
RESEARCH Open Access

Parallelization of enumerating tree-like chemical
compounds by breadth-first search order
Morihiro Hayashida*, Jira Jindalertudomdee, Yang Zhao, Tatsuya Akutsu

From The 4th Translational Bioinformatics Conference and the 8th International Conference on Systems
Biology (TBC/ISB 2014)
Qingdao, China. 24-27 October 2014

Abstract

Enumeration of chemical compounds greatly assists designing and finding new drugs, and determining chemical
structures from mass spectrometry. In our previous study, we developed efficient algorithms, BfsSimEnum and
BfsMulEnum for enumerating tree-like chemical compounds without and with multiple bonds, respectively. For
many instances, our previously proposed algorithms were able to enumerate chemical structures faster than other
existing methods.
Latest processors consist of multiple processing cores, and are able to execute many tasks at the same time. In this
paper, we develop three parallelized algorithms BfsEnumP1-3 by modifying BfsSimEnum in simple manners to
further reduce execution time. BfsSimEnum constructs a family tree in which each vertex denotes a molecular tree.
BfsEnumP1-3 divide a set of vertices with some given depth of the family tree into several subsets, each of which
is assigned to each processor.
For evaluation, we perform experiments for several instances with varying the division depth and the number of
processors, and show that BfsEnumP1-3 are useful to reduce the execution time for enumeration of tree-like
chemical compounds. In addition, we show that BfsEnumP3 achieves more than 80% parallelization efficiency using
up to 11 processors, and reduce the execution time using 12 processors to about 1/10 of that by BfsSimEnum.

Introduction
Enumerating chemical compounds assists designing
drugs and determining chemical structures from mass
spectrometry. Hence, algorithms and mathematical mod-
els for the enumeration have been developed. A chemical
compound is often represented as a molecular graph for
the enumeration, which is defined as a connected graph
with vertices labeled by atomic symbols and multi-edges
labeled by chemical bonds. Here, the degree of a vertex
means the valence of the atom and the multiplicity of a
multiedge means the bond type. Given chemical formula
and some restrictions, chemical structures desired for a
biological system are enumerated by constructing all dis-
tinct graph structures. MOLGEN has been developed
over two decades [1,2], and becomes a popular

enumeration tool. EnuMol enumerates tree-like chemical
compounds, or molecular tree graphs, by depth-first
search (DFS) order [3-5]. In our previous study, we devel-
oped efficient algorithms BfsSimEnum and BfsMulEnum
for enumeration of tree-like chemical compounds by
breadth-first search (BFS) order [6]. For many instances,
execution times by BfsSimEnum and BfsMulEnum were
shorter than or comparable to those by the DFS-type
method.
Latest processors consist of multiple cores even for

personal use, and are able to execute many tasks at the
same time. For further reducing execution time and pro-
viding better enumeration tools using web servers and
stand-alone systems, in this paper, we make use of par-
allel computing and propose three parallelized algo-
rithms BfsEnumP1-3 by modifying BfsSimEnum, which
enumerates molecular tree graphs without addition of
multi-edges. BfsMulEnum receives the output of BfsSi-
mEnum, and enumerates chemical compounds with

* Correspondence: morihiro@kuicr.kyoto-u.ac.jp
Bioinformatics Center, Institute for Chemical Research, Kyoto University,
611-0011, Uji, Japan Full list of author information is available at the end of
the article

Hayashida et al. BMC Medical Genomics 2015, 8(Suppl 2):S15
http://www.biomedcentral.com/1755-8794/8/S2/S15

© 2015 Hayashida et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:morihiro@kuicr.kyoto-u.ac.jp
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

multiple bonds by changing single edges to multi-edges
so that the restrictions are satisfied.
BfsSimEnum constructs a family tree in which each

vertex corresponds to a molecular tree and is generated
by DFS order. Several parallel algorithms for depth-first
search have been developed [7,8]. Freeman introduced
parallel algorithms and combined them with randomized
algorithms for performing a depth-first search of a given
graph [9]. Rao and Kumar developed parallel algorithms
for depth-first search [10] and applied their algorithms to
depth-first branch-and-bound and iterative-deepening A*
(IDA*) [11], in which some cost function is defined and
the algorithm tries to find optimal solutions. In
the search, the parts not leading to an optimal solution
are eliminated. Each processor has a stack that stores
state space to be searched because it searches in a depth-
first manner. In their algorithm, if a processor receives a
request from another processor, then it splits its own
stack into two sets of states and transfers one, where
equally split, called 1

