
Stem Cell Research 16 (2016) 387–396

Contents lists available at ScienceDirect

Stem Cell Research

j ourna l homepage: www.e lsev ie r .com/ locate /scr

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Implications of irradiating the subventricular zone stem cell niche
Vivian Capilla-Gonzalez a,b, Janice M. Bonsu a, Kristin J. Redmond c,
Jose Manuel Garcia-Verdugo d, Alfredo Quiñones-Hinojosa a,⁎
a Department of Neurosurgery and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
b Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Seville 41092, Spain
c Department of Radiation Oncology & Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA
d Laboratory of Comparative Neurobiology, Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, University of Valencia, CIBERNED, Paterna 46980, Valencia, Spain
⁎ Corresponding author at: Department of Neurosurger
University, 1550 Orleans St, CRB-II, Room 247, Baltimore,

E-mail address: aquinon2@jhmi.edu (A. Quiñones-Hin

http://dx.doi.org/10.1016/j.scr.2016.02.031
1873-5061/© 2016 Published by Elsevier B.V. This is an o
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 23 September 2015
Received in revised form 10 January 2016
Accepted 14 February 2016
Available online 17 February 2016
Radiation therapy is a standard treatment for brain tumor patients. However, it comes with side effects, such as
neurological deficits.While likelymulti-factorial, the effectmay in part be associatedwith the impact of radiation
on the neurogenic niches. In the adultmammalian brain, theneurogenic niches are localized in the subventricular
zone (SVZ) of the lateral ventricles and the dentate gyrus of the hippocampus,where the neural stem cells (NSCs)
reside. Several reports showed that radiation produces a drastic decrease in the proliferative capacity of these
regions, which is related to functional decline. In particular, radiation to the SVZ led to a reduced long-term
olfactorymemory and a reduced capacity to respond to brain damage in animalmodels, as well as compromised
tumor outcomes in patients. By contrast, other studies in humans suggested that increased radiation dose to the
SVZ may be associated with longer progression-free survival in patients with high-grade glioma. In this review,
we summarize the cellular and functional effects of irradiating the SVZ niche. In particular, we review the pros
and cons of using radiation during brain tumor treatment, discussing the complex relationship between radiation
dose to the SVZ and both tumor control and toxicity.

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
© 2016 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
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1. Introduction

Radiation therapy is critical in the treatment of brain tumors such as
glioblastomamultiforme (Stupp et al., 2009; Stupp et al., 2005; Kumabe
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et al., 2013; DeAngelis, 2005; Rusthoven et al., 2014; Chen et al., 2013).
Modern techniques such as intensity-modulated radiation therapy
allow focused delivery of radiation dose to the tumor while minimizing
radiation dose to the adjacent critical structures. Nonetheless, adjacent
healthy brain tissue also receives some radiation dose during treatment
depending on the tumor location and geometry. Cellular and functional
effects have been associated with radiation to the neurogenic niches
(Achanta et al., 2009; Tada et al., 2000; Crossen et al., 1994; Monje
et al., 2002; Capilla-Gonzalez et al., 2014; Padovani et al., 2012;
Armstrong et al., 2013). The subventricular zone (SVZ) of the lateral
ventricles and the dentate gyrus (DG) of the hippocampus constitute
the main neurogenic niches of the adult mammalian brain (Gates
et al., 1995; Alvarez-Buylla et al., 2002; Doetsch et al., 1997; Seri et al.,
2001; Eriksson et al., 1998; Quinones-Hinojosa et al., 2006). Cranial
radiation is known to inhibit proliferation and neurogenesis in the hip-
pocampus, which has been related to learning and memory deficits in
rodents and humans (Achanta et al., 2009; Tada et al., 2000; Monje
et al., 2002; Padovani et al., 2012; Armstrong et al., 2013; Redmond
et al., 2013; Monje, 2008; Sato et al., 2013; Calabrese et al., 2009;
Marazziti et al., 2012; Raber et al., 2004). Similarly, radiation of the
rodent SVZ depletes precursor cells and decreases the production of
new cells, affecting the consolidation and restitution of olfactory traces
in the olfactory bulb (OB) (Balentova et al., 2013; Lazarini et al., 2009;
Achanta et al., 2012), as well as the ability of the SVZ to respond to
brain damage (Capilla-Gonzalez et al., 2014). Despite these negative
effects, retrospective data suggest a potentially prolonged overall
survival in patients with glioblastoma that received high dose of ipsilat-
eral SVZ radiation(Chen et al., 2013; Gupta et al., 2012; Kast et al., 2013;
Evers et al., 2010; Lee et al., 2013a; Lee et al., 2013b; Chen et al., 2015).
In line with these reports, a prospective study of hypofractionated
radiation therapy found improved survival in long term survivors with
necrosis in the SVZ (Iuchi et al., 2014). In this review, we highlight the
current knowledge regarding the cellular and functional effects of SVZ
radiation, focusing in its implication on brain tumor therapy.
Fig. 1. Cell organization of the SVZ neurogenic niche. (A) Schematic representation of the SVZ
the neurogenic niche. (B) Electron microscopy image of the rodent SVZ. (C) Schematic represen
layers where the SVZ cells organize. (D) Electron microscopy image the human SVZ. b, astrocyte-
2. The adult subventricular zone: a source of neural stem cells

