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Abstract

This paper revisits some asymptotic properties of the robust nonparametric estimators of order-m
and order-� quantile frontiers and proposes isotonized version of these estimators. Previous conver-
gence properties of the order-m frontier are extended (from weak uniform convergence to complete
uniform convergence). Complete uniform convergence of the order-m (and of the quantile order-�)
nonparametric estimators to the boundary is also established, for an appropriate choice ofm (and of
�, respectively) as a function of the sample size. The new isotonized estimators share the asymptotic
properties of the original ones and a simulated example shows, as expected, that these new versions
are even more robust than the original estimators. The procedure is also illustrated through a real data
set.
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1. Introduction and basic notation

Let � be the support of the joint probability measure of a random vector(X, Y ) ∈
R
p
+ × R+ and let(�,A, P ) be the probability space on which the vectorXand the variable

Y are defined. Consider the problem of estimating non parametrically the upper boundary
of �, where “upper” is in the direction of the univariateY. This boundary is assumed to be
a monotone nondecreasing3 function ofX and we have a sample(X1, Y1), . . . , (Xn, Yn)

of independent random vectors with the same distribution as(X, Y ).
Let us denote byF(y|x) = F(x, y)/FX(x) the conditional distribution function ofY

givenX�x, whereF is the joint distribution function of(X, Y ) andFX(x) = F(x,∞).
From now on we assume thatx ∈ R

p
+ is such thatFX(x) > 0. The monotone boundary of

� can then be characterized through the frontier function

�(x) = inf {y ∈ R+|F(y|x) = 1},
which is the upper boundary of the support of the nonstandard conditional probability
measure ofYgivenX�x.

This kind of problem appears naturally to be useful when analyzing production perfor-
mance of firms, whereX represents the vector of inputs (resources of production) andY is
the output (a quantity of produced goods). In this context,�(x) is the production frontier,
i.e., the maximal achievable level of output for a firm working at the level of inputsx. The
production efficiency of a firm operating at the level(x, y) can then be measured by the
relative comparison of its outputywith the reference frontier�(x).

Nonparametric envelopment estimators have been mostly used, like the Free Disposal
Hull estimator (FDH, initiated by Deprins et al.[6] in the context of measuring the efficiency
of enterprises),

�̂n(x) = inf {y ∈ R+|F̂n(y|x) = 1} = max
i|Xi �x

Yi,

whereF̂n(y|x) = F̂n(x, y)/F̂X,n(x), with F̂n(x, y) = (1/n)
∑n

i=1 1(Xi�x, Yi�y) and
F̂X,n(x) = F̂n(x,∞). The convex hull of the FDH frontier̂�n provides the data envelopment
analysis estimator (DEA, initiated by Farrell[7] and popularized as linear programming
estimator by Charnes et al.[4]). The statistical inference based on these estimators is now
mostly available either by using asymptotic results or by using the bootstrap (see[16] for
a recent survey and[13] for a survey and more than 700 references on applications using
these estimators). But, by construction, these estimators envelop all the data points and so,
are very sensitive to extreme values.

Original robust nonparametric estimators have been suggested recently by Cazals et al.
[3]. In place of looking for the full frontier, they estimate a partial frontier of orderm�1,
which can be defined as follows. For a given levelx, it is defined as the expected value of
the maximum ofm-independent random variablesY 1, . . . , Ym, drawn from the conditional

3 For two vectorsx andx′ in Rp the inequalityx�x′ has to be understood componentwise. A real valued
function r on Rp is then said to be monotone nondecreasing with respect to this partial order ifx�x′ implies
r(x)� (x′).
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distribution ofYgivenX�x, i.e.,

�m(x) = E[max(Y 1, . . . , Ym)|X�x] =
∫ ∞

0
(1 − [F(y|x)]m) dy.

For all finite integerm�1, �m(x)��(x) and limm→∞ �m(x) = �(x). This expected
frontier function of ordermcan be estimated nonparametrically by plugging the empirical
versionF̂n(y|x) of the conditional distribution functionF(y|x) to obtain

�̂m,n(x) = Ê[max(Y 1, . . . , Ym)|X�x] =
∫ ∞

0
(1 − [F̂n(y|x)]m) dy.

An explicit formula is available in order to computê�m,n(x), but in practice it is more easy
to approximate the empirical expectation by a Monte-Carlo algorithm (see, e.g.,[8]). To
summarize the properties of these functions, we have

�̂m,n(x)��̂n(x), lim
m→∞ �̂m,n(x) = �̂n(x),

√
n(�̂m,n(x)− �m(x)) → N(0, �2(x,m)) as n → ∞,

where an expression of�2(x,m) is available. By choosingm appropriately as a function
of the sample sizen, �̂m(n),n(x) estimates the true frontier function�(x) itself and is more
robust to extreme values than the FDH since it does not envelop all the data points: it is
computed as the expectation of a maximum and not as an observed maximum. An explicit
formula of the orderm(n) is given in[3], to summarize, we must havem(n) = O(n log(n)).
In this case, this estimator keeps the asymptotic properties of the FDH estimator as derived
in [12].

Similarly, Aragon et al.[1] introduce the concept of an order-� quantile frontier function,
which increases w.r.t. the continuous order� ∈ [0,1] and converges to the full frontier�(x)
as� ↗ 1. It is defined, for a given levelx, by the conditional�-quantile of the distribution
ofYgivenX�x, i.e.,

q�(x) := F−1(�|x) = inf {y ∈ R+|F(y|x)��}.
A nonparametric estimator ofq�(x), which increases and converges to the FDH�̂n(x) as
� ↗ 1, is easily derived by inverting the empirical version of the conditional distribution
function,

q̂�,n(x) := F̂−1
n (�|x) = inf {y ∈ R+|F̂n(y|x)��}.

As pointed out in[1], this estimator is very fast to compute, very easy to interpret and satisfies
very similar statistical properties to those of the nonparametric estimator�̂m,n(x). In sum-
mary, it converges at the rate

√
n, is asymptotically unbiased and normally distributed. More-

over, when the order� is considered as a function ofnsuch thatn(p+2)/(p+1) (1 − �(n)) → 0
asn → ∞, q̂�(n),n(x) estimates the true frontier function�(x) and shares the same asymp-
totic distribution of both the FDH estimator̂�n(x) and the order-m(n) frontier �̂m(n),n(x).