2 -split, is considered to be ideal in
the paper. These parallel algorithms, however, are still
complicated and require extra communication between
processors and extra processes for polling. Our proposed
algorithms BfsEnumP1-3 are simple, each of which
divides a set of vertices at some given depth d of a family
tree into several subsets, and each subset is assigned to
one processor. We assume that d is large enough because
the number of subtrees is more than the number of pro-
cessors, that is, one processor executes the enumeration
for at least one subtree. In addition, we assume that d is
not too large so that execution time of generating the
vertices with up to depth d of a family tree can be
ignored. However, the number of generated molecular
trees in such a subtree of a family tree often varies a lot.
Therefore, we develop three types of assignment methods
in BfsEnumP1-3. BfsEnumP1 and BfsEnumP2 take static
assignment methods, whereas BfsEnumP3 takes a
dynamic assignment method depending on the computa-
tional environment during execution. We perform com-
putational experiments for C26H54, C16O4H34, and
C10N3O2H25 with varying the division depth d and the
number of processors, and show that BfsEnumP1-3 are
useful to reduce the execution time for enumeration of
tree-like chemical compounds. In addition, we show that
BfsEnumP3 achieves more than 80% parallelization effi-
ciency using up to 11 processors, and reduce the execu-
tion time using 12 processors to about 1/10 of that by
BfsSimEnum.

Preliminaries
Enumeration problem
A molecular tree can be represented as a rooted ordered
tree T (V, E) with a set V of vertices and a set E of sin-
gle and multiple edges, where each vertex corresponds

to an atom, and each edge corresponds to a covalent
bond. Let Σ = {l1, l2,..., ls} be a set of labels representing
distinct atoms. Let val(li) be the valence of the atom
corresponding to li. Let numT (li) be the number of ver-
tices labeled as li in T . Let parent(v) denote the parent
vertex of v. Let l(v) and degree(v) be the label, and
degree of vertex v in T , respectively. Then, we define
the tree-like chemical compound enumeration problem
as follows.
Problem 1 Given a set Σ of labels, the valence val(li)

and number nli of each label li, enumerate all molecu-
lar trees T without any redundancy such that numT

(li) = nli for all li (∈ Σ) and degree(v) = val(l(v)) for all
v (∈ T).

Family tree
Our approach searches a special tree structure called
family tree, in which each vertex corresponds to a mole-
cular tree. The root is an empty tree. A family tree is
grown by adding an atom to some vertex. Figure 1
shows a family tree for C2O2H2 by BfsSimEnum and
BfsMulEnum, where hydrogen atoms are added at the
end of enumeration. In this example, BfsSimEnum con-
structs the family tree up to depth 4 by adding atoms,
and BfsMulEnum constructs the rest by adding multipli-
city to edges.
In the previous study, to reduce the search space (i.e.,

the size of a family tree), we utilized two constraints for
molecular trees, center-rooted, and left-heavy [6]. Bfs-
SimEnum outputs only center-rooted and left-heavy
molecular trees. If a molecular tree that does not satisfy
both properties of center-rooted and left-heavy is gener-
ated in a family tree, it is eliminated. Thus, the size of a
family tree is reduced. We call a molecular tree center-
rooted if its root is the center vertex or an endpoint of
the center edge of a path with the maximum length,
where the path does not include the same vertex more
than once.
We introduce a total order to Σ, for example, C > N >

O > H for Σ = {C, N, O, H}, and two inequalities >s and
>m for rooted and ordered trees. Let T (v) denote the
subtree rooted at vertex v in T . We call a molecular
tree T left-heavy if for each vertex v (∈ T) and its chil-
dren v1,..., vk , T (vi) ≥m T (vi+1) holds for all i = 1,..., k −
1. We also say that T (u) is heavier than T (v) for ver-
tices u and v if T (u) >s T (v) or T (u) >m T (v) holds.
Here, inequalities >s and >m are recursively defined as
follows. Let u1, u2,...,uh and v1, v2,..., vk be the children
of u and v, respectively. We define T (u) >s T (v) if l(u)
> l(v) holds, or l(u) = l(v) and there exists i such that
for all j ≤ i T (uj) = s T (vj), and i < min{h, k}, T (ui+1)
>s T (vi+1), or i = k < h. In particular, we recursively
define T (u) = s T (v) if l(u) = l(v) and for all j ≤ h = k,
T (uj) = s T (vj) hold.

