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a b s t r a c t

In this paper, we develop the differential transformmethod (DTM) for solving a class of the
system of two-dimensional linear and nonlinear Volterra integro-differential equations of
the second kind. To this end, we give some preliminary results of the differential transform
and describe the method of this paper. We also give some examples to demonstrate the
accuracy of the presented method.
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1. Introduction

The concept of differential transform was first introduced by Zhou [1] for solving linear and nonlinear initial value
problems in electric analysis (see also [2]). Indeed the differential transform method is an iterative procedure to obtain
Taylor series solutions of differential and integral equations (see [3]).

Up until now, the differential transformmethod has been developed for solving various types of differential and integral
equations. For example in [4], this method has been used for solving a system of differential equations and in [5] for
differential–algebraic equations. In [2,6], this method has been applied to partial differential equations and in [7,8] to one-
dimensional Volterra integral and integro-differential equations. Also in [9] the DTM has been developed for solving two-
dimensional Volterra integral equations.

On the other hand, there aremany numericalmethods for solving one-dimensional integral equations of the second kind,
but in two-dimensional cases, a few works have been done (see, for example [10,11,9,12]).

The subject of the present paper is to apply theDTM for solving a systemof two-dimensional linear and nonlinear Volterra
integro-differential equations. For this propose we consider the system of two-dimensional Volterra integro-differential
equations of the form

Fi(D
(1)
11 u1(x, t) + · · · + D(1)

1mum(x, t)) − λi

∫ t

t0

∫ x

x0
Ki(x, t, y, z)Gi(D

(2)
11 u1(y, z), . . . ,D

(2)
1mum(y, z))dydz = fi(x, t),

i = 1, 2, . . . ,m (1.1)

with given supplementary conditions.
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Let us assume that Ki has the degenerate form

Ki(x, t, y, z) =

p−
j=0

vij(x, t)wij(y, z), i = 1, 2, . . . ,m (1.2)

since otherwise it can be approximated by polynomials of this form.

2. Two-dimensional differential transform

We define the (m, n)th differential transform of the bivariate function f (x, t) (see [4]) at (x0, t0) as

F(m, n) =
1

m!n!

[
∂m+nf (x, t)

∂xm∂tn

]
x=x0,t=t0

(2.1)

then its inverse transform is defined as

f (x, t) =

∞−
m=0

∞−
n=0

F(m, n)(x − x0)m(t − t0)n. (2.2)

From (2.1) and (2.2) it follows that

f (x, t) =

∞−
m=0

∞−
n=0

1
m!n!

[
∂m+nf (x, t)

∂xm∂tn

]
x=x0,t=t0

(x − x0)m(t − t0)n (2.3)

which is the Taylor series of the bivariate function f (x, t) around (x0, t0).
In the following theorem, we summarize fundamental properties of two-dimensional differential transforms (see [4,8]).

Theorem 2.1. Let F(m, n), U(m, n) and V (m, n) be the differential transforms of the functions f (x, t), u(x, t) and v(x, t) at
(0, 0) respectively, then

(a) If f (x, t) = u(x, t) ± v(x, t) then

F(m, n) = U(m, n) ± V (m, n).

(b) If f (x, t) = au(x, t) then

F(m, n) = aU(m, n).

(c) If f (x, t) = u(x, t)v(x, t) then

F(m, n) =

n−
l=0

m−
k=0

U(k, l)V (m − k, n − l).

(d) If f (x, t) = xkt l then

F(m, n) = δm,kδn,l.

(e) If f (x, t) = xk sin(at + b) then

F(m, n) =
an

n!
δm,k sin

nπ
2

+ b


.

(f) If f (x, t) = xk cos(at + b) then

F(m, n) =
an

n!
δm,k cos

nπ
2

+ b


.

(g) If f (x, t) = xkeat then

F(m, n) =
an

n!
δm,k.

We state the following theorem to use the DTM to differential parts of Eq. (1.1) (see [2]).

Theorem 2.2. Let F(m, n), U(m, n) and V (m, n) be differential transforms of the functions f (x, t), u(x, t) and v(x, t) around
(0, 0) respectively, then

(a) If f (x, t) =
∂u(x,t)

∂x then

F(m, n) = (m + 1)U(m + 1, n).
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(b) If f (x, t) =
∂u(x,t)

∂t then

F(m, n) = (n + 1)U(m, n + 1).

