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Abstract

The stability and ergodicity properties of two adaptive random walk Metropolis algorithms are
considered. Both algorithms adjust the scaling of the proposal distribution continuously based on the
observed acceptance probability. Unlike the previously proposed forms of the algorithms, the adapted
scaling parameter is not constrained within a predefined compact interval. The first algorithm is based
on scale adaptation only, while the second one also incorporates covariance adaptation. A strong law of
large numbers is shown to hold assuming that the target density is smooth enough and has either compact
support or super-exponentially decaying tails.
c⃝ 2011 Elsevier B.V. All rights reserved.
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1. Introduction

Markov chain Monte Carlo (MCMC) is a general method often used to approximate integrals
of the type

I :=

∫
Rd

f (x)π(x)dx < ∞
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where π is a probability density function (see, e.g., [9,15,18]). The method is based on a
Markov chain (Xn)n≥1 that can be simulated in practice, and for which the ergodic averages
In := n−1∑n

k=1 f (Xk) converge to the integral I as n → ∞. Such a chain can be constructed,
for example, as follows. Assume q is a standard Gaussian probability density in Rd , and let
X1 ≡ x1 for some fixed point x1 ∈ Rd . For n ≥ 2, recursively,

(S1) set Yn := Xn−1 + θΣ 1/2Wn , where Wn are independent random vectors distributed
according to q , and

(S2) with probability αn := min{1, π(Yn)/π(Xn−1)} the proposal is accepted and Xn = Yn ;
otherwise the proposal is rejected and Xn = Xn−1.

For any scale θ > 0 and symmetric positive definite (covariance) matrix Σ ∈ Rd×d this
symmetric random walk Metropolis algorithm is valid: In → I almost surely as n → ∞ (e.g.
[14, Theorem 1]). However, the efficiency of the method, that is, the speed at which In converges
to I , is crucially affected by the choice of θ and Σ . Suppose for a moment that the matrix Σ
is fixed, and we only vary θ > 0. Then, for too large θ , few proposals become accepted and
the chain mixes poorly. If θ is too small, most of the proposals Yn become accepted, but the
steps Xn − Xn−1 are small, preventing good mixing. In fact, previous results indicate that the
acceptance probability is closely related with the efficiency of the algorithm. Commonly used
‘rule of thumb’ is that the acceptance probability αn should be on the average about 0.234 even
though this choice is not always optimal [7,16,17,22]. In practice, such a θ is usually found by
several trial runs, which can be laborious and time-consuming.

So called adaptive MCMC algorithms have gained popularity since the seminal work of
Haario et al. [11]. Several other such algorithms have been proposed after Andrieu and Robert [3]
noticed the connection between Robbins–Monro stochastic approximation and adaptive MCMC
[1,4,6,19,20]. The adaptive scaling Metropolis (ASM) algorithm optimises the scaling θ > 0 of
the proposal distribution adaptively, based on the observed acceptance probability. Namely, in
step (S1) of the above algorithm, the constant θ is replaced, for example, with θn−1 := eSn−1

where (Sn)n≥1 are random variables with S1 ≡ s1 ∈ R and for n ≥ 2 defined recursively as
follows

(S3) Sn = Sn−1 + ηn(αn − α∗)

where the parameter α∗ determines the desired mean acceptance probability, often 0.234, and
(ηn)n≥2 is a sequence of positive adaptation step sizes decaying to zero.

A similar random walk Metropolis algorithm with adaptive scaling was actually proposed over
a decade ago by Gilks et al. [10]. Their approach differed from the ASM approach so that the
adaptation was performed only at particular regeneration times, which may occur infrequently or
may be difficult to identify in practice. The ASM algorithm presented above has been proposed
earlier by several authors [3,6,20], with a slightly different update formula (S3). The exact form
of (S3) was used by Andrieu and Thoms [4] and Atchadé and Fort [5]. The crucial difference
of the present paper compared to the earlier works is that the algorithm does not involve any
additional constraints on θn . This difference is chiefly a theoretical advance, as discussed below.
Therefore, no empirical studies of the performance of the algorithms are included in the paper.

Since the ASM algorithm only adapts the scale of the proposal distribution, it is likely to be
inefficient in certain situations. For example, if π is high-dimensional and possesses a strong
correlation structure and Σ does not match this structure, the ASM approach is likely to be
suboptimal. In such a situation, one can employ the Adaptive Metropolis (AM) algorithm [11]
to adapt the covariance shape with the scaling adaptation [4,5]. That is, in addition to using



M. Vihola / Stochastic Processes and their Applications 121 (2011) 2839–2860 2841

random θn−1 in (S1), one also uses a random matrix Σn−1 instead of a fixed Σ . Namely, Σn is a
covariance estimator based on X1, . . . , Xn ; the details can be found in Section 2. This algorithm
will be referred here to as the adaptive scaling within AM (ASWAM).

