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Abstract

Background: Land use and land cover change occurring in tropical forest landscapes contributes substantially to
carbon emissions. Better insights into the spatial variation of aboveground biomass is therefore needed. By means
of multiple statistical tests, including geographically weighted regression, we analysed the effects of eight variables
on the regional spatial variation of aboveground biomass. North and East Kalimantan were selected as the case
study region; the third largest carbon emitting Indonesian provinces.

Results: Strong positive relationships were found between aboveground biomass and the tested variables; altitude,
slope, land allocation zoning, soil type, and distance to the nearest fire, road, river and city. Furthermore, the results
suggest that the regional spatial variation of aboveground biomass can be largely attributed to altitude, distance to
nearest fire and land allocation zoning.

Conclusions: Our study showed that in this landscape, aboveground biomass could not be explained by one
single variable; the variables were interrelated, with altitude as the dominant variable. Spatial analyses should
therefore integrate a variety of biophysical and anthropogenic variables to provide a better understanding of spatial
variation in aboveground biomass. Efforts to minimise carbon emissions should incorporate the identified factors,
by 1) the maintenance of lands with high AGB or carbon stocks, namely in the identified zones at the higher
altitudes; and 2) regeneration or sustainable utilisation of lands with low AGB or carbon stocks, dependent on the
regeneration capacity of the vegetation. Low aboveground biomass densities can be found in the lowlands in
burned areas, and in non-forest zones and production forests.

Keywords: Aboveground biomass; Tropical forest landscapes; Disturbance; Spatial analysis; Multiple regression;
Geographically weighted regression; Biophysical and anthropogenic variables; East Kalimantan; North Kalimantan
Background
More insights into the spatial variation of aboveground
biomass (AGB) are crucial to minimise carbon emissions
and global climate change from tropical deforestation,
forest degradation and agricultural expansion. According
to van der Werf et al. globally, approx. 12% of anthropo-
genic carbon emissions in 2008 were caused by deforest-
ation and forest degradation [1]. During the period
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1973–2010, Kalimantan, Indonesian Borneo, has lost ~31%
of the total forest area [2]. With regard to land use
changes, according to the Governors’ Climate and Forests
Task Force Indonesia [3], the recently merged provinces
North and East Kalimantan are when combined the third
largest carbon emitting provinces in Indonesia, with
255 Mt CO2e yr−1, after Central Kalimantan (324 Mt
CO2e yr−1) and Riau (258 Mt CO2e yr−1). According to
their ‘business as usual’ scenarios, land use change will
cause carbon emissions in North and East Kalimantan to
increase to 331 Mt CO2e yr−1 by 2030 [3]. Mechanisms
such as Reducing Emissions from Deforestation and forest
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Degradation + (REDD+) [4] have been developed to halt
such emissions by maintaining lands with high carbon
stocks contained in living forest biomass, such as second-
ary and undisturbed forests. Meanwhile, expansion of low
carbon stock agricultural lands can be instead shifted to-
wards areas with already low carbon stocks or AGB, such
as abandoned agricultural or restored degraded lands [5]
by implementation of sustainable land zoning tools [6].
AGB is not static, but rather spatially and temporally

highly variable, particularly in the tropics [7-11]. This
makes its quantification and the avoidance of high AGB
densities or high carbon stocks challenging (it is gener-
ally assumed that about half of AGB consists of carbon).
As in other tropical forest landscapes, complex matrices
of low to high AGB densities can be expected in North
and East Kalimantan, due to varying biophysical condi-
tions present, such as terrain and soil types, and an-
thropogenic disturbances such as fire or logging. For
example, forest fires can cause substantial losses in car-
bon by the emission of large quantities of CO2 by the
burning of biomass [12,13], and via logging by the ex-
traction of timber [14,15]. However, after a fire or log-
ging activities, regeneration can occur, resulting in an
increasing sensitivity of the remaining live and dead
vegetation to subsequent disturbance events [13,16-19].
Additionally, the type and severity of the disturbance
and local biophysical conditions, such as altitude, soil
type and the presence of pioneer species, influence the
carbon accumulation potential [18,20]. Therefore, in this
paper we address the question of how such biophysical
and anthropogenic variables are related to AGB, and
contribute to the spatial variation of AGB in a disturbed
tropical forest landscape.
AGB can be estimated at forest stand to landscape