(c) If f (x, t) =
∂r+su(x,t)

∂r x∂st then

F(m, n) = (m + 1)(m + 2) · · · (m + r)(n + 1)(n + 2) · · · (n + s)U(m + r, n + s).

(d) If f (x, t) =
∂u(x,t)

∂x
∂v(x,t)

∂x then

F(m, n) =

m−
r=0

n−
s=0

(r + 1)(m − r + 1)U(r + 1, n − s)V (m − r + 1, s).

(e) If f (x, t) = u(x, t)v(x, t)w(x, t) then

F(m, n) =

m−
r=0

m−r−
i=0

n−
s=0

n−s−
j=0

U(r, n − s − j)V (i, s)W (m − r − i, j).

Now we give the basic theorem of this paper.

Theorem 2.3. Assume that U(m, n), V (m, n), H(m, n) andG(m, n) are the differential transforms of the functions u(x, t), v(x, t),
h(x, t) and g(x, t) respectively, then we have

(a) If g(x, t) =
 t
t0

 x
x0

u(y, z)v(y, z)dydz, then

G(m, 0) = G(0, n) = 0, m, n = 0, 1, . . .

G(m, n) =
1
mn

n−1−
l=0

m−1−
k=0

U(k, l)V (m − k − 1, n − l − 1), m, n = 1, 2, . . . . (2.4)

(b) If g(x, t) = h(x, t)
 t
t0

 x
x0

u(y, z)dydz, then

G(m, 0) = G(0, n) = 0, m, n = 0, 1, . . .

G(m, n) =

n−1−
l=0

m−1−
k=0

H(k, l)
U(m − k − 1, n − l − 1)

(m − k)(n − l)
, m, n = 1, 2, . . . . (2.5)

Proof. (a) From the definition of g(x, t) it is obvious that G(0, 0) = 0.
Since

∂mg(x, t)
∂xm

=

∫ t

t0

∂m−1

∂xm−1
(u(x, z)v(x, z))dz, and

∂gn(x, t)
∂tn

=

∫ x

x0

∂n−1

∂tn−1
(u(y, t)v(y, t))dy

hence[
∂mg(x, t)

∂xm

]
x=x0,t=t0

= 0, and
[

∂ng(x, t)
∂tn

]
x=x0,t=t0

= 0

therefore G(m, 0) = 0,G(0, n) = 0, m, n = 0, 1, . . ..
Now for m ≥ 1, n ≥ 1 we have

∂m+ng(x, t)
∂xm∂tn

=
∂m+n−2(u(x, t)v(x, t))

∂xm−1∂tn−1
=

∂m−1

∂xm−1

[
∂n−1u(x, t)v(x, t)

∂tn−1

]
=

∂m−1

∂xm−1


n−1−
l=0


n − 1
1


∂ lu(x, t)

∂t l
∂n−1−lv(x, t)

∂tn−1−l



=

n−1−
l=0


n − 1

l

 [
∂m−1

∂xm−1


∂ lu(x, t)

∂t l
∂n−1−lv(x, t)

∂tn−1−l

]

=

n−1−
l=0


n − 1

l

 
m−1−
k=0


m − 1

k


∂k+lu(x, t)

∂xk∂t l
∂m+n−l−k−2v(x, t)
∂xm−k−1∂tn−l−1



=

n−1−
l=0

m−1−
k=0


n − 1

l

 
m − 1

k

 
∂k+lu(x, t)

∂xk∂t l

 
∂m+n−l−k−2v(x, t)
∂xm−k−1∂tn−l−1


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therefore[
∂m+ng(x, t)

∂xm∂tn

]
x=x0,t=t0

=

n−1−
l=0

m−1−
k=0


n − 1

l

 
m − 1

k


[k!l!U(k, l)]

× [(m − k − 1)!(n − l − 1)!V (m − k − 1, n − l − 1)]

= (m − 1)!(n − 1)!
n−1−
l=0

m−1−
k=0

U(k, l)V (m − k − 1, n − l − 1)

hence by (2.1)

G(m, n) =
1
mn

n−1−
l=0

m−1−
k=0

U(k, l)V (m − k − 1, n − l − 1).