The SVZ is themain reservoir of neural stem cells (NSCs) in the adult
mammalian brain (Doetsch et al., 1997; Quinones-Hinojosa et al., 2006;
Sanai et al., 2004). It is widely accepted that NSCs correspond to a pool
of astroglial cells capable of both self-renewal and differentiation into
neurons, oligodendrocytes, or astrocytes (Sanai et al., 2004; Doetsch
et al., 1999a; Ihrie et al., 2008). The SVZ is composed of different cell
types that organize to construct a unique cytoarchitecture, which differs
between rodents and humans (Fig. 1).

2.1. Rodent SVZ

The rodent SVZ contains four main cell types that are defined by
their morphology, ultrastructure, and molecular markers (Doetsch
et al., 1997). This region lines the ventricle cavity by a monolayer of
ependymal multiciliated cells. Next to this ependymal layer, astrocyte-
like NSCs extend an apical process ending in a primary cilium to directly
contact the ventricle. This cilium has been suggested to play a signaling
role in the regulation of NSC proliferation and differentiation (Tong
et al., 2014; Ihrie et al., 2011; Mirzadeh et al., 2008). Astrocyte-like
NSCs proliferate slowly to generate fast proliferating precursors that,
in turn, give rise to neuroblasts (Doetsch et al., 1997; Doetsch et al.,
1999b; Ponti et al., 2013) (Fig. 1A–B). Typically, neuroblasts in the SVZ
form chains surrounded by non-neurogenic astrocytes and migrate
tangentially through the rostral migratory stream (RMS) to the OB,
where they differentiate into interneurons (Luskin et al., 1997; Lois
et al., 1994; Kelsch et al., 2010; Carleton et al., 2003).

2.2. Human SVZ

The presence of astrocyte-like NSCs has also been described in the
adult human SVZ (Sanai et al., 2004). The proliferative and neurogenic
potential of this germinal zone is maintained during adulthood,
in a coronal view of the mouse brain. The enlarged area depicts the cytoarchitecture of
tation of the SVZ in a coronal view of the human brain. The enlarged area depicts the four
like cell; e, ependymal cell; Lv, lateral ventricle; o, oligodendrocytes. Scale bar 10 μm.

Image of Fig. 1
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although it is drastically decreased when compared to fetal and pediat-
ric stages (Quinones-Hinojosa et al., 2006; Sanai et al., 2004; Sanai et al.,
2011; Guerrero-Cazares et al., 2011). The human SVZ differs from
that found in rodents since it organizes into four layers: I) Ependymal
layer, which is composed by multiciliated ependymal cells; II)
Hypocellular gap, composed by expansions of ependymal and astrocytic
cells; III) Astrocytic ribbon, where astrocytes are located; and IV) Tran-
sitional zone to the parenchyma, rich in myelin and oligodendrocytes.
There has been no description of fast proliferating precursors, but
migrating neuron-like cells can occasionally be found at the layers II
and III as individual cells (Quinones-Hinojosa et al., 2006; Sanai et al.,
2004) (Fig. 1C–D). However, the existence of an adult human RMS
remains highly controversial (Sanai et al., 2004; Sanai et al., 2007;
Curtis et al., 2007; Wang et al., 2011; Kam et al., 2009). The group of
Curtis et al. suggested that a pathway of migratory neuroblasts is
present in the adult human brain and that this pathway organized
around a remnant of the ventricular cavity that extends from the SVZ
to the OB (Curtis et al., 2007; Kam et al., 2009). In contrast, other studies
failed in identifying an open ventricular system connecting the SVZwith
the OB (Sanai et al., 2007) and described the existence of neuroblasts
that continuously appear, singly or in pairs, without forming chains in
an RMS that is nearly extinct by adulthood (Sanai et al., 2004; Sanai
et al., 2011; Sanai et al., 2007; Wang et al., 2011).

2.3. NSCs and their host microenvironment

In the SVZ, NSCs are immersed in a specialized niche where they
establish cell–cell and cell–microenvironment interactions to regulate
their proliferation and fate. The extracellular matrix (ECM) is a crucial
component of the SVZ microenvironment that is composed by vessel
basal lamina rich in laminin and collagen I, and other ECM molecules
such as metalloproteinases, brevican, tenascin-C, growth factors, and a
variety of proteoglycans (Kazanis et al., 2007; Kerever et al., 2007;
Kazanis et al., 2010; Kazanis et al., 2011; Mercier et al., 2002; de
Chevigny et al., 2006; Akita et al., 2008; von Holst et al., 2006;
Bandtlow et al., 2000; Novak et al., 2000). These ECMmolecules modu-
late NSC function and are determinant for basic psychological processes,
such as neuroblasts migration (Capilla-Gonzalez et al., 2015a).