Hayashida et al. BMC Medical Genomics 2015, 8(Suppl 2):S15
http://www.biomedcentral.com/1755-8794/8/S2/S15

Page 2 of 7

Let mul(e) be the multiplicity of edge e in T . We
define T (u) >m T (v) if T (u) >s T (v) holds, or T (u) =
s T (v) and there exists i such that for all j ≤ i mul(ej) =
mul(e′j) and mul(ei+1) > mul(e′i+1), where e1, e2,..., em

and e′1, e′2 ,..., e′m denote the edges in the BFS order in
T (u) and T (v), respectively. In particular, we define T
(u) =m T (v) if T (u) =s T (v) and for all j ≤ m, mul(ej) =
mul(e′j) hold.

Figure 1 Example of a family tree by BfsSimEnum and BfsMulEnum for C2O2H2 and its separation by BfsEnumP1-3 with division depth
2. Molecular trees in gray color are regarded as invalid by the algorithms. It should be noted that hydrogen atoms are added as leaves at last.

Hayashida et al. BMC Medical Genomics 2015, 8(Suppl 2):S15
http://www.biomedcentral.com/1755-8794/8/S2/S15

Page 3 of 7

Then, BfsSimEnum always generates left-heavy and
center-rooted trees with labeled vertices to reduce the
search space. Finally, a generated molecular tree is dis-
carded if it is not in normal form [6]. We say that a
molecular tree T is in normal form if T is center-rooted
and left-heavy, and the center of T is a single vertex, or
the center is an edge (r, v) and T (v) ≥m Tv (r) holds,
where r is the root of T , and Tv (r) denotes the subtree
rooted at r obtained by subtracting T (v) from T . It is
proved that if two rooted and ordered trees are different
in normal form, these trees represent distinct molecular
trees. It should be noted that molecular trees themselves
are generated by BFS order while a family tree having
molecular trees as vertices is searched by DFS order.

Methods
We propose three parallelized algorithms BfsEnumP1-3
for enumeration of tree-like chemical compounds by
modifying BfsSimEnum in simple manners. Let N be the
number of processors. In growing a family tree, BfsSi-
mEnum adds an atom to a molecular tree by BFS order.
BfsEnumP1-3 take a parameter d, grow a family tree up
to depth d as BfsSimEnum does, and assign numbers to
the vertices (molecular trees) in depth d by BFS order.
Figure 1 shows an example of the family tree for
C2O2H2 and numbers, #0, ..., #3, in depth 2. All N pro-
cessors independently construct the family tree up to
depth d and assign numbers one by one. Each vertex in
depth d is assigned to exactly one processor, and the
processor generates its descendants, the subtree rooted at
the vertex of the family tree. However, we observe that
the number of generated molecular trees in the descen-
dants is often different. In the example of Figure 1, the
number of generated molecular trees for vertex ‘#0’ is
eight, and on the other hand, that for ‘#1’ is one. Hence,
we develop three types of assignment methods in BfsE-
numP1-3 for the sake of distributing the load equally to
each processor. BfsEnumP1-2 take static assignment
methods, and BfsEnumP3 takes a dynamic method
depending on computational environment during
execution.
By modifying the previous single algorithm BfsSimE-

num, we propose the following parallelized algorithm.
Input: numbers nli of atoms for li (∈ Σ), division

depth d, processor identifier p, number N of processors,

na :=
∑

{li∈
∑ |val(li)>1} nli , d < na

Output: all molecular trees in normal form
BfsEnumP(p, N)
c := 0
for each lj ∈ Σ such that val(lj) > 1, nlj > 0 do
T := a tree consisted of a root with lj
AddAtom(T , p, N)