scale by plot-based measurements [21,22]. Several exist-
ing plot-based studies in tropical forest landscapes have
statistically analysed the relationships between AGB and
multiple biophysical variables including soil factors
[7,11,23,24], altitude [11,25-27] and slope [11,28]. An-
thropogenic variables, however, are usually not consid-
ered, while specifically in highly disturbed tropical areas
like North and East Kalimantan, these factors are ex-
pected to strongly affect AGB. Additionally, anthropo-
genic variables are important and useful to support the
management of, and decision-making on, maintaining
carbon stocks in disturbed areas. For these reasons, our
analyses include both biophysical and anthropogenic
variables.
Other plot-based studies have focused on the impacts

of e.g. logging [14,15] and fire [13,29], by comparing
AGB between undisturbed and disturbed land classes.
The relationship between forest cover change and an-
thropogenic variables has also been analysed [16,30,31].
These studies have instead focused on discrete land use
and forest classes and therefore have not accounted for
local scale AGB variation. Furthermore, the reviewed
studies were not spatially explicit or conducted over lar-
ger spatial scales, thereby limiting a landscape scale view
on the factors that influence the spatial variation in AGB
or forest cover.
A variety of spatially explicit data and methods exist to

map and monitor land with high and low AGB or car-
bon over large spatial scales, such as extrapolating plot-
based field AGB estimates to vegetation types with
remotely-sensed reflectance data and spatial data of bio-
physical variables [32,33]. For example, optical data can
be used for mapping forest cover, such as Landsat [34].
However, in areas with frequent cloud cover such as the
tropics, radar technologies such as ALOS (Advanced
Land Observing Satellite) PALSAR (Phase Arrayed L-band
SAR) are more suitable [35,36]. Additionally, the integra-
tion of optical and/or radar technologies, including LiDAR
(Light Detection And Ranging), has the potential to im-
prove AGB estimates because it may reduce data satur-
ation and mixed pixel problems [35,37-39]. Although the
output maps of the aforementioned studies have visualised
the spatial distribution of AGB at high resolutions and
over large spatial scales, these did not include the effects
of biophysical or anthropogenic factors on AGB.
Changes in AGB or carbon stocks have also been

modelled at different spatial and temporal scales and
resolutions [33,40-43]. Additionally, studies using spatial
data for AGB have compared AGB between forest types
with different levels of degradation or disturbances, e.g.
by logging or fire [36,44-47]. However, the focus was
mostly on a single anthropogenic variable, e.g. logging
or fire, and interrelationships between or interaction ef-
fects amongst variables were not investigated.
The aforementioned studies are useful for the mapping

and monitoring of AGB and carbon stocks, for e.g.
REDD +mechanisms. To monitor and quantify AGB
whilst taking into consideration the high spatial vari-
ation, and additionally to enable the modelling of carbon
stocks, further analysis of the underlying biophysical and
anthropogenic conditions and processes, using a multi-
variable approach, is essential. An improved level of
information quality, that considered a broader set of var-
iables and their interactions, would allow decision-
making to focus on manageable factors in support of
land use allocation that minimises carbon emissions and
maximises carbon uptake in support of climate change
mitigation.
The aim of this study is to define which of a prese-

lected set of biophysical and anthropogenic variables
contribute significantly to the spatial variation of AGB.
To this end, statistical analyses were conducted, includ-
ing analysis of variance (ANOVA), non-spatial multiple
linear regression and spatial geographically weighted
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regression (GWR). An AGB map based on radar remote
sensing data and plot-based measurements were utilised,
plus landscape scale data on terrain, soil types, land allo-
cation zoning, fires, roads, rivers and cities, covering
North and East Kalimantan, Indonesian Borneo (see
Figure 1). The results are shown in the Results section
and can support the quantification and maintenance of
living AGB and carbon stocks. In the Discussion section,
the results are discussed in terms of their scientific and
societal contribution, followed by the Conclusions and
an extensive description of the data and analyses in the
Methods section.