The reliability of the two sequences of estimators{̂q�,n(x)} and{�̂m,n(x)} is analyzed
from a robustness theory point of view in Daouia and Ruiz-Gazen[5]. Both of these nonpara-
metric frontier estimators are qualitatively robust and bias-robust. But the order-� quantile
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frontiers can be more robust to extreme values than the order-m frontiers when estimating
the true full frontier since the influence function is no longer bounded for order-m frontiers
whenm tends to infinity, while it remains bounded for the conditional quantile frontiers
when the quantile order tends to one. The advantage of the order-m frontiers lies in the
fact that they can be easily extended to the full multivariate case (X ∈ R

p
+ andY ∈ R

q
+),

where they can be computed by using a Monte-Carlo algorithm ([15]). This full multivariate
extension has not been obtained for the order-� quantile frontiers.

The drawback of the concepts of these partial frontiers lies in the fact that they are not
necessarily monotone with respect tox, whereas the full frontier is monotone. In this paper,
we propose an isotonized version�#

m(x) of �m(x) andq#
� (x) of q�(x), respectively, which

converges uniformly to the full frontier�(x) asm → ∞ and as� ↗ 1, respectively. In the
same way, we introduce monotone versions�̂#

m,n(x) and q̂#
�,n(x) of the initial estimators

�̂m,n(x) and q̂�,n(x). We first extend, in Lemmas3.2 and3.3, the results obtained in[8]
about weak uniform consistency of�̂m,n and̂�n to the complete4 uniform convergence. We
also establish the complete uniform convergence of both�̂m(n),n and̂q�(n),n to� asn → ∞.
We then show that the isotone estimator�̂#

m,n converges completely and uniformly to the
monotone order-m frontier �#

m, and that the monotone versions�̂#
m(n),n andq̂#

�(n),n of the
initial estimatorŝ�m(n),n andq̂�(n),n share the same strong uniform convergence property
of the FDH estimator̂�n to the full frontier�. Finally, we show thatP(||�̂#

m(n),n−�|| > �)

andP(||̂q#
�(n),n−�|| > �), for � > 0 converge to 0 at an exponential rate, where|| · || stands

for the sup-norm. We illustrate the method through some numerical examples with real and
simulated data.

2. Monotone estimators of the upper boundary

The partial functions�m(x) andq�(x) converge to the nondecreasing full function�(x)
asm → ∞ and as� ↗ 1, respectively, but they are not nondecreasing themselves unless
we assume that the conditional distribution functionF(y|x) is nonincreasing as a function
of x (see[3, Theorem A.3, 1, Proposition 2.5], respectively). Our goal is to make these
partial frontier functions monotone nondecreasing on some given subsetD interior to the
support ofX in a more general setup, i.e. without relying on such an assumption.

This is achieved through the following isotonization method: we denote by|| · || the
sup-norm of a real-valued function over the domainD and we assume from now on that this
domain is compact. For a real-valued functionr defined onD, let us define the following
three functions:

ru(x) = sup
x′∈D;x′ �x

r(x′),

rl(x) = inf
x′∈D;x′ �x

r(x′),

r#(x) = (ru(x)+ rl(x))/2. (1)

4 Following Hsu and Robbins[10], we say that a sequence of random variables{Xn} converges completely to
a random variableX if

∑∞
n=1 Prob(|Xn −X| > �) < ∞ for every� > 0.
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It is clear thatru(x), rl(x) andr#(x) are nondecreasing and thatrl(x)�r(x)�ru(x), for
all x in their domainD.

A natural concept of a monotone order-m frontier can then be defined simply as the
isotonized version�#

m(x) of �m(x). This nondecreasing partial function can be estimated
nonparametrically by the isotonized version�̂#

m,n(x) of �̂m,n(x).
The basic idea of this monotonization procedure is not new. Mukerjee and Stern[11] use

a similar principle to isotonize a Nadaraya–Watson kernel estimator of the regression func-
tion, and with a slight difference, which is in fact a computational artifact: in their approach,
the sup and inf in (1) are taken over a discrete grid instead of the whole domainD. In the
context of production efficiency measurement, Aragon et al.[2] use the same technique to
isotonize a smoothed estimator of the nonstandard conditional distribution functionF(y|x)
with respect tox, but in the nonincreasing sense. They prove that when the initial smoothed
estimator is strongly uniformly consistent and the functionx �→ F(y|x) is nonincreasing for
y fixed, then the isotonized estimator is also strongly uniformly consistent. Their argument
is based on the fact that the # operator, which provides in their approach a nonincreasing
version ofr onD, is sup-norm contracting (see[2, Lemma 3.3]). In our setup, we only need
to adapt this result to our # operator which rather provides a nondecreasing version ofr on
D. This ingenious property of the operator # allows to show that the monotone estimator
�̂#
m(n),n converges uniformly and completely to the full frontier function� and is globally

closer to� than the non-isotone estimator̂�m(n),n. This can be seen from the following
theorem.

Theorem 2.1. Assume thatFX, � and�m are continuous on the compact D, for every
m�1,and that the upper boundary of the support of Y is finite. Then

||�̂#
m(n),n − �||� ||�̂m(n),n − �|| co.−→ 0 as n → ∞,

where the integerm(n)�1 is such that

lim
n→∞ m(n) = ∞, lim

n→∞ m(n)(logn/n)1/2 = 0.

Note that this result extends the weak pointwise consistency of�̂m(n),n(x) for �(x)proved
in [3] to the complete uniform convergence. The next result gives a more subtle convergence
rate ofm(n) asn tends to infinity, but the stochastic convergence here is only in the almost
sure sense.

Theorem 2.2. Under the conditions of Theorem2.1, we have

||�̂#
m(n),n − �||� ||�̂m(n),n − �|| a.s.−→ 0 as n → ∞,

wherelimn→∞ m(n) = ∞, and limn→∞ m(n)(log logn/n)1/2 = 0.

Likewise, by isotonizing the quantile frontiers, the global error estimation for esti-
mating � becomes weaker and converges uniformly and completely to 0 asn goes
to ∞.
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Theorem 2.3. Under the conditions of Theorem2.1, we have

||̂q#
�(n),n − �||� ||̂q�(n),n − �|| co.−→ 0 as n → ∞,

where the order�(n) is such thatn(1 − �(n)) → 0 asn → ∞.