(b) Analogously to part (a), we have G(m, 0) = G(0, n) = 0 for m, n = 0, 1, . . . Thus we assume that m, n ≥ 1 and for
convenience we set v(x, t) =

 t
t0

 x
x0

u(y, z)dydz therefore g(x, t) = h(x, t)v(x, t) and we have

∂m+ng(x, t)
∂xm∂tn

=
∂m+n

∂xm∂tn
(h(x, t)v(x, t))

and similar to part (a)

G(m, n) =

n−
l=0

m−
k=0

n
l

 m
k

 [
∂k+lh(x, t)

∂xk∂t l

 
∂m+n−l−kv(x, t)

∂xm−k∂tn−l

]
x=x0,t=t0

but since form = k or n = l[
∂m+n−l−kv(x, t)

∂xm−k∂tn−l

]
x=x0,t=t0

= 0

the upper indices in the above sums reduce tom − 1 and n − 1, hence

G(m, n) =

n−1−
l=0

m−1−
k=0

H(k, l)
U(m − k − 1, n − l − 1)

(m − k)(n − l)

and therefore the proof is completed. �

3. Application of the method

In this section, we describe application of the method for (1.1). To this end, we substitute from (1.2) into (1.1) and obtain

Fi(D
(1)
11 u1(x, t) + · · · + D(1)

1mum(x, t)) −

p−
j=1

vij(x, t)
∫ t

0

∫ x

0
wij(y, z)Gi(D

(2)
11 u1(y, z), . . . ,D

(2)
1mum(y, z))dydz

= fi(x, t) i = 1, 2, . . . ,m (3.1)

which is solvable by using differential transform method.
By using Theorems 2.1–2.3 a recurrence relation is obtained for Ui(m, n) (differential transform of ui(x, t)). To find

Ui(m, n) by this relation we need some starting values of Ui that can be obtained from integro-differential equations and
supplementary conditions.

We use (2.2) in truncated form

ui(x, t) =

N−
m=0

N−
n=0

Ui(m, n)(x − x0)m(t − t0)n (3.2)

to obtain ui(x, t).
For the starting values of Ui we need the following lemma.

Lemma 3.1. Let g(x, t) =
 t
0

 x
0 w(y, z)uq(y, z)dydz then for differential transforms of g(x, t) we have

(a) G(m, 0) = 0, m = 0, 1, . . ..
(b) G(0, n) = 0, n = 0, 1, . . ..
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Proof. (a) It is evident that G(0, 0) = 0, now we have

∂mg(x, t)
∂xm

=

∫ t

0

∂m−1

∂xm−1
[w(x, z)uq(x, z)]dz, m = 1, 2, . . . ,

therefore

G(m, 0) = 0, m = 1, 2, . . . .

(b) Similarly to (a) we have

∂ng(x, t)
∂tn

=

∫ x

0

∂n−1

∂xn−1
[w(y, t)uq(y, t)]dy, n = 1, 2, . . . ,

therefore

G(0, n) = 0, n = 1, 2, . . . . �

4. Examples

In this section, we give some examples to clarify the accuracy of the presentedmethod. As wementioned in the previous
section, we first obtain a recurrence relation for differential transform of integro-differential equation; then solve it by
programming in MAPLE environment. We also present numerical results for each example.

Example 1. Consider the system of integro-differential equations
∂u1(x, t)

∂x
− u2(x, t) −

∫ t

0

∫ x

0
y2u2

1(y, z)u
2
2(y, z)dydz = et − te−t

−
1
15

x5t3

u1(x, t) +
∂u2(x, t)

∂x
−

∫ t

0

∫ x

0
z2u1(y, z)u2(y, z)dydz = xet −

1
8
x2t4

(4.1)

for x, t ∈ [0, 1] and with supplementary conditions

u1(0, t) = 0, u2(0, t) = te−t , t ∈ [0, 1]

which the exact solutions are u1(x, t) = xet and u2(x, t) = te−t .
Applying differential transform on both sides of (4.1) equations and using Theorems 2.1–2.3, for first equation of system

we obtain

(m + 1)U1(m + 1, n) − U2(m, n) −
1
mn

n−1−
l=0

m−1−
k=0

n−l−1−
s=0

m−k−1−
r=0

s−
j=0

r−
i=0

n−l−s−1−
q=0

m−k−r−1−
p=0

× [δk,2δl,0U1(i, j)U1(r − i, s − j)U2(p, q)U2(m − k − r − p − 1, n − l − s − q − 1)]

=
1
n!