Results
Relationships between AGB and the continuous
explanatory variables
The distribution of AGB was negatively skewed (Skewness:
−0.852, st. error: 0.113, Kurtosis: 0.207, st. error: 0.226),
which can be expected in a disturbed tropical forest
landscape (Figure S1, in Additional file 1). AGB varied
between 2 and 480.0 t ha−1 with an overall mean of
213.6 ± 80.1 t ha−1 (for descriptive statistics, see Table S2,
in Additional file 1). AGB and the selected continuous ex-
planatory variables altitude, slope, and distance to the
nearest fire, road, river and city (logarithmically trans-
formed) appeared to have a strong, positive correlation
(Table S3, in Additional file 1). All relationships are plot-
ted in Figure 2. The Pearson’s correlation coefficients (r)
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Figure 1 Schematic overview of the methodological steps in the anal
indicated the strongest relationships between AGB and
the terrain variables, altitude (r = 0.740, P < 0.001) and
slope (r = 0.563, P < 0.001), and between AGB and dis-
tance to the nearest fire (r = 0.607, P < 0.001) and city
(r = 0.478, P < 0.001). Moderately positive relationships
were found between AGB and distance to the nearest
river and road (r ~ 0.335, P < 0.001). Altitude and dis-
tance to the nearest city were strongly related to all other
explanatory variables (r > 0.400, P < 0.001), but not to
distance to the nearest river. Distance to the nearest
fire was related to the distance to the nearest river
and the nearest city. No strong multicollinearity was found
(Tolerance >0.200).

Variation in AGB between altitude ranges and soil types
The ANOVA on the categorised altitude variable re-
vealed significant differences in mean AGB between the
categories lowlands (<750 m), midlands (750–1,500 m)
and highlands (>1,500 m), F (2,462) = 32.85, P < 0.001.
The lowlands (M = 201) had significantly lower AGB
than the midlands (M = 276, P < 0.001) and the high-
lands (M = 282, P < 0.05). A boxplot of altitude and AGB
is shown in Figure 3a. An ANOVA was used to test for
mean differences in AGB among four soil types. Means
in AGB for soil types differed significantly across the
four types (F(3,461) = 14.88, P < 0.001). Bonferroni’s
post-hoc comparisons on the four soil types indicate that
AGB on peatland (M = 142) gave significantly lower
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Figure 2 Relationships between aboveground biomass (AGB, t ha−1) and all continuous variables (logarithmically transformed, ln) in the
sample. The solid circles represent the 465 sample points, the grey line depicts the regression line and the black line depicts the smooth curve.
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means than on karst (M = 261, P = 0.001) and volcanic
soils (M = 282, P < 0.001) (Figure 3b).

Variation in AGB between burned and non-burned areas
and land allocation zones
AGB in non-burned areas (i.e. areas where no fire hot-
spots were identified by the Moderate-resolution Imaging
Spectroradiometer (MODIS) between 2000 and 2008)
(M= 223, P < 0.001) was significantly higher compared to
burned areas (i.e. MODIS fire hotspots were identified
within 500 m from the data point between 2000 and 2008)
(M= 114, F (1,463) = 79.22, P < 0.001). A boxplot of fire
and AGB is shown in Figure 3c. Fires were more common
in the lowlands (98%) compared to the midlands and
highlands. An ANOVA showed significant differences in
the mean for AGB between the five land allocation zones
(F (4,460) = 56.06, P < 0.001) (see also Figure 3d). After
Bonferroni’s correction, pairwise comparisons showed
that the mean AGB was significantly lower in the non-
forest land zone (M= 152, P < 0.001) compared to the
other categories, and was significantly higher in water-
shed protection forest (M= 272) and the forest limited
production zone (M= 253), compared to production for-
est (M = 193) and conservation forest (M= 211).

Multiple linear regression
After removal of the non-significant explanatory variables
via conducting a backward multiple linear regression, the
variables altitude, distance to the nearest fire, and the cat-
egorical variables land allocation zoning and soil type sig-
nificantly contributed to predicting AGB, and combined
explained approx. 59% of the observed variance in
AGB in the sample (Adjusted R2 = 0.589, F(9,455) = 72.46,
P < 0.001). The standardised coefficients showed that in
this analysis, altitude was the most important explanatory
variable (Table 1).
Altitude and distance to the nearest fire both showed

a positive relation with AGB, which means that with in-
creasing altitude and distance to the nearest fire AGB in-
creased. Soil type also made a difference with respect to
AGB. Compared to the reference category ‘other’, the
categories volcanic and karst showed a higher mean
AGB. Karst was the only significant coefficient compared
to ‘other’. When compared to the reference category
‘non-forest land’, all land allocation zones showed a
higher mean AGB.
In a second model, interaction effects between altitude

and land allocation zoning were added (Table 1). These
interaction effects added 2% to the explained variance of
AGB (R2 change = 0.02, F(4, 451) = 5.29, P < 0.001). For
all land allocation zones, altitude showed a positive effect
on AGB; however, this effect was not equally strong in all
land allocation zones (Figure S4, in Additional file 1). The
strongest relationship between altitude and AGB was
found in conservation forests, where altitude explained
the AGB variance with about 86% (R2 = 0.860, P < 0.001).