Here, the initial estimator̂q�(n),n(x) and its isotone version̂q#
�(n),n(x) estimate the full

frontier �(x) itself. As expected by Aragon et al.[1, Theorem 4.3], when the order�(n)
converges to 1 at the raten(p+2)/(p+1) asn → ∞, the random errorn1/(p+1)(�(x) −
q̂�(n),n(x)) converges to a Weibull distribution whose parameters depend on the joint density
of (X, Y ) near the frontier point(x,�(x)).

The next corollaries exhibit bounds on the related probabilitiesP(||�̂#
m(n),n − �|| > �)

andP(||̂q#
�(n),n − �|| > �), for � > 0, showing that they converge to 0 at an exponential

rate. Naturally, this implies the uniform complete convergence results established above, but
requires more powerful techniques of proof. To prove these results we shall use Lemma3.4
(see next section).

Corollary 2.4. Letm(n)�1 be an integer such thatlimn→∞ m(n) = ∞. Given the con-
ditions of Theorem2.1onFX, �, {�m} and the upper boundary� of the support of Y, there
exists a finite positive constant C such that for allr > 0, � > 1 and all n sufficiently large

P(||�̂#
m(n),n − �|| > �r)�P(||�̂m(n),n − �|| > �r)

�C

{
exp

(
−nr2

(
inf
x∈D FX(x)

)2
/

(4m(n)�)2

)

+ exp

(
−n

(
1 − 1

�

)2(
inf
x∈D FX(x)

)2
)}

.

Corollary 2.5. Let �(n) ∈ (0,1) be such thatlimn→∞ n(1 − �(n)) = 0.Under the con-
ditions of Corollary2.4, there exists a constantC ∈ (0,∞) such that for allr > 0, � > 1
and all n large enough

P(||̂q#
�(n),n − �|| > �r)�P(||̂q�(n),n − �|| > �r)

�C

{
exp

(
−nr2

(
inf
x∈D FX(x)

)2
/

(8m(n)�)2

)

+ exp

(
−n

(
1 − 1

�

)2(
inf
x∈D FX(x)

)2
)

+ exp

(
−n(� − 1)2

(
sup
x∈D

FX(x)

)2
)}

.
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3. Lemmas and proofs

The following lemma asserts that the # operator is sup-norm contracting.

Lemma 3.1. If r and s are two functions defined on D, then

||r# − s#||� ||r − s||.

Proof. Let M = supx∈D |r(x) − s(x)|. The lemma will follow from the following sets of
inequalities:

ru −M�su�ru +M,

rl −M�sl�rl +M.

The two right inequalities follow from taking the supx′ �x (resp., the infx′ �x) in the in-
equalitys(x′)�r(x′) + M, and the left ones follow from taking the supx′ �x (resp., the
inf x′ �x) in the inequalityr(x′)−M�s(x′). �

We know from Florens and Simar[8, see the appendix, Proof of Lemma A.1]that�̂m,n

converges uniformly in probability to�m asn → ∞. By applying Lemma3.1, we obtain

||�̂#
m,n − �#

m||� ||�̂m,n − �m||,

which implies the weak uniform consistency of�̂#
m,n for �#

m. This result can be improved
to obtain the complete uniform convergence by using the following lemma.

Lemma 3.2. Assume thatFX is continuous on the compact D and that the upper boundary
of the support of Y is finite. Then,

||�̂m,n − �m|| co.−→ 0 as n → ∞.

Proof. Let � < ∞ be the upper boundary of the support ofY and letx ∈ D. Since
�̂n(x)��(x)�� with probability 1 (for a proof, see[1, Section 3]), we have with proba-
bility 1,

�̂m,n(x) =
∫ �̂n(x)

0
(1 − [F̂n(y|x)]m) dy =

∫ �

0
(1 − [F̂n(y|x)]m) dy.

We therefore obtain, with probability 1,

�̂m,n(x)− �m(x) =
∫ �

0
([F(y|x)]m − [F̂n(y|x)]m) dy

=
∫ �

0
(F (y|x)− F̂n(y|x))

m−1∑
j=0

[F(y|x)]m−1−j [F̂n(y|x)]j dy.
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This implies, with probability 1,

|�̂m,n(x)− �m(x)|
�m

∫ �

0
|F(y|x)− F̂n(y|x)| dy

= m

∫ �

0

|F̂X,n(x)F (x, y)− FX(x)F̂n(x, y)|
FX(x)F̂X,n(x)

dy

�m

∫ �

0

F(x, y)|F̂X,n(x)− FX(x)| + FX(x)|F̂n(x, y)− F(x, y)|
FX(x)F̂X,n(x)

dy

� m�

F̂X,n(x)
(||F̂X,n − FX|| + ||F̂n − F ||).

Thus, we have with probability 1,

||�̂m,n − �m||� m�

inf x∈D F̂X,n(x)
(||F̂X,n − FX|| + ||F̂n − F ||). (2)

To complete the proof, it suffices to show that the term on the right-hand side of Inequality
(2) converges completely to 0 asn → ∞. We know from Glivenko–Cantelli theorem
[14, see the proof of Theorem A, p. 61]that||F̂X,n−FX|| and||F̂n−F || converge completely
to 0 asn → ∞. Hence, it only remains to show that

∃	 > 0 such that
∞∑
n=1

P

(
inf
x∈D F̂X,n(x)�	

)
< ∞. (3)

Indeed, it can be easily seen that, if{Vn} and{Wn} are two sequences of random variables
s.t.Vn converges completely to 0 and there exists	 > 0 s.t.

∑∞
n=1P(|Wn|�	) < ∞, then

Vn/Wn converges completely to 0.
Since| inf x∈D F̂X,n(x) − inf x∈D FX(x)|� ||F̂X,n − FX|| and||F̂X,n − FX|| converges

completely to 0, we obtain
∑∞

n=1P(| inf x∈D F̂X,n(x) − inf x∈D FX(x)|�	) < ∞, for
every	 > 0. This yields

∑∞
n=1P(inf x∈D F̂X,n(x)� inf x∈D FX(x) − 	) < ∞, ∀	 > 0.

Thus, we can end the proof by putting	 = inf x∈D FX(x)/2 > 0. �
As an immediate consequence of Lemmas3.1 and3.2, we obtain the complete conver-

gence of||�̂#
m,n − �#

m|| to 0 asn → ∞. Furthermore, we know from Florens and Simar
[8, see the proof of Lemma A.1]that�m converges uniformly to� asm → ∞, provided
of course that� and�m are continuous onD, for everym�1. Therefore,

||�#
m − �|| = ||�#

m − �#||� ||�m − �|| −→ 0 as m → ∞.