It is not obvious that adaptive algorithms like the ASM and the ASWAM are valid, that is,
In → I . In fact, there are examples of continuously adapting MCMC schemes that destroy the
correct ergodic1 properties [19]. Many ergodicity results on adaptive MCMC algorithms in the
literature assume some ‘uniform’ behaviour for all the possible MCMC kernels [5,6,19]. In the
context of the adaptive scaling framework, this essentially means that θn must be constrained to
a predefined set [a, b] with some 0 < a ≤ b < ∞. Recent findings of Saksman and Vihola
[21] allow one also to prove the ergodicity in a non-uniform case; Fort et al. [8] elaborate this
approach in a much more general setting. In order to employ these results, one would typically
enforce θn ∈ [an, bn] where the sequences an ↘ 0 and bn ↗ ∞ with a certain rate. Alternatively,
one can use a general reprojection technique due to Andrieu and Moulines [1] on the sets [an, bn]

without the rate assumption on an and bn but with the cost of possible ‘restarts’ of the process. It
is also possible to modify the adaptation rule to ensure stable behaviour [4]. Such constraints and
stabilisation structures are theoretically convenient, but may pose a problem for a practitioner.
Good values for the constraint parameters may be difficult to choose without prior knowledge
of the target distribution π . In the worst case, the values are chosen inappropriately and the
algorithm is rendered useless in practice.

It is a common belief that many of the proposed adaptive MCMC algorithms are inherently
stable and thereby do not require additional constraints or stabilisation structures. Indeed, there
is considerable empirical evidence of the stability of several unconstrained algorithms, including
the adaptive scaling approach. There are yet only few theoretical results, especially Saksman and
Vihola [21] verifying the correct ergodic properties and the stability of the AM algorithm [11],
provided the target distribution π has super-exponentially decaying tails with regular contours.
These assumptions on π are close to those that ensure the geometric ergodicity of a non-adaptive
random walk Metropolis algorithm [13]. The result in [21] does not assume an upper bound,
but requires an explicit lower bound for the adapted covariance parameter.2 In the context of the
scaling adaptation, the lower bound is analogous to constraining θn to the interval [a, ∞), where
a > 0.

The main results of this paper, formulated in the next section, show that the stability and
ergodicity of the ASM algorithm can be verified under similar assumptions on the target
distribution as in [21], without any modifications or constraints on the adaptation parameter θn ∈

(0, ∞). These are the first results that validate the correctness of a completely unconstrained,
fully adaptive MCMC algorithm. A similar result applies for the ASWAM approach, given that
stability is enforced on the covariance parameter Σn by bounding the eigenvalues away from zero
and infinity.

2. Main results

The scaling adaptation introduced in Section 1 can be generalised by considering a function
φ mapping real-valued parameter values Sn to a scaling in (0, ∞).

1 In the present work, the word ‘ergodicity’ refers to the convergence of ergodic averages In to I , unlike Roberts and
Rosenthal [19] who define ‘ergodic’ by the convergence of the marginal distributions of Xn to π in the total variation
sense.

2 The recent work [23] gives partial stability results of the AM also without the lower bound.
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Assumption 1. The scaling function φ : R → (0, ∞) is increasing and surjective, piecewise
differentiable and there are constants h, c > 0 and κ ≥ 1 such that

φ′(s + h̄) ≤ c max{1, φκ(s)}

for all s ∈ R and all 0 ≤ h̄ ≤ h.

The function φ(s) = es was suggested above, but Assumption 1 allows one to use also, for
example, piecewise polynomially defined φ. For example, defining φ(x) = x whenever x is
greater than some x0 > 0 and continuing φ appropriately for x < x0 gives an algorithm in the
spirit of Atchadé and Rosenthal [6].

The results hold also for other than a Gaussian proposal, as long as the proposal density is
spherically symmetric and satisfies a certain tail behaviour.

Assumption 2. The proposal density q can be written as q(z) = q̂(‖z‖) where q̂ : [0, ∞) →

(0, ∞) is a bounded, decreasing and differentiable function. Moreover, for any ξ ∈ (0, 1) there
exist an ϵ∗ > 0, constants 0 ≤ a < b < ∞ and c1, c2, c3 > 0 such that for all ϵ ∈ [0, ϵ∗

], the
following bounds hold for the derivative of q̂

ξ q̂ ′(x) − q̂ ′(x + ϵ) ≥ c1, for all a ≤ x ≤ b,∫
∞

0
min{0, ξ q̂ ′(x) − q̂ ′(x + ϵ)}dx ≥ −c2e−c3ϵ

−1
.