end
AddAtom(T , p, N)
if |T| = na then
if T is in normal form then
BfsMulEnum(T)

else
flag := true
if |T| = d then
flag := IsAssigned(c, p, N)
c := c + 1

if flag then
vk := the deepest rightmost vertex in T
vl := the deepest leftmost vertex in T
if vk and vl are included in the same subtree

then
ve := vl−1

else ve := vk
for each vi from parent(vk) to ve in BFS order

do
if degree(vi) < val(l(vi)) then
for each lj ∈ Σ such that val(lj) > 1 do

if numT (lj) < nlj and
lj does not violate left-heavy then
T′ := T
add an atom lj as the last child of vi in T′
AddAtom(T′, p, N)

end
It should be noted that this pseudocode describes the

common part of BfsEnumP1-3, and function ‘IsAssigned’
provides an assignment method according to BfsE-
numP1-3. c means the identifier number for each vertex
in depth d of the family tree. All processors execute the
same algorithm with distinct identifier number p among
N processors, and BfsMulEnum(T) sequentially outputs
molecular trees by adding multiplicity to edges of T if
needed. Thus, N processors output all tree-like chemical
compounds without redundancy.

BfsEnumP1
We define the assignment method of BfsEnumP1 as
follows.
IsAssigned(c, p, N)

return p = c mod N
end
‘IsAssigned’ returns whether or not the processor with

identifier p is assigned to vertex c. For instance, in the case
of enumeration using 3 processors and division depth d =
2 for C2O2H2, vertices 0, 1, 2, 3 are assigned to processors
0, 1, 2, 0, respectively by BfsEnumP1 (see Figure 1).

BfsEnumP2
We define the assignment method of BfsEnumP2 as
follows. First, we initialize weights wi = 0 for i = 0,...,
N − 1.

Hayashida et al. BMC Medical Genomics 2015, 8(Suppl 2):S15
http://www.biomedcentral.com/1755-8794/8/S2/S15

Page 4 of 7

IsAssigned(T , p, {wi})
i := argmini = 0,...,N − 1wi

wi := wi + cost(T)
return p = i

end
In BfsEnumP2, the number of molecular trees gener-

ated from T is estimated by cost(T), which is accumu-
lated to wi. One processor having the minimum of wi is
selected to execute the enumeration from T . It should
be noted that any communication between processors
does not occur during the construction of a family tree
as well as BfsEnumP1, and wi is calculated indepen-
dently in each processor. In this paper, we define cost
(T) by

∑

vi∈{parent(vk),...,vk}
val(l(vi)) − degree(vi)

+
∑

li∈
∑
cli(nli − numT(li)),

where vk denotes the deepest rightmost vertex in T,
and cli is a positive constant for li, (cC , cN , cO , cH) =
(1.4, 1.2, 1.0, 0.0). Here the valence of each atom is
taken into account. cost(T) is large if the number of
positions that atoms bond and/or the number of
remaining atoms are large.

BfsEnumP3
BfsEnumP3 requires an extra processor to manage the
assignment, which receives requests from other proces-
sors, and replies an assigned number to each processor.
It should be noted that such a manager is not needed if
we use shared memory. In this paper, we implement the
algorithm using MPI (message passing interface) for
avoiding inconsistency of cache memory. On the other
hand, processor p receives an assigned number as r
from the manager, and executes the enumeration from
vertex r.
Finally, BfsEnumP3 in processor p sends an end-signal

to the manager. Thus, we have the following pseudo-
codes.
Manage(N)
globalc := 0
ne := 0
while ne < N
if receive a request from processor p then
send globalc to p
globalc := globalc + 1

else if receive an end-signal from p then
ne := ne + 1

end
IsAssigned(c, r, p)
if c > r then
send a request to the manager

receive globalc as r
return c = r

end
Here, r is initialized as some negative integer.