Table 1 Unstandardised coefficients resulting from the
non-spatial multiple regression, without (Model 1) and
with interaction terms (Model 2)

Variable Coefficients
Model 1

Coefficients
Model 2

Altitude (ln) 32.8 (0.60)** 40.1 (0.73)**

Distance to the nearest fire (ln) 8.1 (0.14)** 8.4 (0.15)**

Soil type

Karst 43.2* 42.1*

Peat 19.2 25.7

Volcanic 16.8 22.7*

Land allocation zone

Forest limited production 19.4* 168.8**

Conservation forests −14.5 −23.1

Production forests 16.5* 41.7

Watershed protection forests 17.1 114.3*

Interaction effects

Altitude (ln) x Forest limited production −27.9**

Altitude (ln) x Conservation forests −1.0

Altitude (ln) x Production forests −6.6

Altitude (ln) x Watershed protection forests −18.3*

Standardised coefficients are indicated between brackets; **P <0.001, *P < 0.05;
ln, logarithmically transformed.
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The weakest relationship with altitude was found in water-
shed protection forests, where altitude explained only 17%
of the variance in AGB.
No multicollinearity was present and the standardised

residuals showed a normal distribution (Range = [−2.92;
3.96]), meeting the important assumptions of normality
and multicollinearity underlying multiple linear regres-
sion (see Figure S5, in Additional file 1). However, the
Breusch-Pagan test exposed the presence of spatial non-
stationarity or heteroscedasticity (Chi-square df = 88.381,
P ≤ 0.05), invalidating the significance of the statistical
tests. The Moran’s I test (Index = 0.147, z-score = 12.02,
P ≤ 0.05) showed spatial autocorrelation of the standar-
dised residuals, which can cause an unexplained shift in
the regression coefficients and can thus influence the
output of the model.

Geographically weighted regression (GWR)
Because of the presence of spatial autocorrelation in the
standardised residuals of the non-spatial multiple linear
regression, geographically weighted regression (GWR)
was conducted, producing for each sample point a local
relationship between AGB and the explanatory variables.
The variables; distance to the nearest road, city and river
showed strong multicollinearity with altitude. Finally,
three GWR models (Table 2) were computed that did
not show multicollinearity; however, Moran’s I test of
two of these models showed spatial autocorrelation. In
the best model (R2 Adjusted = 0.641, P ≤ 0.05), the ex-
planatory variables; altitude, distance to the nearest fire,
and land allocation zoning were significant, and ex-
plained the variation of AGB in the sample with approx.
64% (Table 2). The presence of spatial autocorrelation was
unlikely (Index = 0.02, z-score = 1.8, P ≤ 0.1). In Figure 4
the AGB values observed on the AGB map are plotted
against the AGB values predicted by the model. The
standardised residuals showed a normal distribution
(Range ~ [−3.80; 4.80]), indicating that the normality as-
sumptions underlying multiple regression were met (see
Figure S6, in Additional file 1).

Discussion
In this study, we combined ANOVA, multiple regression
and GWR and used multiple thematic spatial data layers
to define which biophysical and anthropogenic variables
contributed significantly to the spatial AGB variation in
a disturbed tropical forest landscape. Altitude showed
the strongest relationship with AGB; individually, and in
both regression analyses. This strong positive correlation
with altitude is supported for other areas by previous
studies e.g. [11,27]. In our study, the mean AGB was
highest in the higher altitudes where volcanic soils are



Table 2 Output of the spatial GWR model computed in
ArcGIS (P < 0.05); * for each variable (ln, logarithmically
transformed) the mean of the coefficients is indicated:
the GWR produced for each sample point a local model
and variable coefficient

Model

R2 0.660

R2 Adjusted 0.637

Response variable:

Observed mean AGB (t ha−1) 213.6

Predicted mean AGB (t ha−1) 211.9

Explanatory variables:

Altitude (ln) (mean coefficient) 31.7*

Distance to the nearest fire (ln) (mean coefficient) 8.6*

Land allocation zoning (mean coefficient) 0.17*

Residuals 1.7

Standard Error 46.6

Standardised Residual 0.03
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present, and most of the land was allocated to zones
where land clearing is not allowed. Moreover, these
higher altitudes are less suitable for agriculture and
poorly accessible by road. However, by taking into ac-
count interaction effects, we found that the influence of
altitude on AGB was highest in conservation forest
where AGB variation was explained with approx. 86%. It
is likely that the forests in these higher, and thus more
remote, conservation areas are less impacted by an-
thropogenic variables, leading to higher AGB densities.
The mean AGB was significantly lower in the lowlands

[11,27]. Lowlands are more susceptible to timber extrac-
tion, agricultural expansion and mining because of better
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Figure 4 Relationship between the observed aboveground
biomass (AGB, t ha−1) on the AGB map and the predicted AGB
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accessibility, and typical land allocation zoning where such
activities are allowed. Fire is a commonly-used land-
clearing method in Indonesia, and has severely affected
the study area [16,48]. Combined with regularly occurring
ENSO events, fires that start very locally may quickly
spread. In our study, between 2000 and 2008 significantly
more fires occurred in the lowlands, and in these burned
areas we observed significantly lower AGB [13]. These
findings support the results of Fuller et al. who found that
lowland forests and areas designated for forest conversion
in East Kalimantan were more threatened than upland for-
ests and areas not designated for conversion, with slope,
elevation, and fire being important factors in determining
the threat to forest cover [49].
The contribution of distance to the nearest fire and

land allocation zoning is in line with the observations of
e.g. Siegert et al. [12,16] and Broich et al. [31] that fires,
logging, and land clearing contribute substantially to for-
est cover loss and thus to lower AGB values in North
and East Kalimantan. Additionally, Broich et al. [31]
identified a relatively lower forest cover in 2000 within
production forest and non-forest-use zones, and the
greatest decrease in forest cover between 2000 and 2008,
compared to other land allocation zones. In this study,
these differences between the land allocation zones are
now also shown for AGB, which may support carbon
stock estimations.
Previous studies have focused on the effects of bio-

physical or anthropogenic factors on forest cover in
North and East Kalimantan or Borneo. With the excep-
tion of Fuller et al. [49], most of these studies, however,
included only a limited number of variables, and high-
lighted the influence of land allocation zoning [31]; land
use and fire [30]; or logging and logging roads [2]. In
this paper, we provided a reconciliation of these seem-
ingly contradicting results and showed that multiple ex-
planatory variables had a significant effect on AGB and
were interrelated to one another. Because of these inter-
relationships, we underline the importance of including
a wide range of biophysical and anthropogenic variables.
Most previous studies have incorporated mainly bio-

physical variables [e.g. 10, 24–26]. In this study we have
demonstrated that in disturbed tropical forest landscapes
it is essential to include biophysical and anthropogenic
variables in AGB quantification and modelling. Also, the
identification of anthropogenic factors that negatively
impact AGB can support projections about if and where
AGB losses may occur in an area.
We found substantially lower mean AGB on peatland

soils (142 t ha−1), than was found by Budiharta et al.
[50] for undisturbed peat swamp forests in Borneo
(348.7 t ha−1). This may indicate strong anthropogenic
disturbances in our study area by for example fires, log-
ging or conversion. Next to aboveground biomass,
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peatlands also store large amounts of biomass below-
ground [51,52]. In regions with large areas of peatland,
such as Indonesia [52], the inclusion of belowground
biomass in addition to AGB may improve carbon stock
predictions.
The GWR showed improved model accuracy (~64%)

and a similar ranking of variables compared to the mul-
tiple regression; however, soil type did not significantly
contribute to this model. This may be caused by an un-
derrepresentation of the limited number of sample
points across all soil types.
The variables were selected based on expected rela-

tions with AGB, but also by data availability. In order to
refine this model for applicability in other landscapes,
climate variables such as precipitation and temperature,
but also infrastructure data such as logging roads and
settlements, may be included, if data is available at an
appropriate level of detail.
The root mean squared error between the field-

estimated AGB and the AGB from the radar map was
10 t ha−1. Although generally this is considered low, it may
influence the resulting accuracy of the regression models.
AGB does not only vary spatially, but also temporally

because of disturbance and regeneration processes. Tem-
poral analysis of AGB could add a valuable dimension to
the present approach, by providing insight into the poten-
tial increase or decrease of AGB and carbon stocks.
For maintenance and identification of lands with high