3. The functions of the SVZ niche in the brain

3.1. SVZ and olfaction

In rodents, SVZ neuroblasts that reach the OB are capable of
reestablishing and re innervating the old or damaged population of
olfactory neurons (Imayoshi et al., 2008; Belvindrah et al., 2009; Lledo
et al., 2006; Petreanu et al., 2002; Lazarini et al., 2011). Consequently,
SVZ neurogenesis disruptionmay result in an impairment of the olfacto-
ry function (Lazarini et al., 2009; Capilla-Gonzalez et al., 2012; Li et al.,
2013; Sui et al., 2013). This phenomenon was observed in a study
using N-ethyl-N-nitrosourea (ENU), an environmental toxic that affects
proliferative cells. Adult mice exposed to this toxic showed a loss
of astrocyte-like NSCs, fast proliferating precursors, and neuroblasts
within the SVZ. Hence, ENU-exposure led to a decrease in the incorpo-
ration of SVZ-derived cells into the OB and subsequently impaired
odor discrimination (Capilla-Gonzalez et al., 2012). Similarly, cranial
radiation disrupts the SVZ neurogenic niche in mice and causes a
reduction in the production of new OB neurons, which alters olfactory
memory (Lazarini et al., 2009).

While the incorporation of SVZ-derived cells into the OB is
required for normal olfactory function in rodents, the role of human
neurogenesis in olfaction is uncertain (Capilla-Gonzalez et al., 2015b).
In fact, neuroblast migration toward the OB is minimal or inexistent in
the adult human brain (Sanai et al., 2004; Sanai et al., 2011; Sanai
et al., 2007; Curtis et al., 2007; Wang et al., 2011; Kam et al., 2009).
The cell turnover dynamics in the OB of the healthy human brain have
been established by measuring 14C in genomic DNA (Bergmann et al.,
2012). Results revealed that the postnatal production of new olfactory
neurons is limited in humans, but there remains a continuous turnover
of non-neuronal cells, such as oligodendrocytes (Bergmann et al., 2012),
which may be related to the maintenance of the myelin tracts for
the correct brain function (McKenzie et al., 2014). These findings
are in line with those found in aged mice, where the migration of
SVZ-derived neuroblasts into the OB is drastically decreased during
aging yet the production of oligodendroglial cells is maintained
(Capilla-Gonzalez et al., 2013). Another study in humans using 14C
dating approaches showed that new cells incorporate into the adult stri-
atum, which likely derived from the adjacent SVZ (Ernst et al., 2014).
The authors indicated that the newly generated cellsmainly correspond
to striatal interneurons and that they were absent in the striatum of
patients with Huntington's disease, a neurodegenerative disease
affecting striatal neurons (Ernst et al., 2014). Hence, apart from its
role in maintaining the myelin, the human SVZ may play a key role in
the prevention of neurodegenerative diseases, such as Huntington's
disease, rather than in OB neurogenesis.

3.2. SVZ and tissue repair

Several research groups have reported the role of the SVZ
neurogenesis in brain repair in animal models and humans
(Thompson et al., 2008; Darsalia et al., 2005; Kaneko et al., 2009;
Macas et al., 2006; Marti-Fabregas et al., 2010; Nait-Oumesmar
et al., 2007). For example, following an induced cerebral ischemia
in rodents, SVZ NSCs proliferate to produce new neuroblasts capable
of migrating into the lesion site, where they differentiate into new
neurons that replace the damaged cells (Jin et al., 2001; Liu et al.,
2013; Zhang et al., 2014). It has been shown that the brain of patients
that suffered an ischemic attack also showed an SVZ activation and new
cells expressing neuronal markers were found into the lesion site
(Macas et al., 2006; Marti-Fabregas et al., 2010; Liu et al., 2013; Jin
et al., 2006). Similarly, the rodent SVZ activates in response to an exper-
imental demyelination and newly generated cells migrate from the SVZ
into the damaged tissue, where they differentiate into myelinating
oligodendrocytes to contribute to brain repair (Capilla-Gonzalez et al.,
2014; Nait-Oumesmar et al., 2007; Gonzalez-Perez et al., 2009;
Picard-Riera et al., 2002; Jablonska et al., 2010). A similar response has
been described in the human postmortem brains of individuals with
multiple sclerosis lesions (Nait-Oumesmar et al., 2007). These SVZ re-
sponses to brain damage are in partmediated by cytokines, chemokines
and their receptors (e.g. interferon gamma, tumor necrosis factor alpha,
CXCL12/CXCR4) that are expressed from the injury site and in progeni-
tor cells. These molecules initiate different cascades of intracellular
signaling that mediate chemotactic cues to direct the migratory cells
into the injury (Capilla-Gonzalez et al., 2015a; Imitola et al., 2004;
Tran et al., 2004; Jaerve et al., 2012; Turbic et al., 2011). The SVZ role
in tissue regeneration could be more relevant for humans than for
rodents, since the OB neurogenesis is minimal in the human brain.