This indicates that the isotone partial order-m function�#
m is closer in sup-norm to the true

frontier function� than the initial version�m. This property remains valid with estimators
�̂#
m(n),n and�̂m(n),n of � as it is shown by Theorem2.1.

Proof of Theorem 2.1. First let us show that||�̂m(n),n − �m(n)|| converges completely to
0 asn → ∞. Let � > 0. We know from Kiefer’s Inequality[14, Theorem B, p. 61]that
there exist finite positive constantsC1 andC2 (not depending onF andFX) such that

P(||F̂n − F || > d)�C1e
−nd2

, P (||F̂X,n − FX|| > d)�C2e
−nd2

(4)
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for everyd > 0 and alln�1. By taking�/m(n) > 0 in place ofd in the above inequalities,
we obtain

P(m(n)||F̂n − F || > �)�C1e
−n�2/m2(n),

P (m(n)||F̂X,n − FX|| > �)�C2e
−n�2/m2(n)

for all n�1. Since limn→∞(m2(n) logn)/n = 0, we have(m2(n) logn)/n��2/2, for n
large enough. Hence exp(−n�2/m2(n))�n−2, for all n sufficiently large. This implies

∞∑
n=1

P(m(n)||F̂n − F || > �) < ∞,

∞∑
n=1

P(m(n)||F̂X,n − FX|| > �) < ∞

showing therefore thatm(n)||F̂n − F || andm(n)||F̂X,n − FX|| converge completely to 0.
Thus,�̂m(n),n converges completely and uniformly to�m(n) in view of (2) and (3). Since
limn→∞ m(n) = ∞ and limm→∞ ||�m − �|| = 0, we have limn→∞ ||�m(n) − �|| = 0.
Finally, we obtain the desired result by using the following inequalities:

||�̂#
m(n),n − �||� ||�̂m(n),n − �||� ||�̂m(n),n − �m(n)|| + ||�m(n) − �||. (5)

This completes the proof.�

Proof of Theorem 2.2. We only need to show thatm(n)||F̂n −F || andm(n)||F̂X,n −FX||
converge almost surely to 0, and then we follow the same setup used to prove the last result
of Theorem2.1. We have from the law of the iterated logarithm[14, Theorem B, p. 62],

||F̂X,n − FX||�2C(FX)(log logn/n)1/2, ||F̂n − F ||�2C(F)(log logn/n)1/2

for all n large enough, with probability 1, whereC(FX) andC(F) are two finite positive
constants. Since limn→∞ m(n)(log logn/n)1/2 = 0, the conclusion follows directly from
the above inequalities.�

Making use of Lemma3.2, we also can improve the weak uniform consistency of the
FDH estimator̂�n by adapting the proof of Florens and Simar[8, Lemma A.1].

Lemma 3.3. Under the same regularity conditions of Theorem2.1, we have

||�̂n − �|| co.−→ 0 as n → ∞.

Proof. Let � > 0 andn�1. Since�m converges uniformly to� asm → ∞, we have

∃m� such that||�m�
− �|| < �/2. (6)

We also have in view of Lemma3.2,

∞∑
n=1

P(||�̂m�,n
− �m�

|| > �/2) < ∞. (7)
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We know that̂�m�,n
(x)��̂n(x)��(x) with probability 1, for anyx ∈ D. Here, we need

to extend this result to show that

∀x ∈ D, �̂m�,n
(x)��̂n(x)��(x) (8)

with probability 1. We know thaty��(x) for any(x, y) ∈ � such thatFX(x) > 0. Since the
random variableFX(Xi) is uniform on(0,1), it is almost surely strictly positive, and since
(Xi, Yi) ∈ � almost surely, we haveYi��(Xi) with probability 1. Put�i = {Yi��(Xi)},
i = 1, . . . , n. We haveP(�i )=1, for i = 1, . . . , n. Let �0 = ∩n

i=1�i . ThenP(�0) = 1.
To prove (8), it is sufficient to show that�0 ⊂ {∀x ∈ D, maxi|Xi �x Yi��(x)}. If

 ∈ �0, thenYi(
)��(Xi(
)), for all i = 1, . . . , n. In particular, we obtain by using the
monotonicity of�,

∀x ∈ D ∀i such thatXi(
)�x : Yi(
)��(Xi(
))��(x).

Hence, maxi|Xi(
)�x Yi(
)��(x) for any x ∈ D, and thus we obtain,
 ∈ {∀x ∈
D, maxi|Xi �x Yi��(x)}. This ends the proof of (8). Now we obtain by using (8),

||�̂n − �||� ||�̂m�,n
− �||� ||�̂m�,n

− �m�
|| + ||�m�

− �|| (9)

with probability 1. Combining with (6), we get

P(||�̂n − �|| > �) � P(||�̂m�,n
− �m�

|| + �/2 > ||�̂m�,n
− �m�

|| + ||�m�
− �|| > �)

� P(||�̂m�,n
− �m�

|| > �/2).

Thus
∑∞

n=1P
(||�̂n − �|| > �

)
< ∞, in view of (7). �

Likewise, in place of looking to the�-quantile functionq�(x)and its estimator̂q�,n(x), we
rather concentrate on their isotonic versionsq#

� (x) and q̂#
�,n(x). We know from

Aragon et al.[1, Proposition 2.4]that, if x �→ q�(x) is continuous on the compactD,
for every� ∈ [0,1], thenq� converges uniformly to� as� ↗ 1 and so, we obtain by using
Lemma3.1,

||q#
� − �||� ||q� − �|| −→ 0 as � ↗ 1.

The estimatorŝq�(n),n and̂q#
�(n),n of � fulfill the same property as indicated in Theorem2.3.

Proof of Theorem 2.3. It follows from [1] (see the appendix: last inequality of the proof
of Theorem 4.3) that, for any� > 0 and allx ∈ D,

0��̂n(x)− q̂�,n(x)�n(1 − �)�F̂X,n(x) (10)

with probability 1, where� < ∞ denotes the upper boundary of the support ofY. This
implies, for any� > 0,

||�̂n − q̂�,n||�n(1 − �)�(||F̂X,n − FX|| + ||FX||)
with probability 1. Therefore, by choosing� as a function ofn converging to 1, such that
n(1 − �(n)) → 0 asn → ∞, we obtain by using Glivenko–Cantelli Theorem and the
continuity ofFX onD (||FX|| < ∞),

||�̂n − q̂�(n),n|| co.−→ 0 as n → ∞. (11)
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Thus, we get by applying Lemma3.1,

||̂q#
�(n),n − �||� ||̂q�(n),n − �||� ||̂q�(n),n − �̂n|| + ||�̂n − �|| (12)

which converges completely to 0 asn → ∞, in view of (11) and Lemma3.3. �
The following lemma provides a useful bound for probabilities of large deviations. It

indicates thatP(||�̂m,n − �m|| > �) → 0 exponentially fast.