Proposition 27 in Appendix B shows that Assumption 2 holds for Gaussian and Student
distributions q.

We also need certain conditions for the adaptation step size sequence (ηn)n≥2.

Assumption 3. The sequence (ηn)n≥2 is non-negative,
∑

∞

n=2 ηn = ∞ and
∑

∞

n=2 η2
n < ∞.

Assumption 3 is classical in the context of stochastic approximation. A typical choice for the
step size sequence satisfying Assumption 3 is ηn ∝ n−γ with some constant γ ∈ (1/2, 1].

We are now ready to define the adaptive scaling Metropolis (ASM) and the adaptive scaling
within adaptive Metropolis (ASWAM) algorithms.

Definition 4 (ASM). Suppose that the matrix Σ ∈ Rd×d is symmetric and positive definite,
φ satisfies Assumption 1, q satisfies Assumption 2 and (ηn)n≥2 satisfies Assumption 3. Let
{Un, Wn}n≥2 be a set of independent random variables where each Un is uniformly distributed in
the unit interval [0, 1] and each Wn has the distribution q for all n ≥ 2. Let X1 ≡ x1 ∈ Rd with
π(x1) > 0 and S1 ≡ s1 ∈ R, and for n ≥ 2 define recursively

Yn = Xn−1 + φ(Sn−1)Σ 1/2Wn (1)

Xn =


Yn, if Un ≤ αn
Xn−1, otherwise

(2)

Sn = Sn−1 + ηn(αn − α∗), (3)

where αn := min{1, π(Yn)/π(Xn−1)} stands for the acceptance probability.

Definition 5 (ASWAM). Assume the setting of the ASM algorithm in 4, but instead of (1) use

Yn = Xn−1 + φ(Sn−1)Σ
1/2
n−1Wn . (4)
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The covariance process (Σn)n≥1 is determined as follows: let µ1 ≡ x1 ∈ Rd , suppose Σ1 ∈ Rd×d

is a symmetric and positive definite matrix and

µ̂n = (1 − ηn)µn−1 + ηn Xn (5)

Σ̂n = (1 − ηn)Σn−1 + ηn(Xn − µn−1)(Xn − µn−1)
T (6)

(µn,Σn) =


(µ̂n, Σ̂n), if (µ̂n, Σ̂n) ∈ Sζ and
(µn−1,Σn−1), otherwise,

(7)

where the truncation set is defined as Sζ = {(µ,Σ ) : ‖µ‖ ≤ ζ, λ(Σ ) ⊂ [ζ−1, ζ ]} with λ(Σ )

being the set of the eigenvalues of Σ and ζ ∈ [1, ∞) is a constant parameter.

The step (7) enforces the stability of the covariance adaptation process, while the scaling
parameter Sn follows Eq. (3).

Before stating the first ergodicity result, consider the following condition on the regularity of
a collection of sets. Before that, recall that a C1 domain in Rd is a domain whose boundary is
locally a graph of a continuously differentiable function.

Definition 6. Suppose that {Ai }i∈I is a collection of sets Ai ⊂ Rd each consisting of finitely
many disjoint components that are closures of C1 domains. Let ni (x) stand for the outer-pointing
normal at x in the boundary ∂ Ai . Then, {Ai }i∈I have uniformly continuous normals if for all
ϵ > 0 there is a δ > 0 such that for any i ∈ I it holds that ‖ni (x)−ni (y)‖ ≤ ϵ for all x, y ∈ ∂ Ai
such that ‖x − y‖ ≤ δ.

Definition 6 essentially states that the boundaries ∂ Ai must be regular enough to ensure that if
one looks at any ∂ Ai at a sufficiently small scale, it will look locally almost like a plane.

Theorem 7. Assume π has a compact support X ⊂ Rd and π is continuous and bounded away
from zero on X. Moreover, assume that X has a uniformly continuous normal (Definition 6) and
α∗

∈ (0, 1
2 ). Then, for either the ASM or the ASWAM process and for any bounded function f ,

the strong law of large numbers holds that is,

1
n

n−
k=1

f (Xk)
n→∞
−−−→

∫
Rd

f (x)π(x)dx almost surely. (8)

The proof of Theorem 7 is given in Section 5.
Let us consider next target distributions π with unbounded supports, satisfying the following

conditions formulated in [21].