3.3. SVZ and tumorigenesis

Though the plasticity of the SVZ has quantifiable benefits for the
adult brain, it comes with a potential limitation. NSCs residing in the
SVZ possess remarkable similarities to brain tumor stem cells (BTSCs),
a speculative subpopulation of cells within the brain tumor. BTSCs
are likely responsible for tumor initiation and resistance to current
therapies (Galli et al., 2004; Vescovi et al., 2006; Hemmati et al., 2003;
Yan et al., 2013; Schonberg et al., 2013; Fomchenko et al., 2005;
Guerrero-Cazares et al., 2009). Both NSCs and BTSCs have similar
multi-potent and migratory capabilities, as well as share several cell
markers, such as nestin, musashi, and CD133 (Galli et al., 2004;
Hemmati et al., 2003; Quinones-Hinojosa et al., 2007; Singh et al.,
2003). These similarities suggest that NSCs may also act as brain
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tumor-initiating cells. Hypothetically, astrocyte-like NSCs transform
into BTSCs that migrate from the SVZ to other brain regions where
they contribute to tumor formation (Quinones-Hinojosa et al., 2007;
Ignatova et al., 2002; Gil-Perotin et al., 2006; Jackson et al., 2006;
Alcantara Llaguno et al., 2011) (Fig. 2). The expression of the platelet-
derived growth factor (PDGF) receptor-α in the SVZ astrocytes has
been related to their tumorigenic capacity. Following an exogenous
stimulation by PDGF infusion, the production of neuroblasts is arrested
and the proliferation of SVZ astrocytes increases, contributing to the
generation of glioma-like masses (Jackson et al., 2006; Ozawa et al.,
2010). A report using a nestin-ΔTK-IRES-GFP transgene that labels
quiescent NSCs in a mouse model, also identified a subset of SVZ cells
as a source of new cancer cells responsible for tumor growth. Interest-
ingly, the chemical depletion of this subset of cells with ganciclovir
and temozolomide impedes tumor development (Chen et al., 2012).
Recently, a report studying brain tumor patients correlated contrast-
enhancing glioblastoma recurrence with proximity to neurogenic
regions, supporting the SVZ tumorigenic potential (Chen et al., 2015).

Given that the SVZ is implicated in multiple functions, factors that
alter its germinal capacity merit evaluation. The remainder of this
review will summarize the data related to the effects of irradiating the
SVZ niche, particularly during brain tumor treatment.

4. Impact of radiation on the SVZ neurogenic niche

Radiation depletes the proliferative cells within the germinal niches
in the adult rodent brain (Capilla-Gonzalez et al., 2014; Lazarini et al.,
2009; Achanta et al., 2012; Panagiotakos et al., 2007; Fukuda et al.,
2005; Tada et al., 1999; Fike et al., 2007; Ford et al., 2011). In the SVZ,
astrocyte-like NSCs, fast proliferating precursors and neuroblasts are
the main cell populations affected by radiation, while ependymal cells
remain unaltered (Capilla-Gonzalez et al., 2014; Achanta et al., 2012)
(Fig. 3). In particular, electron microscopy studies revealed that,
30 days after SVZ local radiation, the number of NSCs was reduced,
fast proliferating precursors cells were practically non-existent, and
Fig. 2. Tumorigenic role of the SVZ niche. Schematic representation of a coronal
hemisection of the rodent brain, depicting the SVZ role on tumor formation. NSCs within
the SVZ are potent tumor-initiating cells. Hypothetically, SVZ cells are able to migrate to
other brain regions to originate a tumor mass.
neuroblasts were scarce. These effects on the proliferative populations
were further evaluated by examining the expression of Ki67, a marker
of proliferative cells, which showed a notable decrease in the irradiated
SVZ (Capilla-Gonzalez et al., 2014; Achanta et al., 2012). Additionally,
in vitro assays revealed that NSCs remaining in the irradiated SVZ lack
the ability to generate neurospheres, suggesting functional deficits in
the population of NSCs (Achanta et al., 2012). It has been described
that the impact of radiation on the NSC population leads to a decrease
of neuroblasts that migrated from the SVZ to the OB (Lazarini et al.,
2009; Achanta et al., 2012; Mandairon et al., 2003; Diaz et al., 2011).
Studies with rodents that used a local radiation of the SVZ have shown
that the expression of Doublecortin, a marker of immature neurons,
was drastically reduced in the SVZ, RMS and OB, which indicated a
disrupted neuroblasts migration towards the OB (Lazarini et al., 2009;
Achanta et al., 2012). To confirm this result, authors injected retrovi-
ruses expressing green fluorescent protein into the SVZ to label NSCs
and track the migratory pattern of newly generated neuroblasts. This
assay revealed that, a week after retroviral injections, the SVZ
neuroblasts failed to migrate through the RMS into the OB of irradiated
mouse brains (Achanta et al., 2012). The decline in neuroblastmigration
has been associated with disorders involving olfaction. In particular,
long-term olfactory memory was found to be sensitive to SVZ irradia-
tion when animals were conducted in a task to remember different
odorants after a month period (Lazarini et al., 2009).