Lemma 3.4. Given the conditions of Lemma3.2onFX and the upper boundary� of the
support of Y, there exists a finite positive constant C(not depending on F) such that for all
r > 0, � > 1 and alln�1,

P(||�̂m,n − �m|| > �r)

�C

{
exp

(
−nr2

(
inf
x∈D FX(x)

)2
/

(2m�)2

)

+ exp

(
−n

(
1 − 1

�

)2(
inf
x∈D FX(x)

)2
)}

.

Proof. We have from (2), with probability 1

||�̂m,n − �m||� m�

inf x∈D FX(x)

inf x∈D FX(x)

inf x∈D F̂X,n(x)
(||F̂X,n − FX|| + ||F̂n − F ||).

According to Kiefer’s Inequality (4), there exist finite positive constantsC1 andC2 such
that for alln�1 andr > 0,

P

[
m�

inf x∈D FX(x)
(||F̂X,n − FX|| + ||F̂n − F ||) > r

]
�P

[
||F̂n − F || > (inf x∈D FX(x))r

2m�

]
+ P

[
||F̂X,n − FX|| > (inf x∈D FX(x))r

2m�

]

�(C1 + C2)exp

{
−n

(
(inf x∈D FX(x))r

2m�

)2
}
.

It also can be easily seen, for every� > 1,

P

[
inf x∈D FX(x)

inf x∈D F̂X,n(x)
> �

]
= P

[
inf
x∈D FX(x)− inf

x∈D F̂X,n(x) >
� − 1

�
inf
x∈D FX(x)

]

� P

[
||F̂X,n − FX|| > � − 1

�
inf
x∈D FX(x)

]

� C2 exp

{
−n

(
� − 1

�
inf
x∈D FX(x)

)2
}
.
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Therefore, we have for allr > 0, � > 1 and alln�1

P [||�̂m,n − �m|| > �r]

�P

[
m�(||F̂X,n − FX|| + ||F̂n − F ||)

inf x∈D FX(x)
> r

]
+ P

[
inf x∈D FX(x)

inf x∈D F̂X,n(x)
> �

]

�(C1 + C2)exp

{
−nr2

(
inf
x∈D FX(x)/2m�

)2
}

+C2 exp

{
−n

(
1 − 1

�

)2(
inf
x∈D FX(x)

)2
}
.

This ends the proof by puttingC = C1 + C2. �
By applying the fact that the # operator is sup-norm contracting, we get the same expo-

nential bound forP(||�̂#
m,n − �#

m|| > �r). Even more strongly, we have for everyN�1

P

(
sup
n�N

||�̂#
m,n − �#

m|| > �r

)
�

∑
n�N

P (||�̂#
m,n − �#

m|| > �r)

� Ce−Nr2(inf x∈D FX(x))
2/(2m�)2

1 − e−r2(inf x∈D FX(x))
2/(2m�)2

+ Ce−N(1− 1
� )

2(inf x∈D FX(x))
2

1 − e−(1− 1
� )

2(inf x∈D FX(x))
2
.

As a consequence of Lemma3.4, we also can prove Corollaries2.4and2.5.

Proof of Corollary 2.4. We have from Inequality (5), for any� > 1, r > 0 andn�1

P [||�̂m(n),n − �|| > �r]
�P [||�̂m(n),n − �m(n)|| > �r/2] + P [||�m(n) − �|| > �r/2].

Since||�m(n) − �|| → 0 asn → ∞, the second probability of the term on the right-hand
side is zero forn large enough. ThereforeP [||�̂m(n),n−�|| > �r]�P [||�̂m(n),n−�m(n)|| >
�r/2] for all � > 1, r > 0 and alln sufficiently large. The desired result follows thus by
applying Lemma3.4. �

Proof of Corollary 2.5. We know from the proof of Lemma3.3that||�̂n−�||� ||�̂m(n),n−
�|| with probability 1 (it suffices to replacem� by m(n) in (9)). Therefore, by making use
of Corollary2.4, we obtain for all� > 1, r > 0 and alln sufficiently large

P [||�̂n − �|| > �r/2]
�C

{
e−nr2(inf x∈D FX(x)/8m(n)�)2 + e−n(1− 1

� )
2(inf x∈D FX(x))

2
}
, (13)

whereC > 0 is a finite constant. We also have from the proof of Theorem2.3(see (10))

||�̂n − q̂�(n),n||�n(1 − �(n))�

(
sup
x∈D

F̂X,n(x)

/
sup
x∈D

FX(x)

)
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with probability 1. Hence

P [||�̂n − q̂�(n),n|| > �r/2]

�P

[
supx∈D F̂X,n(x)

supx∈D FX(x)
> �] + P [n(1 − �(n))� > r/2

]
. (14)

Sincen(1 − �(n)) → 0 asn → ∞, we obtainn(1 − �(n))� < r/2 for n sufficiently large.
On the other hand, we have via (4)

P

[
supx∈D F̂X,n(x)

supx∈D FX(x)
> �

]
= P

[
sup
x∈D

F̂X,n(x)− sup
x∈D

FX(x) > (� − 1) sup
x∈D

FX(x)

]
� P

[
||F̂X,n − FX|| > (� − 1) sup

x∈D
FX(x)

]
� C2 exp

{
−n(� − 1)2

(
sup
x∈D

FX(x)

)2
}
.