AGB, many studies have focused on AGB and carbon
mapping and modelling using plot-based and remote
sensing data [33]. Many analyses, however, use maps
with discrete classes of AGB e.g. [12,30], and conse-
quently AGB quantification, or modelling, may not be
covering the existing high spatial variation sufficiently.
Therefore, we recommend using to use AGB maps with
a continuous scale.
Methods such as multiple regression and GWR have

been utilised for the analysis of, for example; forest attri-
butes [53], the NDVI–rainfall relationship [54], and even
for estimating AGB in a tropical forest area [55]. How-
ever, using GWR for generating a better understanding
of the biophysical and anthropogenic variables that con-
tribute to the regional spatial variation of AGB, by using
an extensive spatial dataset, is a relatively new approach.
The advantage of using GWR, compared to non-spatial
multiple regression, is that it produces a local model,
thus accounting for the spatially varying relationships
between AGB and the explanatory variables. Moreover,
by using GWR the effects of spatial autocorrelation were
minimised.

Conclusions
Better insights into the spatial variation of AGB are
needed to support the maintenance of carbon stocks in
disturbed tropical forested landscapes. In this paper, we
analysed how a set of biophysical and anthropogenic
variables were related to, and contributed to the spatial
variation of AGB in such a landscape. As was expected
for disturbed forest conditions, mean AGB was relatively
low and varied strongly throughout the landscape.
Through non-spatial and spatial multiple linear regres-

sion, we were able to explain this high spatial variation
with, respectively, about 59% and 64%. Because of spatial
autocorrelation in the standardised residuals of the non-
spatial multiple regression, we conducted GWR. The
GWR showed that altitude, distance to the nearest fire
and land allocation zoning had the largest significant ef-
fect on AGB. Our study showed that mean AGB was
relatively higher at the higher altitudes, on karst and vol-
canic soils, with increasing distance from fire hotspots,
in limited production forest, and in watershed protection
and conservation forests.
Because of the strong effects of these factors on vari-

ation in AGB, efforts to minimise carbon emissions,
such as REDD+, should incorporate these factors. This
can be implemented through maintenance of lands with
high carbon stocks or through the utilisation or regener-
ation of lands with low carbon stocks or AGB. For ex-
ample, the maintenance of high carbon stocks should be
a priority in the aforementioned zones with high AGB
values at higher altitudes. Low AGB or carbon stock
lands, such as found in the lowlands in burned areas and
in non-forest lands and production forests, should be
considered for either regeneration or utilisation pur-
poses, dependent on the regeneration capacity of the
vegetation. In these lowland areas, the use of fire should
be prevented as much as possible. The utilisation of
peatlands should be avoided, especially because of the
presence of high belowground carbon stocks. In our
study, the variation in AGB was less affected by proxim-
ity of roads, rivers and cities.
The high correlations between the explanatory variables

showed that the variables were interrelated and thus that
AGB variation cannot be explained by one single variable.
Instead, spatial analyses should integrate a variety of bio-
physical and anthropogenic variables to provide a better
understanding of spatial variation in AGB.

Methods
Study area
The natural resource-rich provinces of North and East
Kalimantan (North Kalimantan was established on 25
October 2012 and was previously part of East Kaliman-
tan) have a high spatial variation in biophysical and an-
thropogenic conditions and processes. For use in this
study, the provinces are regarded as one case study re-
gion. The terrain consists of undulating slopes and alti-
tudes up to about 2,200 m. Karst and peatlands occur
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mainly in the lowlands (respectively, ~2% and ~4). The
remaining landscape consists mainly of volcanic soils
and other soil types (respectively, ~7% and 87%). This
landscape is highly dynamic with regard to its past,
current and expected land use changes. Until the early
1970s, the original land cover in the lowlands of North
and East Kalimantan consisted of extensive dipterocarp
forests with high AGB and species richness [18], but
driven by forest and land development policies in the
1980s, large-scale degradation, deforestation and conver-
sion to agricultural land have taken place [48]. The main
activities were high intensity logging [48], but also large-
scale forest fires occurred that were often initiated for
land clearing purposes [13,16,48,56], and events associ-
ated with El Niño Southern Oscillation (ENSO) [57]. In
1997–98, again very destructive fires related to ENSO
occurred, burning 5.2 million ha of North and East
Kalimantan’s pristine and logged forests. Hoffmann et al.
[58] have found that approx. 75% of the burned forests
were allocated for logging, timber or oil palm conces-
sions. The frequency and spatial extension of fires have
increased over the last few decades in North and East
Kalimantan because of deforestation and degradation pro-
cesses associated with logging, mining and agriculture,
and intensifying droughts related to ENSO events [13].