δm,0 −
(−1)n−1

(n − 1)!
−

1
15

δm,5δn,3, m = 1, 2, . . . ,N − 1, n = 1, 2, . . . ,N (4.2)

and for second equation

U1(m, n) + (m + 1)U2(m + 1, n) −
1
mn

n−1−
l=0

m−1−
k=0

n−l−1−
s=0

m−k−1−
r=0

[δk,0δl,2U1(r, s)U2(m − k − r − 1, n − l − s − 1)]

=
1
n!

δm,1 −
1
8
δm,2δn,4, m = 1, 2, . . . ,N − 1, n = 1, 2, . . . ,N. (4.3)

Also from the first supplementary condition we have

U1(0, n) = 0, n = 0, 1, 2, . . . ,N

and from the second condition

U2(0, 0) = 0, U2(0, n) =
(−1)n−1

(n − 1)!
, n = 1, 2, . . . ,N.

Now by substituting x = 0 in the first equation of (4.1) and using the second condition we obtain

∂u1

∂x
(0, t) = et .
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Therefore

∂1+nu1

∂x∂tn
(0, t) = et , n = 0, 1, . . . ,N

hence

U1[1, n] =
1
n!

, n = 0, 1, . . . ,N.

Similarly by substituting x = 0 in the second equation of (4.1) and using the first condition we obtain

∂u2

∂x
(0, t) = 0 ⇒

∂1+nu2

∂x∂tn
(0, t) = 0.

Therefore

U2[1, n] = 0, n = 0, 1, . . . ,N.

By solving (4.2) and (4.3) for the cases N = 10, N = 12 and N = 14 we obtain the approximate solutions as
u1N(x, t) = x


1 + t +

1
2!

t2 + · · · +
1
N!

tN


u2N(x, t) = t − t2 +
1
2!

t3 − · · · +
(−1)N−1

(N − 1)!
tN

that u1N and u2N denote approximates of u1 and u2 respectively and are parts of Taylor’s series of the exact solutions.

Table 1 shows the absolute errors at the some points.

Example 2. We consider in this example the system
∂u1(x, t)

∂t
+ u2(x, t) −

∫ t

0

∫ x

0
y sin z(u2

1(y, z) − u2
2(y, z))dydz =

1
12

(1 + 2 cos3 t − 3 cos t)x4

∂u1(x, t)
∂t

+
∂u2(x, t)

∂t
+ u1(x, t) −

∫ t

0

∫ x

0
y cos z


u1(y, z) −

∂u2(y, z)
∂z


dydz = x(2 cos t − sin t)

(4.4)

with x, t ∈ [0, 1] and supplementary conditions

u1(x, 0) = x, u2(x, 0) = 0, x ∈ [0, 1]

which has the exact solutions u1(x, t) = x cos t and u2(x, t) = x sin t .
Using similar methods as in Example 1, we obtain

(n + 1)U1(m, n + 1) + U2(m, n) −
1
mn

n−1−
l=0

m−1−
k=0

l−
s=0

k−
r=0

n−l−1−
q=0

m−k−1−
p=0

δr,1δs,0δk−r,0

(l − s)!
sin


(l − s)π

2


× [U1(p, q)U1(m − k − p − 1, n − l − q − 1) − U2(p, q)U2(m − k − p − 1, n − l − q − 1)]

=
1
6

n−
l=0

m−
k=0

n−l−
s=0

m−k−
r=0

n−l−s−
q=0

m−k−r−
p=0

δk,4δl,0δr,0δp,0δm−k−r−p,0

s!q!(n − l − s − q)!
cos

 sπ
2


cos

qπ
2


cos


(n − l − s − q)π

2



+
1
12

δm,4δn,0 −
1
4

n−
l=0

m−
k=0

δk,4δl,0δm−k,0

(n − l)!
cos


(n − l)π

2


, m = 1, 2, . . . ,N, n = 1, 2, . . . ,N − 1 (4.5)

and

(n + 1)U1(m, n + 1) + (n + 1)U2(m, n + 1) + U1(m, n) −
1
mn

n−1−
l=0

m−1−
k=0

l−
s=0

k−
r=0

δr,1δs,0δk−r,0

(l − s)!