We finally conclude by using (12) in conjunction with (13) and (14). �

4. Algorithms for practical computation

In practice, to compute the monotone frontier�̂#
m,n (in the same waŷq#

�,n), we use a
discrete grid instead of the whole domainD. For instance, we could consider the minimal
rectangular set with edges parallel to the coordinate axes that covers all the observationsXi ,
and then choose a discrete gridDn = {xn,1, . . . , xn,k} in this rectangular set containing the
unique minimal and maximal (with respect to the partial order “�”) points of this set (we
could chooseDn to be simply the set of the observation points{Xi} besides the minimal
and maximal points of the minimal envelopment rectangular set). Such a choice makes it
easier to compute botĥ�m,n(x) and�̂#

m,n(x) over the rectangular set. For example, ifp = 1
andxn,1� · · · �xn,k, then�̂l

m,n and�̂u
m,n are constant between successive points such that

�̂l
m,n(xn,i) = �̂l

m,n(xn,i+1) ∧ �̂m,n(xn,i),

�̂u
m,n(xn,i+1) = �̂u

m,n(xn,i) ∨ �̂m,n(xn,i+1)

for all i = 1, . . . , k − 1. Note that in this case, the choice ofDn = {Xi} happens to be
more natural for the quantile framework since the initial frontierq̂�,n is by construction
constant between successive observationsXi . For the general case (p�1), first compute
�̂u
m,n successively alongDn starting from its minimal point, using the fact that

�̂u
m,n(xn,i) = �̂m,n(xn,i)

∨ max{�̂u
m,n(xn,j ) : xn,j is an immediate predecessor ofxn,i}

for all xn,i ∈ Dn. Compute alsô�l
m,n successively alongDn starting this time from its

maximal point, using the fact that

�̂l
m,n(xn,i) = �̂m,n(xn,i)

∧ min{�̂l
m,n(xn,j ) : xn,j is an immediate successor ofxn,i}.
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The isotonic order-m frontier �̂#
m,n(x) can be therfore easily computed, for anyx in the

rectangular set, as the mean of

�̂u
m,n(x) = max

xn,i∈Dn|xn,i �x
�̂u
m,n(xn,i) and �̂l

m,n(x) = min
xn,i∈Dn|xn,i �x

�̂l
m,n(xn,i).

It is clear that a large value ofk is necessary to get a good result in practice. We will see a
numerical illustration in Section 5.

Mukerjee and Stern[11] perform a very closely similar isotonization algorithm by using
an appropriate choice ofDn that leads to the strong uniform consistency of their isotonic
estimator. We can easily adapt their setup to our problem by taking�, �̂m(n),n, �̂#

m(n),n,

�̂u
m(n),n, �̂l

m(n),n andD in place of the quantities�, �̂n, Gn, G1n, G2n andH in [11] (see
Section 2), respectively (the same construction can be done for the quantile framework):

For	 > 0, letD	 ⊃ D be the closed	-neighborhood ofDwhich we assume to be interior
to the support ofX. Let the initial estimator̂�m(n),n(x) of the monotone upper boundary
�(x) be defined onD	 with �̂m(n),n(x) = 0 if F̂X,n(x) = 0. Consider a positive sequence
{bn} tending to 0, and letDn be the set of vectors inD	 with components that are integral
multiples ofbn. For�̂#

m(n),n(x) to be well defined forx ∈ D (see[11, Eq. (2)]), we assume
thatn is large enough.

As stated by Mukerjee and Stern, ifD is rectangular with edges parallel to the coordinate
axes, as is often the case, then we could consider only the minimal subset ofDn that covers
D by convex combinations. The minimal and maximal points of this subset being unique, we
then can isotonizê�m(n),n(x) overD, for a given orderm(n), by applying the computation
method described above.

From a theoretical point of view, sinceDn is not contained inD, we cannot apply
Lemma3.1to obtain the complete uniform convergence of�̂#

m(n),n to � onD (see Theorem
2.1). However, we can easily adapt the proof of Mukerjee and Stern to keep this asymptotic
property. But such technique of proof requires more stringent conditions compared with
those of Theorem2.1. Indeed, if� is uniformly continuous onD	 and�m is continuous
on this compact for everym�1, then the same arguments used by Mukerjee and Stern (see
[11, the paragraph after Eq. (4), p. 78]) show that

||�̂#
m(n),n − �||� sup

x∈D	

|�̂m(n),n(x)− �(x)| + Rn,

where the remainderRn = o(1) in view of the appropriate characterization ofDn and
the uniform continuity of� on D	 (for more details see[11, Theorem 2, the proof of

Eq. (6)]). Finally, using the fact that supx∈D	
|�̂m(n),n(x)−�(x)| co.→ 0 (replaceD byD	 in

the proof of Theorem2.1to obtain this result), we obtain the complete uniform convergence
of �̂#

m(n),n to� onD. Under the same regularity conditions, we also get the complete uniform

convergence of̂q#
�(n),n to � onD by using similar arguments.

5. Numerical illustration

In this section, we illustrate our concept of monotone partial frontiers through three
examples, one with simulated samples and two with real data sets.
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Fig. 1.n = 102 (2 outliers included): On the left, the initial frontier�̂13,n in dashed line and its isotonized version

�̂#
13,n in solid line. On the right, the quantile frontierŝq.94,n in dashed line and̂q#

.94,n in solid line.

5.1. Simulated data

First, we simulate a sample of 100 observations(xi, yi) according the data generating
processY = exp(−5 + 10X)/(1 + exp(−5 + 10X))exp(−U), whereX is uniform on
(0,1) andU is exponential with mean13. In order to test the robustness of the isotonic
estimators with respect to the initial ones, we add in the data set two outliers indicated by
“*” in Fig. 1. We plot in dashed lines the initial frontierŝ�13,n on the left panel (computed
with B = 500 Monte-Carlo draws) and̂q.94,n on the right panel. The isotonized versions
of these frontiers are displayed in solid lines. For the computations, we simply defineD as
a discrete grid of 100 points equispaced between the min and the max of the observations
xi . Note that a larger grid and more bootstrap loops are necessary to get a better quality of
the monotone frontier̂�#

13,n, which is not the case for the quantile frontier. This is due to
the Monte-Carlo approximations.

We remark that both initial frontiers are more attracted by the two outliers than the
isotone ones. This is natural since, by construction (see Eq. (1)), the monotone functionr#

is everywhere below the monotone upper boundaryru of the initial functionr.
In Fig. 2, we simulate a sample of 100 observations according the Cobb–Douglas log-

linear frontier model given byY = X0.5 exp(−U), whereX is uniform on(0,1) andU,
independent ofX, is exponential with mean13. On the left panel, we add an outlying point
and we plot the quantile frontierŝq.94,n andq̂#

.94,n in dashed and solid lines, respectively.