A recent study has suggested that radiation may also compromise
the role that NSCs play in tissue regeneration (Capilla-Gonzalez et al.,
2014). In this work, authors used a mouse model that combined local
SVZ radiation with a demyelination lesion in the striatum. In line with
previous studies, authors first showed that the intact SVZ activates in
response to the brain lesion. A month after demyelination, the SVZ
increased proliferation and generated new cells that migrated into the
lesion to differentiate into premature oligodendrocytes. However,
when damage occurs in an irradiated brain, the SVZ has a less robust re-
sponse than that found in non-irradiated animals (Capilla-Gonzalez
et al., 2014). These results indicate that the ability of the SVZ to respond
to brain damage decreases after radiation, which may be detrimental
for an effective regenerative capacity. As previously mentioned, the
radiation-related effect on tissue regeneration becomes more
relevant for humans, where the role of the SVZ is correlated to the
prevention or response to brain injuries, instead of OB neurogenesis
(Bergmann et al., 2012; Ernst et al., 2014;Marti-Fabregas et al., 2010;
Nait-Oumesmar et al., 2007; van den Berge et al., 2013). In this
context, the healthspan of patients receiving radiotherapy, such as
brain tumor patients, may be compromised. This compromise may be
more evident in those patients who experience long-term survival.

It is known that radiation also alters the SVZ microenvironment.
Using a computed tomography-guided localized radiation technique,
a study demonstrated that the intact SVZ NSCs failed to migrate across
the irradiated RMS, suggesting that the microenvironment becomes
hostile for cell invasion after radiation (Achanta et al., 2012).
Furthermore, radiation disrupts microvascular angiogenesis and
induces local inflammation by increasing the number of active
microglia (Panagiotakos et al., 2007; Monje et al., 2002; Kalm et al.,
2009), which lead to an increase of pro-inflammatory cytokines,
such as IL-1 beta and TNF-alpha, that influence neural progenitor
cell function (Mizumatsu et al., 2003; Monje et al., 2003; Liu et al.,
2010; Vallieres et al., 2002). Thus, radiation effects should be consid-
ered not only in the exposed NSCs but also in the microenvironment
where these cells are immersed.

5. The use of radiation in the treatment of brain tumors: pros
and cons

The first-line of treatment for the majority of primary malignant
brain tumors is maximal safe resection followed by radiation therapy,
with or without chemotherapy, based on numerous studies that

Image of Fig. 2


Fig. 3. Radiation disrupts the SVZ neurogenic niche. (A) Schematic representations of the rodent SVZ. In a pre-radiation condition the SVZ preserves its typical cell organization. Following
radiation, the SVZ shows a notable depletion of fast proliferating precursors and neuroblasts. Some astrocytes remain after radiation and ependymal cells are not affected. (B) Electron
microscopy images of the rodent SVZ pre- and post-radiation. Scale bar 10 μm.
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demonstrate a survival benefit with the addition of radiation (Stupp
et al., 2009; Stupp et al., 2005; Roth et al., 1960; Walker et al., 1978;
Gaspar et al., 1997). Radiation therapy causes damage to the genetic
material of cells and consequently most of these cells die after
attempting mitosis (Jackson et al., 2009). This halts progression and
recurrence of tumors (Fig. 4). While modern radiation techniques
such as intensity-modulated radiation therapy allow for focused
treatment, adjacent normal structures continue to receive radiation
dose which may lead to functional impairment, such as neurocognitive
sequelae (Padovani et al., 2012; Armstrong et al., 2013; Redmond et al.,
2013; Panagiotakos et al., 2007; Blomstrand et al., 2012; Gondi et al.,
2014). The current theory is that these side effectsmay in part be related
to the radiation dose that the neurogenic niches receive. In this context,
several studies have shown that it is possible to reduce radiation dose to
the NSCs by defining them as objects at risk during radiation therapy
planning (Blomstrand et al., 2012; Gondi et al., 2014; Wan et al., 2013;
Oehler et al., 2013; Redmond et al., 2011; Barani et al., 2007; van
Kesteren et al., 2012; Gondi et al., 2010). A retrospective study of

Image of Fig. 3


Fig. 4. Radiation is a frequent tool in the treatment of brain tumor patients. (A) MRI of a
brain tumor patient before being treated. (B) MRI after brain tumor resection and four-
week post-radiation (60 Gy dose).
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pediatric patients with medulloblastoma suggested a potential benefit
of reducing radiation dose to the neurogenic niches. Specifically, the
mean dose to the hippocampus and SVZ was limited to 42.3% without
compromising the whole-brain target volume using intensity-
modulated proton therapy. The neurogenic niches sparing resulted
in a lower risk of developing neurological impairments, compared
to more aggressive therapies (Blomstrand et al., 2012). Similarly,
a phase II prospective study of patients with brain metastases dem-
onstrated that conformal avoidance of the hippocampus during
Table 1
Positive and negative effects of radiation in brain tumor

Positive effects

Radiotherapy depletes cancer cells, decreasing tumor size and halting the progression and
recurrence of tumors, which has been associated with prolonged patient survival.