× cos


(l − s)π
2


[U1(m − k − 1, n − l − 1) − (n − l)U2(m − k − 1, n − l)]

=

n−
l=0

m−
k=0

δk,1δl,0δm−k,0

(n − l)!

[
2 cos


(n − l)π

2


− sin


(n − l)π

2

]
, m = 1, 2, . . . ,N, n = 1, 2, . . . ,N − 1. (4.6)

Also from the supplementary condition u1(x, 0) = xwe have

U1(0, 0) = 0, U1(1, 0) = 1, U1(m, 0) = 0, m = 2, 3, . . . ,N
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Table 1
Numerical results of Example 1.

(x, t) (N = 10) (N = 12) (N = 14)

(u1(x, t))
(0.2, 0.2) 0.104340e−15 0.200000e−19 0.100000e−20
(0.4, 0.6) 0.382607e−10 0.876419e−13 0.149430e−15
(0.4, 0.8) 0.921914e−9 0.374454e−11 0.113270e−13
(0.6, 0.4) 0.652138e−12 0.665590e−15 0.500000e−18
(0.8, 0.6) 0.765215e−10 0.175284e−12 0.298800e−15
(1, 1) 0.273127e−7 0.172877e−9 0.815487e−12

(u2(x, t))
(0.2, 0.2) 0.554281e−14 0.168000e−17 0.100000e−19
(0.4, 0.6) 0.947844e−9 0.260599e−11 0.518545e−14
(0.4, 0.8) 0.220581e−7 0.108091e−9 0.385094e−12
(0.6, 0.4) 0.111517e−10 0.135911e−13 0.119900e−16
(0.8, 0.6) 0.947844e−9 0.260599e−11 0.518545e−14
(1, 1) 0.252459e−6 0.193784e−8 0.107512e−10

Table 2
Numerical results of Example 2.

(x, t) (N = 10) (N = 12) (N = 14)

(u1(x, t))
(0.2, 0.4) 0.699893e−14 0.615000e−17 0.100000e−19
(0.4, 0.4) 0.139978e−13 0.123000e−16 0.200000e−19
(0.6, 0.8) 0.857765e−10 0.301888e−12 0.805500e−15
(0.8, 0.2) 0.685000e−17 0.100000e−19 0.100000e−19
(0.8, 0.8) 0.114369e−9 0.402517e−12 0.107400e−14
(1, 1) 0.207625e−8 0.114231e−10 0.476390e−13

(u2(x, t))
(0.2, 0.4) 0.209937e−12 0.215377e−15 0.164000e−18
(0.4, 0.4) 0.419874e−12 0.430760e−15 0.320000e−18
(0.6, 0.8) 0.128590e−8 0.528102e−11 0.161057e−13
(0.8, 0.2) 0.410340e−15 0.110000e−18 0.100000e−20
(0.8, 0.8) 0.171453e−8 0.704137e−11 0.214743e−13
(1, 1) 0.248923e−7 0.159828e−9 0.761913e−12

and from the condition u2(x, 0) = 0

U2(m, 0) = 0, m = 0, 1, 2, . . . ,N.

Now by substituting t = 0 in the first equation of (4.4) and using the second condition we obtain

∂u1

∂t
(x, 0) = 0 ⇒

∂m+1u1

∂xm∂t
(x, 0) = 0.

Therefore

U1(m, 1) = 0, m = 0, 1, . . . ,N.

Similarly by substituting t = 0 in the second equation of (4.4) and using the first condition and the above relation we obtain

∂u2

∂t
(x, 0) = x ⇒

∂2u2

∂x∂t
(x, 0) = 1 and

∂m+1u2

∂xm∂t
(x, 0) = 0.

Therefore

U2[0, 1] = 0, U2[1, 1] = 1, U2[m, 1] = 0, m = 2, 3, . . . ,N.

Similar to the previous example by solving (4.5) and (4.6) for the cases N = 10, N = 12 and N = 14 we obtain the
approximate solutions which are parts of Taylor’s series of the exact solutions. Table 2 shows the absolute errors at some
points.