Results
For evaluation of our proposed methods, we employed a
computer with two Xeon E5 processors under Linux
operating system, where hyper-threading was enabled
and each processor contains 12 logical processing cores.
BfsEnumP1-3 were implemented in C++ using MPI
library.
We first examined three instances (nC , nN , nO , nH) =

(26, 0, 0, 54), (16, 0, 4, 34), (10, 3, 2, 25), that is, C26H54,
C16O4H34, C10N3O2H25, each of which has only single
bonds, using multiple processors. The numbers of
enumerated molecular trees for C26H54, C16O4H34, and
C10N3O2H25 were 93839412, 278960984, and 29105924,
respectively. Figure 2 shows the results on execution
times (seconds) by BfsEnumP1-3 with division depth
d = 4,..., 8 using 1,..., 12 processors for the instances,
C26H54, C16O4H34, and C10N3O2H25. We can see that in
all cases, the execution time decreased by using multiple
processors. For C26H54, the execution time by BfsE-
numP3 with d = 8 using 12 processors was 2.54 sec-
onds, which was about 11% of the execution time using
one processor. For C16O4H34, the execution time by
BfsEnumP3 with d = 7 using 12 processors was 6.23
seconds, which was about 10% of the execution time
using one processor. For C10N3O2H25, the execution
time by BfsEnumP3 with d = 5 using 12 processors was
0.60 seconds, which was about 9.3% of the execution
time using one processor.
In the case of C26H54 with division depth d = 4, the

execution times using more than 3 processors were
about 9 seconds, and were not reduced unlike in the
cases of C16O4H34, and C10N3O2H25 (see Figure 2).
Hence, we investigated the number of vertices in depth
d of a family tree.
Table 1 shows the numbers of vertices in depth d =

4,...,8 for C26H54, C16O4H34, and C10N3O2H25. The
number of vertices in depth 4 for C26H54 is only 4. It
means that if we use more than 4 processors, any task is
not assigned to N − 4 processors. Hence, we need divi-
sion depth of more than 5 for 12 processors. Further-
more, we can see from the figure that the execution
time with larger division depth had tendency to be
shorter for C26H54. On the other hand, the execution
time with division depth d = 5 was often shorter than
others for C10N3O2H25. It may suggest that about 1000
vertices in division depth are suitable to be assigned to
about 10 processors. If we use larger division depth, we
cannot ignore the parallelization overhead. For example,
the execution time by BfsEnumP3 with division depth d

Hayashida et al. BMC Medical Genomics 2015, 8(Suppl 2):S15
http://www.biomedcentral.com/1755-8794/8/S2/S15

Page 5 of 7

= 8 for C10N3O2H25 was longer than those by BfsE-
numP1-2 (see Figure 2(c)). It is considered that the
overhead of communication between the manager and
enumerating processors was large.
Table 2 shows the results on execution times (sec-

onds) and parallelization efficiencies of BfsEnumP1-3

with division depth d = 8 for C26H54 using up to 12
processors, where one processor for the manager of
BfsEnumP3 is excluded. The parallelization efficiency is
defined as

T1
N · TN ,

where TN denotes the execution time by N processors.
The execution time by BfsEnumP2 was shorter than
that by BfsEnumP1 except using 5, 7 processors. It
means that the estimation of the number of generated
molecular trees from a vertex worked well for C26H54.
The execution time by BfsEnumP3 was shorter than
those by BfsEnumP1-2. Since BfsEnumP2 does not need
any communication between processors during the con-
struction of a family tree, BfsEnumP2 can be faster than
BfsEnumP3. It, however, is difficult to accurately esti-
mate the number of generated molecular trees. BfsE-
numP3 using up to 11 processors achieved more than
80% parallelization efficiency. The parallelization effi-
ciency of BfsEnumP3 decreased especially in using more
than 10 processors. It implies that BfsEnumP1-3 using
more processors may cause inconsistency of cache
memory and decrease the parallelization efficiency. In

Figure 2 Result on execution time by BfsEnumP1-3. 1,..., 12
processors and division depth d = 4,..., 8 were examined for (a)
C26H54 (b) C16O4H34 (c) C10N3O2H25, where the number of
processors for BfsEnumP3 does not include one processor running
the manager.