Tumor outcomes may be improved with higher radiation doses to the SVZ. These studies
support the hypothesis that NSCs have tumorigenic properties.

Radiation induces modification in the tumor microenvironment that could affect the
migration of SVZ cells into the tumor, decreasing the SVZ cells-mediated tumorigenic
effect and improving patients´ outcomes.

Negative effects

Experimental models with rodents showed that radiation depletes precursor cells within
the SVZ and decreases neurogenesis in the OB, leading to olfactory deficits.

Radiation impact on the SVZ reduces its ability to respond to brain damages, such as
demyelinating injury.

Radiation impact on the neurogenic niches has been related to the developments of
cognitive deficits, such as learning and memory impairments, in rodents and humans.
whole-brain cranial radiation associates with preservation of memo-
ry and quality of life (Gondi et al., 2014). By contrast, published stud-
ies suggest that tumor outcomes in patients with high-grade gliomas
may be improved with higher radiation doses to the SVZ (Chen et al.,
2013; Gupta et al., 2012; Kast et al., 2013; Evers et al., 2010; Lee et al.,
2013a; Lee et al., 2013b). For example, a retrospective review of
patients with glioblastoma treated with radiation and temozolomide
chemotherapy demonstrated improved progression-free survival
(from 10.3 months to 15.1 months) in those patients that underwent
gross total resection and received N40 Gy to the ipsilateral SVZ, com-
pared with patients who received lower radiation doses to this area
(Chen et al., 2013). Likewise, a prospective study of hypofractionated
radiation therapy for newly diagnosed glioblastoma demonstrated im-
proved outcomes in patients that developed necrosis within the SVZ
after radiation (Iuchi et al., 2014). These studies base on the hypothesis
that the SVZ plays a role in tumorigenesis, contributing to tumor pro-
gression (Chen et al., 2015; Galli et al., 2004; Yan et al., 2013;
Quinones-Hinojosa et al., 2007; Jackson et al., 2006). In this context,
tumor microenvironment radiation could be affecting the migration of
SVZ cells into the tumor, improving patients' outcomes. Tumor cells
need to modify the ECM to invade the normal brain parenchyma.
Thesemodifications affect ECM components, such as tenascin, fibronec-
tin, laminin, vitronectin, and different types of collagen,which influence
SVZ cells by attracting them into the tumor (Capilla-Gonzalez et al.,
2015a; Ziu et al., 2006). However, after irradiating the tumor microen-
vironment, the incorporation of SVZ-derived cells into the tumor area
could be modified, decreasing the SVZ cells-mediated tumorigenic
effect. Prospective studies will be critical in further understanding
the seemingly contradictory data regarding radiation dose to the SVZ,
References

Roth and Elvidge, Journal of Neurosurgery 1960 (Roth et al., 1960)
Walker et al., Journal of Neurosurgery 1978 (Walker et al., 1978)
Gaspar et al., Int J Radiat Oncol Biol Phys. 1997 (Gaspar et al., 1997)
Stupp et al. The New England Journal of Medicine 2005 (Stupp et al., 2005)
Jackson and Bartek, Nature 2009
Stupp et al., The Lancet Oncology 2009 (Stupp et al., 2009)
Evers et al., BMC Cancer 2010 (Evers et al., 2010)
Gupta et al., Journal of Neuro-oncology 2012 (Gupta et al., 2012)
Chen et al., Int J Radiat Oncol Biol Phys. 2013(Chen et al., 2013)
Kast et al., J Neurooncol 2013 (Kast et al., 2013)
Lee et al., Int J Radiat Oncol Biol Phys. 2013 (Lee et al., 2013b)
Galli et al., Cancer Research 2004 (Galli et al., 2004)
Jackson et al., Neuron 2006 (Jackson et al., 2006)
Quinones-Hinojosa and Chaichana, Experimental Neurology 2007
(Quinones-Hinojosa et al., 2007)
Yan et al., Curr Opin Neurol 2013 (Yan et al., 2013)
Ziu et al., J Neurooncol 2006 (Ziu et al., 2006)