Selection of variables and proxy data layers
An overview of the method is given in Figure 1. We in-
cluded multiple biophysical and anthropogenic variables
in the analyses, based on data at a regional scale so that
the interrelationships between the explanatory variables
could be accounted for. In Figure 5, a landscape-scale
view on the data layers is presented in which the
landscape-scale pattern for each variable is visible. The
use of spatial data enabled the analyses of AGB and sev-
eral explanatory variables on a continuous scale. The ini-
tial selection of the explanatory variables was based on a
literature review, field visits, visual examination of spatial
data and data availability (for Data sources, see Table S7
and Appendix S8, in Additional file 1).
The AGB map (Figure 5a) is based on ALOS PALSAR-

LiDAR data and plot-based measurements [38]. Dis-
turbed tropical forest landscapes such as North and East
Kalimantan are often covered by clouds or haze. Radar
remote sensing is not affected by clouds and has proven
to be a remote sensing system responsive to AGB [36,59].
Saturation of the radar signal at medium AGB levels
(150 t ha−1) restricts the use of radar remote sensing for a
direct radar image inversion into AGB maps. A radar-
based forest type map is used in combination with esti-
mated vegetation heights per land cover type, derived
from Geoscience Laser Altimeter System (GLAS) LiDAR
data, to overcome such saturation effects. This resulted in
an AGB map with a resolution of 50 m. Available
vegetation height-AGB allometric equations were used to
invert heights into AGB values per pixel, overcoming the
effect of radar saturation. An accuracy assessment of the
AGB map was conducted using field measurements over
54 plots of 0.2 ha over a range of degraded forest types in
the study area. AGB values were estimated using the allo-
metric equation developed by Saatchi et al. [38,39]. The
accuracy of the AGB map is estimated as 10 t ha−1, using
the root mean squared error between the field-estimated
AGB and the AGB from the radar map for the same loca-
tion. For more information see Quiñones et al. [38].
Altitude (Figure 5b) varied from −90 m – 2,230 m in

the landscape and was selected because a relationship
with AGB is expected [11,25-27]. Slope (Figure 5c) was
found to have a positive relationship with AGB [8]. Alti-
tude and slope were derived from the Digital Elevation
Model (90 m) by the Shuttle Radar Topography Mission
(SRTM-DEM) [60]. For the multiple linear regression
and GWR, altitude was included as a continuous variable.
For the ANOVA, altitude was categorised into several alti-
tude ranges (Lowlands <750 m; Midlands 750–1,500 m;
Highlands >1,500 m) (see Appendix S9 in Additional file 1).
Logging and land conversion decreases AGB substan-

tially by the harvesting and loss of especially rare tree
species [13]. Therefore a relationship is expected be-
tween AGB and logging intensity, and thus differences
in AGB between protected forested areas, areas allocated
for timber or forest concessions, and non-forest land.
The data source selected is the land (use) allocation zon-
ing data (Figure 5d) classified by WRI and originally pro-
duced by the Ministry of Forestry of Indonesia within
the Tata Guna Hutan Kesepakatan (TGHK) mapping
program (Ministry of Forestry Indonesia, year unknown)
as a proxy for logging and land clearance intensity. The
classes designated within this data layer and present in
the study area are: ‘forest limited production’, where log-
ging is accompanied by measures to reduce impacts on
soil erosion; ‘conservation forest’, which is conservation
forest for protected areas; ‘watershed protection forest’,
which is intended for watershed protection; ‘non-forest
land’ has the status of non-forest use; and ‘production
forest’, which is intended for commercial logging [31,62].
Relationships were reported between AGB and soil

drainage [26], soil texture [11], and soil fertility [23,24].
Soil type (Figure 5e) was selected as a proxy, and was in-
cluded by reclassifying the improved reproduction of the
RePPProT land systems map [63] into the categories ‘karst’,
‘peat’, ‘volcanic’, and ‘other’ (for details see Appendices S8
and S9 in Additional file 1).
Forest fires (Figure 5f ) can occur multiple times at the