Table 1. Number of vertices in division depth d = 4,...,8
of a family tree for C26H54, C16O4H34, and C10N3O2H25

d C26H54 C16O4H34 C10N3O2H25

4 4 48 282

5 6 138 1026

6 12 379 3844

7 23 1166 14265

8 50 3420 50522

Table 2. Result on execution time (seconds) and
parallelization efficiency of BfsEnumP1-3 with division
depth d = 8 for C26H54 using 1,...,12 processors, where
one processor for the manager of BfsEnumP3 is excluded

N BfsEnumP1 BfsEnumP2 BfsEnumP3

time efficiency time efficiency time efficiency

1 24.20 1.00 23.14 1.00 23.71 1.00

2 14.40 0.84 12.14 0.95 12.72 0.93

3 12.41 0.65 10.35 0.74 8.58 0.92

4 9.97 0.61 8.79 0.66 6.27 0.95

5 6.24 0.78 7.81 0.59 5.19 0.91

6 7.85 0.51 6.24 0.62 4.30 0.92

7 6.15 0.56 6.30 0.52 3.81 0.89

8 6.03 0.50 5.18 0.56 3.32 0.89

9 7.29 0.37 4.26 0.60 3.04 0.87

10 4.42 0.55 3.91 0.59 2.65 0.89

11 4.75 0.46 3.90 0.54 2.65 0.81

12 4.38 0.46 3.73 0.52 2.54 0.78

Hayashida et al. BMC Medical Genomics 2015, 8(Suppl 2):S15
http://www.biomedcentral.com/1755-8794/8/S2/S15

Page 6 of 7

BfsEnumP1-3, distinct processors do not use the same
region of memory. It is considered that if two processors
use close regions of memory, inconsistency of cache
memory may occur. More processors can decrease the
efficiency because the probability of inconsistency
increases.
In addition, we examined three other instances (nC ,

nN , nO , nH) = (20, 0, 0, 40), (12, 0, 4, 16), (11, 3, 2, 21),
that is, C20H40, C12O4H16, C11N3O2H21, each of which
includes several multiple bonds. The numbers of enum-
erated molecular trees for C20H40, C12O4H16, and
C11N3O2H21 were 4224993, 282338151, and
7268812476, respectively. In almost all cases using divi-
sion depth d = 4,..., 8 and 1,..., 12 processors, the execu-
tion time by BfsEnumP3 was shorter than those by
BfsEnumP1-2. For C20H40, C12O4H16, C11N3O2H21, the
execution times by BfsEnumP3 with d = 8 using 12 pro-
cessors were 0.0606, 6.93, 83.2 seconds, and 11, 9.1, 9.3
% of the execution time using one processor, respec-
tively. In our previous study, BfsSimEnum and BfsMulE-
num were much faster than MOLGEN, and faster or
comparable to Enu-Mol. The execution times by BfsSi-
mEnum and BfsMulEnum for C26H54, C16O4H34,
C10N3O2H25, C20H40, C12O4H16, and C11N3O2H21 were
22.48, 62.70, 6.61, 0.47, 77.33, and 924.10 seconds,
respectively, which were close to those by BfsEnumP1-3
using one processor, and were much longer than those
by BfsEnumP1-3 using two processors, respectively.

Conclusion
In this paper, we proposed three parallelized algorithms
BfsEnumP1-3 for enumerating tree-like chemical com-
pounds by modifying our previous method BfsSimEnum.
We performed experiments for several instances with
varying the parameter of division depth and the number
of processors. The execution time by BfsEnumP3 was
shorter than those by BfsEnumP1-2 in almost all cases.
BfsEnumP3 achieved more than 80% parallelization effi-
ciency using up to 11 processors. In addition, BfsE-
numP3 reduced the execution time using 12 processors
to about 10% of that by the previous algorithm BfsSimE-
num. The results suggest that the division depth should
be given so that the number of vertices in the depth is
about 1000 for 10 processors.
BfsEnumP1-2 statically assign tasks to processors

without communication between processors during the
construction of a family tree, whereas BfsEnumP3 dyna-
mically makes the assignment depending on computa-
tional environment during execution. BfsEnumP2 can be
faster than BfsEnumP3 by accurately estimating the
number of generated molecular trees from a vertex in a
family tree when we use more processors. The execution
time by BfsEnumP2 was not always shorter than that by
BfsEnumP1. It is needed to improve the cost function of