References

Balentova et al., Acta Histochem 2013 (Balentova et al., 2013)
Lazarini et al., PloS One 2009 (Lazarini et al., 2009)
Achanta et al., Stem Cells 2012 (Achanta et al., 2012)
Capilla-Gonzalez et al., Stem Cells 2014 (Capilla-Gonzalez et al., 2014)

Tada et al., Neuroscience 2000 (Tada et al., 2000)
Monje et al., Nature medicine 2002 (Monje et al., 2002)
Raber et al., Radiation Research 2004 (Raber et al., 2004)
Monje, Developmental Disabilities Research Reviews 2008 (Monje, 2008)
Achanta et al., Behavioral Neuroscience 2009 (Achanta et al., 2009)
Calabrese and Schlegel, Recent Results Cancer Res 2009 (Calabrese et al., 2009)
Marazziti et al., Current Medicinal Chemistry 2012 (Marazziti et al., 2012)
Padovani et al., Nat Rev Neurol 2012 (Padovani et al., 2012)
Armstrong et al., J Natl Cancer Inst 2013 (Armstrong et al., 2013)
Redmond et al., Neuro Oncol 2013 (Redmond et al., 2013)
Sato et al., Cell Death & Disease 2013 (Sato et al., 2013)

Image of Fig. 4


393V. Capilla-Gonzalez et al. / Stem Cell Research 16 (2016) 387–396
toxicity, and tumor outcomes (Table 1). At present, two clinical
trials are being conducted, in which the radiation treatment plan is
modified to deliver higher radiation doses to the NSC compartments
(ClinicalTrials.gov Identifiers: NCT02177578, NCT02039778). Another
clinical trial, which has completed patient recruitment, aims to
establish a relationship between stem cells sparing radiation and
an improvement of neurocognitive outcomes in glioblastoma patients
(ClinicalTrials.gov Identifiers: NCT01478854). These studies will help
determine whether stem cell radiation therapy improves progression-
free survival and other outcomes of patients with brain tumor or
whether radiation definitively presents a toxic effect.
6. Preventing radiation-induced injury to the neurogenic niche

During the last decades, radiotherapy has significantly increased life
expectancy in brain tumor patients. Unfortunately, radiation side effects
are known to compromise health of long-term survivors, which raises
the urgent need to develop effective strategies to prevent radiation-
related effects and promote healthy cancer-free life. In this context,
there is a constant effort to find innovative ways to prevent damage to
the NSC compartments.

Among the many methods to limit injury to the neurogenic niches,
fractionated radiotherapy is the first-line technique. Researchers have
shown that dividing radiation into multiple smaller doses, results in a
more effective depletion of cancer cells, while negative effects of radia-
tion in neighboring normal healthy tissues are minimized (Marsh et al.,
2010; Attia et al., 2014). A longitudinal study that assessed 65 patients
with low-grade glioma, at a mean of 12 years after radiotherapy,
found that the cognitive deficits among patients with fractioned doses
were less severe than in patients who received conventional radiother-
apy (Douw et al., 2009). Another radiotherapy technique that is in cur-
rent use is conformal radiotherapy (Fike et al., 2007; Mizumatsu et al.,
2003; Liu et al., 2010; Vallieres et al., 2002). This type of radiation limits
the target area very precisely in 3 dimensions, delivering high doses of
radiation to the tumor, while sparing the surrounding tissues.

Aside from radiotherapeutic methods, drug-based therapies have
been used to ameliorate radiation-induced injury. In this context, the
anti-inflammatory agents ramipril and pioglitazone are associated
with mitigation of radiation effects on the neurogenic niches (Brown
et al., 2005; Zhao et al., 2007; Jenrow et al., 2010; Kim et al., 2004).
Continuous administration of ramipril, initiated 12-hours post-whole
brain irradiation and maintained for 12 weeks, produced a reduction
in the deleterious effects of radiation on neurogenesis in the rat dentate
gyrus, recovering proliferation and neuronal differentiation capacities
(Jenrow et al., 2010). Furthermore, combination of ramipril and atorva-
statin enhanced these mitigating effects (Jenrow et al., 2011). A differ-
ent study showed that dietary administration of pioglitazone before,
during, and after completion of fractionated whole brain irradiation to
young adult rats, significantly prevent the radiation-induced cognitive
impairment (Zhao et al., 2007).