On the right panel, we add three outliers and we plot the frontiers�̂25,n and�̂#
25,n in dashed

and solid lines, respectively. WhenU is independent ofX, an explicit formula is available
in [8] (resp.,[5]) in order to compute the true function�m(x) (resp.,q�(x)). In Fig. 2, the
true frontiers�25 andq.94 are plotted in dash-dotted lines.

Here also, we remark that the isotone estimators are more resistant to the outlying points
than the unconstrained ones. It is also clear, in this particular example, that the monotone
quantile frontier (solid line) is everywhere closer to the true frontier (dash-dotted).
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Fig. 2. On the left,n = 101 with 1 outlier included: the frontiersq.94 in dash-dotted line,̂q.94,n in dashed line
andq̂#

.94,n in solid line. On the right,n = 103 with 3 outliers included:�25 in dash-dotted line,̂�25,n in dashed

line and�̂#
25,n in solid line.
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Fig. 3. On the left,n = 100 (no outlier): the frontiersq.9 in dash-dotted line,̂q.9,n in dashed line and̂q#
.9,n in solid

line. On the right,n = 102 with 2 outliers included:�25 in dash-dotted line,̂�25,n in dashed line and̂�#
25,n in

solid line.

To confirm still more these benefits of isotonized frontiers, we now consider a case where
the monotone boundary of the support of(X, Y ) is linear. We choose(X, Y ) uniformly
distributed over the regionD = {(x, y)|0�x�1, 0�y�x} and simulate 100 observations
(xi, yi). For this example also, an exact formula ofq�(x) (resp:�m(x)) is available in[5]
(resp.,[8]). On the left panel of Fig.3, we plot the quantile frontiersq.9, q̂.9,n and q̂#

.9,n

in absence of any outlier. It is clear that the curves ofq̂.9,n and q̂#
.9,n are very similar.

Nevertheless,̂q#
.9,n is better than̂q.9,n on the interval(0.6,0.7) since it is monotone and

closer to the true frontierq.9.
On the right panel of Fig.3, we add two outliers in the data set and plot the frontiers�25,

�̂25,n and̂�#
25,n. Here again the isotone order-mfrontier is less sensitive to the outlying points
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Fig. 4.n = 504 with 4 outliers included. On the left-hand side, the frontiersq.98 in dash-dotted line,̂q.98,n in
dashed line and̂q#

.98,n in solid line. On the right-hand side, the frontiers�35 in dash-dotted line,̂�35,n in dashed

line and�̂#
35,n in solid line.
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Fig. 5. n = 4000: On the left, the frontierŝq.999,n in dash-dotted and̂�600,n in solid line. On the right, the

monotone frontierŝq#
.999,n in dash-dotted and̂�#

600,n in solid line.

than the unconstrained one. We repeated the same exercise, this time with 500 observations
and 4 outliers as illustrated in Fig.4, leading to the same kind of results.

5.2. French post offices data

We examine here real data in a bivariate case: the data are also used by Cazals et al.[3]
and Aragon et al.[1] on frontier analysis of 9521 French post offices observed in 1994, with
X as the quantity of labor andYas the volume of delivered mail.

In this illustration, we only consider then = 4000 observed post offices with the smallest
levelsxi plotted in Fig.5 on the left panel, along with the quantile frontierq̂�,n of order
� = .999 in dash-dotted line, and the frontier�̂m,n of orderm = 600 in solid line (B =
1000). The isotonized versions of these extreme frontiers are displayed on the right panel.
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Fig. 6. n = 3999: On the left, the frontierŝq.999,n in dash-dotted and̂�600,n in solid line. On the right, the

monotone frontierŝq#
.999,n in dash-dotted and̂�#

600,n in solid line.

Here, we use a discrete grid of 200 points equispaced between the min and the max of the
first 4000 observations.

It is clear that the monotone estimatorsq̂#
.999,n and�̂#

600,n are more resistant to the super-
efficient post office than their initial versionŝq.999 and�̂600,n.

More generally, for any orders� andm, the isotonized partial frontierŝq#
�,n and�̂#

m,n are
more robust to extreme values than the initial versionsq̂�,n and�̂m,n introduced by Aragon
et al. [1] and Cazals et al.[3], respectively, due to the average in the definition of the #
operator.

We redo the calculation without the super-efficient post-office, the results are displayed
in Fig. 6. The difference between the unisotonized and isotonized estimators is less im-
portant but still, the later are monotone and, as expected, more resistant to other extreme
observations.

5.3. Activity of Spanish electricity distributors

The data set used in[2,9] contains information concerning the production of electricity by
61 firms in Spain. The output (y) is the amount of low, medium and high-voltage electricity
distributed (GWh) and the 3 inputs are the population density (x1), the substation transformer
capacity from medium voltage-to-low voltage (x2) and the length in km of voltage lines
(x3). The results are shown in Table1.

As pointed out in[2] many of the firms are FDH-efficient (the FDH efficiency measure

�̂
−1
n often equal to one). This is due to the high dimensionality of the space (3+ 1) and to

the small sample size (n = 61). All of these production units belong to the efficient surface
(FDH frontier) of the smallest free disposal set containing all the data.

We remark that the quantile surfacesq̂�,n and q̂#
�,n coincide everywhere except for the

xi ’s of units 11, 20, 41, 44 and 59. The unconstrained surfaceq̂�,n is more influenced by the
efficient extreme FDH points 11, 44 and 59 than the isotonized surfaceq̂#

�,n sincêq�,n(x) >

q̂#
�,n(x) for eachx ∈ {x11, x44, x59}. The fact that̂q�,n(x) < q̂#

�,n(x) for x ∈ {x20, x41} is
quite natural and confirm that units 11, 44 and 59 are highly influent in the direction ofY. It
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Table 1
n = 61 Spanish electricity distributors{(xi , yi )}, � = .93,m = 20, �̂

−1
n (xi , yi ) = yi/�̂n(xi ), �� = q̂�,n − q̂#

�,n

and�m = �̂m,n − �̂#
m,n

Unit y x1 x2 x3 �̂
−1
n q̂�,n q̂#

�,n �� �̂m,n �̂#
m,n �m

1 1241 28.83076923 439 7007 1 1227 1227 0 1195 1193 2
2 3334 50.27580645 1165 5577 1 1793 1793 0 2617 2372 245
3 1871 23.12402875 865 5960 1 1227 1227 0 1584 1533 51
4 1489 30.97287894 843 6840 0.8533 1489 1489 0 1597 1573 23
5 1450 23.33291345 728 5586 1 1227 1227 0 1316 1315 1
6 2724 91.25431152 1118 604 1 1793 1793 0 2161 2188−27
7 4500 50.00441721 1935 17050 1 2127 2127 0 3478 3400 78
8 684 7.47295423 314 4272 1 684 684 0 0662 0643 19
9 504 7.085373364 237 3774 1 504 504 0 0494 0485 8