BfsEnumP2 under the condition that the function is cal-
culated in a very quick way.
It is important to deal with more complex structures

including cycles such as benzene and aromatic rings.
Extensions toward enumerating general compounds and
combination with biological properties should be
another future work.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
This work was partially supported by Grants-in-Aid #26240034, #24500361,
and #25-2920 from MEXT, Japan, and also by MEXT SPIRE
Supercomputational Life Science.
This article has been published as part of BMC Medical Genomics Volume 8
Supplement 2, 2015: Selected articles from the 4th Translational
Bioinformatics Conference and the 8th International Conference on
Systems Biology (TBC/ISB 2014). The full contents of the supplement are
available online at http://www.biomedcentral.com/bmcmedgenomics/
supplements/8/S2.

Declarations
Publication of this article has been funded by JSPS, Japan (Grant-in-Aid
#26240034).

Published: 29 May 2015

References
1. Gugisch R, Kerber A, Kohnert A, Laue R, Meringer M, Rucker C,

Wassermann A: MOLGEN 5.0, a Molecular Structure Generator. Bentham
Science Publishers Ltd 2012.

2. Faulon JL, DP Visco, Rose D: Enumerating molecules. Reviews in
Computational Chemistry 2005, 21:209-286.

3. Ishida Y, Kato Y, Zhao L, Nagamochi H, Akutsu T: Branch-and-bound
algorithms for enumerating treelike chemical graphs with given path
frequency using detachment-cut. Journal of Chemical Information and
Modeling 2010, 50(5):934-946.

4. Fujiwara H, Wang J, Zhao L, Nagamochi H, Akutsu T: Enumerating treelike
chemical graphs with given path frequency. Journal of Chemical
Information and Modeling 2008, 48(7):1345-1357.

5. Shimizu M, Nagamochi H, Akutsu T: Enumerating tree-like chemical
graphs with given upper and lower bounds on path frequencies. BMC
Bioinformatics 2011, 12(Suppl 14):1-9.

6. Zhao Y, Hayashida M, Jindalertudomdee J, Nagamochi H, Akutsu T:
Breadth-first search approach to enumeration of tree-like chemical
compounds. Journal of Bioinformatics and Computational Biology 2013,
11:1343007.

7. Imai M, Yoshida Y, Fukumura T: A parallel searching scheme for
multiprocessor systems and its application to combinatorial problems.
Proceedings of International Joint Conference on Artificial Intelligence 1979,
416-418.

8. Janakiram VK, Agrawal DP, Mehrotra R: Randomized parallel algorithms for
prolog programs and backtracking applications. Proceedings of
International Conference on Parallel Processing 1987, 278-281.

9. Freeman J: Parallel algorithms for depth-first search. Technical Report,
University of Pennsylvania 1991.

10. Rao V, Kumar V: Parallel depth first search, part I: implementation.
International Journal of Parallel Programming 1987, 16(6):479-499.

11. Korf RE: Depth-first iterative-deepening: An optimal admissible tree
search. Artificial Intelligence 1985, 27:97-109.

doi:10.1186/1755-8794-8-S2-S15
Cite this article as: Hayashida et al.: Parallelization of enumerating tree-
like chemical compounds by breadth-first search order. BMC Medical
Genomics 2015 8(Suppl 2):S15.

Hayashida et al. BMC Medical Genomics 2015, 8(Suppl 2):S15
http://www.biomedcentral.com/1755-8794/8/S2/S15

Page 7 of 7

http://www.biomedcentral.com/bmcmedgenomics/supplements/8/S2
http://www.biomedcentral.com/bmcmedgenomics/supplements/8/S2
http://www.ncbi.nlm.nih.gov/pubmed/22373441?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22373441?dopt=Abstract

	Abstract
	Introduction
	Preliminaries
	Enumeration problem
	Family tree

	Methods
	BfsEnumP1
	BfsEnumP2
	BfsEnumP3

	Results
	Conclusion
	Competing interests
	Acknowledgements
	Declarations
	References