Stem cell therapies constitute a novel alternative to prevent
radiation-induced brain injury. Animal studies have demonstrated
promising results using a combination of NSCs transplantwith radiation
(Joo et al., 2012; Acharya et al., 2011; Acharya et al., 2015; Piao et al.,
2015). Joo et al. described the benefits of supplementing whole-brain
irradiated mice with fetal mouse NSCs, which were injected via tail
vein 24 hours after radiation. The irradiated brain induced homing of
the exogenous NSCs, which differentiated along glial and neuronal line-
ages. Two months after NSC administration, mice showed inhibited
radiation-induced hippocampus atrophy and preserved short-term
memory (Joo et al., 2012). Similarly, the use of human embryonic
NSCs has shown to ameliorate radiation-induced cognitive dysfunction
up to 4 months after irradiation, when they were transplanted into the
rat hippocampus (Acharya et al., 2011), as well as to remyelinate the
irradiated brain (Piao et al., 2015).
Metabolic therapy has become trendy in attenuating the side
effects of glioma treatment (Schwartz et al., 2015; Zuccoli et al.,
2010; Seyfried et al., 2015). This type of therapy is designed to
disrupt tumor microenvironment, while enhancing the health and
vitality of normal cells. It has been demonstrated that high-dose radi-
ation creates a microenvironment rich in glucose and glutamine, which
may contribute to tumor recurrence as they are required for rapid
tumor growth (Seyfried et al., 2015; Szerlip et al., 2011; Derr et al.,
2009; Abbadi et al., 2014). In this context, a restricted dietwill help low-
ering glucose availability in the tumor microenvironment. A case series
report in patients receiving chemotherapy suggested that fasting has
the potential to ameliorate side effects caused by this mode of cancer
treatment (Safdie et al., 2009). Studies indicate that fasting has the po-
tential to maximize the differential toxicity of chemotherapy to normal
and cancer cells in vitro (Raffaghello et al., 2008), while slows progres-
sion of a variety of tumors in vivo, allowing long-term cancer-free sur-
vival (Lee et al., 2012). Furthermore, calorie restricted ketogenic diet
presented anti-angiogenic, anti-inflammatory, and pro-apoptotic ef-
fects in experimental mouse and human brain tumors (Seyfried et al.,
2015; Zhou et al., 2007). Studies in rodents demonstrated that survivors
of acute ionizing radiation damage ameliorated life shortening if they
were fed a diet based on non-essential antioxidant and chemopreven-
tion mixture (Epperly et al., 2011). The use of inhibitors of nitric oxide
synthase, such as T1023, has also been related to the prevention of ra-
diotherapy complications. T1023 was found to selectively protect the
non-malignant tissue during radiation therapy in a sarcoma rat model
(Filimonova et al., 2015). Therefore, metabolic therapy could be used
as a tool to avoid radiation effects not only in the NSCs, but in all normal
cells.

Based on the SVZ microenvironment alterations that have been
described after radiation, i.e., inflammation, revascularization, ECM
modifications, and fibrosis among others, there are numerous potential
targets in the tumormicroenvironment that could be used to ameliorate
the adverse effects associated with radiation (Barker et al., 2015). Many
microenvironmental therapies are being developed to be given alone
or in combination with radiotherapy, showing promising results
preventing tumor progression and recurrence. For example, SD-208,
an inhibitor of the transforming growth factor beta-receptor 1, reduces
tumor growth and fibrosis (Medicherla et al., 2007; Uhl et al., 2004).
Acriflavine is a drug used to inhibit the hypoxia-inducible factor
1-alpha (HIF1α), a factor that is upregulated during hypoxia, reducing
tumor growth and vascularization (Lee et al., 2009). However, these
microenvironmental therapies have so far not been tested for their
ability to reduce radiotherapy-related adverse effects.

Themulti-directional efforts that are beingmade in order to alleviate
the disadvantages of radiotherapy give optimism to patients suffering
from brain tumor. Furthermore, lately, nonradiation-based therapies
have significantly improved, such as anti-tumor immunotherapy
(Mitchell et al., 2015; Everson et al., 2015), providing new alternatives
for fighting this devastating disease.
7. Concluding remarks and future directions

The detrimental effects of radiation on the NSC niche have been
demonstrated over the last years. Animal studies have shown that
both the proliferative and migratory capacities of neural precursor
cells are deeply disrupted following radiation, leading to functional im-
pairments. For instance, olfaction and memory are altered by radiation,
as well as the endogenous capacity of the brain to respond to subse-
quent damages. Similarly, studies in patients with brain tumor have
suggested a potential risk of develop neurocognitive sequelae when
the NSC compartments are irradiated during radiotherapy. In contrast,
studies focused on the SVZ of patients that received radiotherapy indi-
cate that tumor outcomes may be improved with increased radiation
doses to this neurogenic area.

http://ClinicalTrials.gov
http://ClinicalTrials.gov
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The dichotomy of radiation effects could be due to the fact that
tumors have a complex biology. Some of these tumors may transition
from being localized to being invasive, but the time when this occurs
remains unknown. Consequently, radiotherapy is given to the patients
at different times, doses, and areas, which may result in a different
tumor outcome. The heterogeneous pathological conditions in cancer,
and particularly brain cancer, among patients call for the development
of a personalized medicine to successfully treat brain tumors.
Understanding the biology of brain tumors and determining the
subcategory of each specific tumor will likely help us to decide
which patients would benefit from including the SVZ in the radiation
protocol and at which time. Future studies in this matter will be
critical in gaining an improved understanding of the use of radiation
to maximize not only patient survival but also their healthspan
after treatment.
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