we denote by 7,.#
the torsion submodule of M and apply Hom(M, —) to the sequence

0-FY->Y-»Y/ 7, Y0,
we obtain
-+ -»>Hom(M, Y})-» Hom(M, Y/9,Y)—> Ext((M, 7, Y)—> ---

Since Hom(M, Y)=Ext(M, 7,Y)=0 we conclude that Y/7,Y =0 with
the help of part (a). If S is a quasi-simple module in a homogenous tube,
we conclude from S e Gen(M) that there exists a nonzero map from M to
every nonzero preinjective module. Therefore Y does not have a nonzero
preinjective submodule.

For the next step we assume that Y has a finitely generated submodule
S(n) with S quasi-simple, ne N such that Ext(S(n), S(n))#0. An easy
calculation shows that the modules S(i) are in the abelian subcategory
M* for 1<i<n. But then the whole mouth of the tube, S(i+ 1)/S(i),
1<ig<n—1,isin M* in contradiction to (b},

By [14, G] there exists a pure submodule U of Y which is a direct sum
of finitely generated regular modules such that Y/U has no nonzero finitely
generated direct summand. We apply the functor Hom(M, —) to the short
exact sequence

0-U—->Y->Y/U-0
and obtain
- > Hom(M, U) - Hom(M, Y/U)— Ext(M, U)— --.

Since U is a regular torsion module we have Ext(M, U)=0 and therefore
Hom(M, Y/U)=0. The module Y/U is a direct sum of Priifer modules
[14,4.8] and therefore we have Y/U =0, as M maps nontrivially into every
Priifer module. So we have shown that Y= U is a direct sum of finitely
generated modules, which have to be regular stones. |
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Proof of Theorem 3.1. We assume property (ii). By (3.2) it is enough to
show that N is in Gen(M). Let 7,,N be the largest submodule of N which
1s in Gen(M) (see (1.3)). The module Y = N/t,,N is a #*-torsion module
with Hom(M, Y)=0 and therefore a direct sum of regular stones (3.3(c)).
But this implies ¥'=0 by assumption. ||

4. BAER MODULES AND THE SPLITTING PROPERTY OF 2~

The aim of this section is to show connections between & *-projective
modules, Baer modules, and purely simple modules of infinite rank.
Following Okoh [12] we call a module M Baer module, if Ext{M, T)=0
for every torsion module 7. Since every P*-projective module M satisfies
the stronger condition Ext(M, N)=0 for every #*“-torsion module N,
trivially every #*-projective module is a Baer module which is 2*-torsion
in addition.

LemMa 4.1. For a torsionfree module M of countable rank there are
equivalents:

(1) Ext(M, N)=0 for all P*-torsion modules

(i1) If U is a finitely generated submodule of M, then also T,(M/U) is
finitely generated (equivalent. Every submodule of finite rank is finitely
generated ).

Proof. (i)=-(ii) We only give a sketch of the proof since it is similar
to the proof of [9, 5.17. Let

0-M->M —-A4%.-0

be universal exact sequence, that is, a sequence such that the connection
homomorphism Hom(4 -, A}))— Ext'(4 ., M) is surjective. Applying
the functor Hom(A4 ,., —) to this sequence gives

Hom(A ., AD)—>s Ext(A ., M) — Ext(A ., M')
S Ext(A,., AD).

Since ¢ is surjective we obtain Ext(A,., M')=0 as Ext(4 ., 4}.)=0.
The same argument as in the proof of (3.2) shows that M’ is a #*-torsion
module. M’ is 2™ -projective and by (3.2) in Add(4,-). Now it is easy to
see that A,. has property (ii) and the class of modules satisfying (ii) is
closed with respect to direct sums and submodules. This shows that M
satisfies (ii).
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(ii)=> (i) Proposition 1.3 of [12] states the existence of an ascending
chain

M cMycM,cM,c -

of finite dimensional submodules of M, such that M, , /M, is preprojective
for all natural numbers /. Now the assertion follows from (1.4). |}

Remark. Note that an infinite dimensional module of finite rank does
not satisfy property (ii) of (4.1), therefore nonzero 2 ™-projectives have
infinite rank.

Lemma 4.2,  Every P™-torsionfree module M satisfies property (ii)
of (4.1).

Proof. Assume that M has a finitely generated submodule U such that
F (M/U} is not finitely generated. By [ 14, 3.7] Z,(M/U} is a direct sum
of preinjective modules and a regular torsion module C. Lemma 3.7 of
[14] implies that C is an infinite dimensional module. By the pullback-
construction along the inclusion of C in M/U

0O—U——> M — M/U—>0

I

0— U - M’ -+ C —0

we obtain an infinite dimensional submodule M’ of M. By (l.1(b))
this module has finite rank, and since M’ is #*-torsionfree we obtain by
(1.2) that M is a finite direct sum of preprojective modules. This is a
contradiction to the fact that M’ is not finitely generated. |J

Combining the last two lemmas we obtain the following theorem.
THEOREM 4.3. Let M be a module of countable rank over a tame
hereditary algebra A:

(a) If M is P -torsionfree we have Ext(M,N)=0 for every
P> -torsion module N.
(b) The submodule P M is a direct summand of M.

(c) If M is a Baer module, then M is a direct sum of a P ™ -projective
and a P *-torsionfree module.

Proof. (a) is a direct consequence of (4.1) and (4.2).
(b) The short exact sequence

0->P*M->M->MP*"M->0

splits by (a), because of M/#™M being # ™ -torsionfree.
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(c) By (b) we only have to show that ™M is #>*-projective. From
[13] we know that every Baer module satisfies property (ii) of (4.1). Since
the submodule 2~ M satisfies this property, too, the assertion follows from

42). 1

Remark. For the Kronecker algebra over the field of complex numbers
Okoh has shown in [12]: Let « be a set of indecomposable preprojective
modules such that infinitely many isomorphism-classes of indecomposable
preprojectives are represented by modules of «. Then the module [T,., P
is not a Baer module. This shows that (4.3(b)) fails in general if the
modules have uncountable k-dimension. We also see that a product of
P> -projectives 1s not 2 *-projective, in general.

Dealing with infinite dimensional modules the notation of indecom-
posability is not as relevant as in the finite dimensional case. The reason is
that the correct generalisation of indecomposability is the concept of purely
simple modules. Here a module is called purely simple if it has only the
trivial modules as pure submodules. In [11] Okoh proved for Kronecker
algebras (for the general case see [1]) that every purely simple module M
of infinite rank has a chain of submodules

McM,cM;c ---

such that M, ,/M, is preprojective and |J, M,=M. But then M is a
P>*-projective module. From the properties of 2~ -projectives we deduce
that there exists at most finitely many isomorphism classes of purely simple
modules of infinite rank and local endomorphism ring.
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