Example 3. In this example we consider a nonlinear equation of the form

∂2u(x, t)
∂t2

+ u(x, t) −

∫ t

0

∫ x

0
(y + cos z)u2(y, z)dydz =

1
8
x4 sin t cos t −

1
8
x4t −

1
9
x3 sin3 t, x, tϵ[0, 1] (4.7)
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Table 3
Numerical results of Example 3.

(x, t) Error(N = 10) Error(N = 12) Error(N = 14)

(0.1, 0.1) 0.250000e−19 0.100000e−21 0.100000e−21
(0.2, 0.2) 0.102586e−15 0.270000e−19 0.100000e−20
(0.3, 0.3) 0.133060e−13 0.7679e−17 0.200000e−20
(0.4, 0.4) 0.419874e−12 0.430760e−15 0.320000e−18
(0.5, 0.5) 0.610645e−11 0.979001e−14 0.116500e−16
(0.6, 0.6) 0.544074e−10 0.125600e−12 0.215450e−15
(0.7, 0.7) 0.345667e−9 0.108662e−11 0.253681e−14
(0.8, 0.8) 0.171453e−8 0.704137e−11 0.214743e−13
(0.9, 0.9) 0.703886e−8 0.365966e−10 0.141282e−12
(1, 1) 0.273127e−7 0.159828e−9 0.761913e−12

with supplementary conditions

u(x, 0) = 0
∂u
∂t

(x, 0) = x

with the exact solution u(x, t) = x sin t .
By the same way of previous examples we have

(n + 1)(n + 2)U(m, n + 2) = −U(m, n) −
1
8
δm,4δn,1 +

1
mn

n−1−
l=0

m−1−
k=0

n−l−1−
s=0

m−k−1−
r=0

×

[
δk,1δl,0 +

l
l!
δk,0 cos

lπ
2


U(r, s)U(m − k − r − 1, n − l − s − 1)

]

−
1
9

n−
l=0

m−
k=0

n−l−
s=0

m−k−
r=0

[
1

l!s!(n − l − s)!
δk,3δr,0δm−k−r,0 sin

lπ
2

sin
sπ
2

× sin
(n − l − s)π

2

]
+

1
8

n−
l=0

m−
k=0

[
1

l!(n − l)!
δk,4δm−k,0 sin

lπ
2

cos
(n − l)π

2

]
,

m = 1, 2, . . . ,N, n = 1, 2, . . . ,N − 2. (4.8)

And from condition u(x, 0) = 0 we obtain

U(m, 0) = 0, m = 0, 1, 2, . . . .

Also from condition ∂u
∂t (x, 0) = xwe have

U(0, 1) = 0, U(1, 1) = 1, U(m, 1) = 0, m = 2, 3, . . . .

Now by differentiating Eq. (4.7) of orderm = 0, 1, . . . with respect to x and using Lemma 3.1 we obtain

U(m, 2) =
1
2
[F(m, 0) − U(m, 0)], m = 0, 1, 2, . . .

similarly by differentiating Eq. (4.7) of order n = 0, 1, . . . with respect to t and using Lemma 3.1 we obtain

U(0, n + 2) =
1

(n + 1)(n + 2)
[F(0, n) − U(0, n)], n = 0, 1, 2, . . . .

That implies the solution

u(x, t) = xt −
1
3!

xt3 +
1
5!

xt5 −
1
7!

xt7 +
1
9!

xt9 · · · = x sin t

which is the exact solution of equation.
Table 3 shows the absolute errors in points

(x, t) = ((0.1)i, (0.1)i), i = 1, 2, . . . , 10.
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5. Conclusion

We applied two-dimensional differential transform for solving two-dimensional linear and nonlinear Volterra integro-
differential equations. The advantages of this method are given as follows.

1. The results of examples showed that this method have high accuracy.
2. This method also can be applied to many linear and nonlinear two-dimensional Volterra integro-differential equations

without linearization, discretization and perturbation.
3. In thismethod, we obtain solution from a recursive relation, therefore it is a very fastmethod andwe can obtain arbitrary

numbers in terms of Taylor expansion of solution.
4. Finally, since this is a simple method, it can be used in applied science and engineering.
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