10 2177 276.1740644 1012 3859 1 1793 1793 0 1929 1887 42
11 968 9.927531182 407 5459 1 968 949.5 18.5 0951 0947 4
12 316 51.87694145 142 4383 0.81443 388 388 0 0379 0379−1
13 1227 11.94137353 404 5239 1 931 931 0 1112 1113 0
14 1097 12.46605886 869 7692 0.89405 1097 1097 0 1165 1156 8
15 297 4.96336056 147 4370 0.76546 388 388 0 0383 0379 4
16 388 3.90584575 110 2169 1 388 388 0 0388 0371 17
17 358 9.212554927 393 2961 0.92268 388 388 0 0385 0382 4
18 1036 12.44840598 306 4869 1 1036 1036 0 1000 0969 31
19 971 17.39387475 460 4102 1 971 971 0 0872 0889−17
20 1267 1407.346153 654 9182 0.59567 1267 1530−263 1824 1786 37
21 415 16.79987577 277 5871 0.44576 931 931 0 0820 0842−22
22 1393 15.43905681 365 9829 1 1036 1036 0 1271 1255 15
23 23 4.116877045 12 721 1 23 23 0 0023 0023 0
24 931 9.428855657 250 4690 1 931 931 0 0893 0826 66
25 705 16.69379752 675 8463 0.57457 1036 1036 0 1130 1144−14
26 95 10.77475363 54 1406 1 95 95 0 95 95 0
27 809 17.49376518 269 5685 0.86896 931 931 0 893 878 16
28 501 15.6301784 306 3746 1 501 501 0 484 481 3
29 212 4.603279324 63 1774 1 212 212 0 0212 0209 3
30 87 4.888839285 23 1781 1 87 87 0 0087 0087 0
31 1745 25.9270113 700 5192 1 1036 1036 0 1510 1442 68
32 410 11.6827005 162 4711 1 410 410 0 0406 0404 1
33 22 6.847996695 10 1272 1 22 22 0 0022 0022 0
34 3476 1348.198148 1729 8594 1 2724 2724 0 3080 3050 30
35 2844 184.3938193 840 7038 1 1793 1793 0 2303 2204 100
36 1872 30.81301394 1080 8089 1 1745 1745 0 1797 1766 32
37 1868 169.2686671 1344 6058 0.56029 1871 1871 0 2567 2662−95
38 93 46.11206896 76 973 1 93 93 0 93 93 0
39 435 74.6214605 251 3745 1 435 435 0 422 424−2
40 150 10.22512234 118 438 1 150 150 0 150 149 1
41 913 10.28438 628 8071 0.94318 931 949.5−18.5 959 952 7
42 3317 49.61331626 1309 9165 1 1872 1872 0 2519 2449 70
43 4397 154.5850094 1259 20925 1 2724 2724 0 3467 3419 47
44 2127 46.01906334 581 6784 1 1793 1530 263 1841 1762 78
45 7049 110.339922 1932 17353 1 3334 3334 0 5048 4842 206
46 270 3.437563171 62 2410 1 270 270 0 270 266 4
47 855 15.88256346 446 5427 0.69682 1036 1036 0 1148 1136 12
48 750 9.157086772 322 4681 1 750 750 0 738 729 9
49 4858 71.23629629 1494 14214 1 3317 3317 0 3808 3568 239



330 A. Daouia, L. Simar / Journal of Multivariate Analysis 96 (2005) 311–331

Table 1 (Continued)

Unit y x1 x2 x3 �̂
−1
n q̂�,n q̂#

�,n �� �̂m,n �̂#
m,n �m

50 212 148.0787878 97 1394 1 212 212 0 211 210 1
51 339 15.30875576 143 6186 0.87371 388 388 0 379 383−4
52 732 28.7513053 432 9602 0.59658 1036 1036 0 1124 1144−20
53 2080 84.46452476 988 10075 0.9779 1871 1871 0 1954 1956−2
54 957 32.76927651 327 3196 1 957 957 0 910 847 63
55 10470 184.5294044 3266 22811 1 4858 4858 0 6763 6632 131
56 6065 417.2896551 4610 16179 1 4858 4858 0 5014 5026−12
57 3347 49.05046844 829 13977 1 1793 1793 0 2483 2486−3
58 5 2.517326732 4 35 1 5 5 0 5 5 0
59 1793 45.42970036 531 3208 1 1793 1530 263 1667 1509 158
60 4992 164.1621212 1759 7426 1 2724 2724 0 3662 3418 244
61 5362 243.5128552 3612 7621 1 2844 2844 0 4551 4180 371

is due to the isotonization procedure of the nonmonotone surfaceq̂�,n. Indeed, we remark
that this surface is attracted by the efficient FDH unit 11 (since, for instance,x58 < x11
andq̂�,n(x58) < q̂�,n(x)11) and then comes back down to pass through the non-FDH unit
41 (sincex11 < x41 whereaŝq�,n(x11) > q̂�,n(x41)) before to be attracted again (for
instance by the extreme FDH point 42 sincex41 < x42 and q̂�,n(x41) < q̂�,n(x)42). This
explains why for examplêq�,n(x41) < q̂#

�,n(x41). The same analysis could be done for the
order-msurfaces. Here, the superiority of�̂#

m,n with respect tô�m,n is clear since�m < 0
only for 12 observationsxi , whereas it is strictly positive for 42 observations. Moreover,
maxi (�̂#

m,n(xi)− �̂m,n(xi)) does not exceed the level 95 (only�m(x37) = −95), whereas
(�̂m,n(xi)− �̂#

m,n(xi)) even exceeds the level 200 for 5 observations.

6. Conclusions

Order-m frontier and order-� quantile frontier functions are very useful to provide non-
parametric estimators of boundaries which are more robust to outliers and/or extreme values
than the usual envelopment estimators (FDH/DEA).

Their monotonized versions proposed in this paper are very easy to compute and provide
estimators sharing the same properties as the original ones.

These new estimators appear to be even more robust to outliers than their original
versions.
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