same spot and in this way can cause substantial losses in
AGB [12,13,64]. Also the rate of post-fire regeneration
depends, amongst others, on the frequency and age of the
fire [13,18]. The proxy for fire included in the multiple
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linear regression and GWR was ‘distance to the nearest
fire’. For the fire data MODIS hotspot data from 2000
to 2008 were used [65], because of its high accuracy
recording. According to NASA, each MODIS fire hotspot
represents the centre point of a ~ 1 km pixel that contains
one or more fires, rather than the exact location of a fire.
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To overcome this uncertainty, a buffer of 500 m radius
surrounding each location was created to define fire hot-
spot polygons. Additionally, for the ANOVA the fire vari-
able was categorised as burned (≤500 m from a hotspot;
i.e. the area within a fire polygon), and non-burned areas
(>500 m from a hotspot, i.e. the area outside a fire poly-
gon) (see Appendix S9, in Additional file 1).
Both roads (Figure 5g) and rivers (Figure 5h) are the

primary means of transportation in North and East
Kalimantan, and improve accessibility from cities (Figure 5i)
to forest frontier areas. Therefore, a relationship is ex-
pected between AGB and the proxy distance to nearest
main road [66], the nearest main river [66] and the nearest
main city [67].

Data pre-processing
In order to reduce the high local-scale variation in AGB
caused by natural local variation and by the effect of
speckle noise, 9 x 9 cell focal mean statistics was applied
to the AGB map in ArcGIS, according to the results
generated by Hoekman and Quiñones [68]. All shapefiles
were rasterised, and the proximity variables were indi-
vidually processed by means of the Euclidean Distance
tool of the ArcGIS Spatial analyst. For optimal process-
ing, a sample of 500 data points was selected randomly
in the data layers with a minimum distance of 1,000 m
from one another to minimise the effects spatial auto-
correlation ([69]. The data layers were combined and all
data queries were exported to a database in SPSS 20.
Rows with missing values were deleted, resulting in a
dataset of 465 data points.
The continuous explanatory variables showing a skewed

distribution were transformed to attain normality. Natural
logarithmic (ln) data transformation was in all cases the
most suitable of a series of transformations tested for
attaining a linear relationship between AGB and the ex-
planatory variables.

Statistical analyses
Using the Pearson’s correlation coefficient, the strength
and direction of the predictive relationship between
AGB and each of the continuous explanatory variables
were defined. We conducted One-way ANOVA to ana-
lyse whether mean AGB among soil types and land allo-
cation zones, among different altitudinal ranges, and
between burned and unburned areas was significantly
different.
Non-spatial backward multiple linear regression was

conducted, and with every step non-significant (p ≥ 0.05)
variables were removed one-by-one. The categorical var-
iables land allocation zoning and soil type were included
as dummy variables with, respectively, ‘non-forest land’,
and ‘other’ as the reference categories. Because land is
allocated by the Ministry of Forestry of Indonesia based
on climate, slope and soil type, tests for an interaction
effect between land allocation zoning and altitude were
carried out, by inclusion of product terms in the mul-
tiple linear regression [70].
To verify whether the output met the assumptions

underlying multiple linear regression, tests for normality
and multicollinearity were carried out. To test for nor-
mality, we plotted a histogram, a normal PP plot and a
normal QQ plot of the standardised residuals. We tested
for the presence of significant strong multicollinearity by
examining the Tolerance.
Analysing ecological spatial data by multiple linear

regression is challenging (e.g. [54,71], because of the pos-
sible existence of spatial autocorrelation and spatial non-
stationarity, the latter being the variation in relationships
and processes over space. Spatial non-stationarity was
tested for by conducting the Breusch-Pagan test on ran-
dom coefficients. Although often ignored, spatial autocor-
relation or the spatial clustering of ecological conditions
and processes is a natural, and thus widespread phe-
nomenon [69]. Bini et al. [72] indicate that this can cause
an unexplained shift in the regression coefficients of global
or non-spatial models. To test for the presence of spatial
autocorrelation, the Moran’s I Index, the z-score and the
p-value for the standardised residuals were calculated. If
spatial autocorrelation was present, we additionally con-
ducted GWR in ArcGIS. GWR is a spatial and local form
of multiple linear regression that considers and models
the spatially varying relationships between explanatory
variables and the response variable [53-55]. The explana-
tory variables that showed multicollinearity were excluded
from the model.
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