Assumption 8. The density π is bounded, bounded away from zero on compact sets,
differentiable, and

lim
r→∞

sup
‖x‖≥r

x

‖x‖ρ
· ∇ log π(x) = −∞ (9)

for some constant ρ > 1, where ‖ · ‖ stands for the Euclidean norm. Moreover, the contour
normals satisfy

lim
r→∞

sup
‖x‖≥r

x

‖x‖
·

∇π(x)

‖∇π(x)‖
< 0. (10)

This assumption is very near to the conditions introduced by Jarner and Hansen [13] to ensure
the geometric ergodicity of a (non-adaptive) Metropolis algorithm, and considered by Andrieu



2844 M. Vihola / Stochastic Processes and their Applications 121 (2011) 2839–2860

and Moulines [1] in the context of adaptive MCMC. In particular, [1,13] assume that π fulfils the
contour regularity condition (10). Instead of (9), they assume a super-exponential decay on π ,

lim
r→∞

sup
‖x‖≥r

x

‖x‖
· ∇ log π(x) = −∞

which is only slightly more general than (9) allowing ρ = 1. See [13] for examples and
discussion on these conditions.

Theorem 9. Suppose α∗
∈ (0, 1

2 ), π fulfils Assumption 8 and there is a t0 > 0 such that
the collection of contour sets {x ∈ Rd

: π(x) ≥ t}0<t≤t0 have uniformly continuous
normals (Definition 6). Assume that there exist constants c < ∞ and p ∈ (0, 1) such that
| f (x)| ≤ cπ−p(x) for all x ∈ Rd . Then, for the ASM and the ASWAM processes, the strong law
of large numbers (8) holds.

The proof of Theorem 9 is given in Section 5.

Remark 10. For many practical target densities satisfying Assumption 8 the tail contours are
(essentially) scaled copies of each other, in which case they have automatically uniformly
continuous normals. This indicates that the conditions of Theorem 9 are practically similar to
[21, Theorem 10] verifying the ergodicity of the Adaptive Metropolis algorithm.

Remark 11. The ‘safe’ values for the desired acceptance rate stipulated by Theorems 7 and 9
are α∗

∈ (0, 1/2). The values [1/2, 1) are excluded due to technical reasons, in particular due
to Proposition 17 establishing the lower bound for φ(Sn). It is expected that Theorems 7 and 9
hold assuming only α∗

∈ (0, 1), but this cannot be verified with the present approach. The range
α∗

∈ (0, 1/2) is, however, often sufficient in practice, as the most commonly used values for a
random walk Metropolis algorithm are probably α∗

= 0.234 and α∗
= 0.44, and it has been

suggested that values α∗
∈ [0.1, 0.4] should work well in most cases [7,16,17,20].

Remark 12. The conditions on the proposal density in Assumption 2 are not optimal. The
technical tail decay condition on q̂ is needed in the case of π with an unbounded support in
Theorem 9. Theorem 7 considering compactly supported π can be established for a more general
class of proposal distributions, but this is not pursued here.

Remark 13. Theorems 7 and 9 ensure that the trajectories of the ergodic averages converge
almost surely but do not state explicit results on the convergence of the marginal distributions
of Xn . The marginal convergence (in the total variation sense) could be established using the
stability results in Section 4 and the recent work of Fort et al. [8].

The rest of the article is organised as follows. Section 3 describes a general framework for
scale adaptation covering simultaneously both the ASM and the ASWAM algorithms. Section 4
develops stability results for this process. In particular, Corollary 19 ensures the stability of the
sequence φ(Sn) with the assumptions of Theorem 7, and Proposition 20 controls the growth
of φ(Sn) when π fulfils the conditions of Theorem 9. Once the stability results are obtained,
Theorems 7 and 9 are proved in Section 5 using the results in [21].

3. Framework and notation

Consider a process (Xn,Γn)n≥1 evolving in the measurable space X×G, where the support of
the target density X := {x ∈ Rd

: π(x) > 0} is the space of the ‘MCMC’ chain (Xn)n≥1, and the
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adaptation parameters (Γn)n≥1 = (Sn, µn,Σn)n≥1 evolve in G = R×Sζ ; the scaling parameters
(Sn)n≥1 are real-valued and the covariance adaptation process (µn,Σn)n≥1 takes values on the
space Sζ ⊂ Rd

× Cζ with

Cζ := {Σ ∈ Rd×d
: Σ is symmetric and λ(Σ ) ⊂ [ζ−1, ζ ]}

and where λ(Σ ) stands for the set of eigenvalues of Σ . By this definition, we may define
Sζ = {(µ,Σ )} in the case of the ASM whence Σn = Σ and µn = µ for all n ≥ 1 and for
the ASWAM, (µn,Σn) is determined through (5)–(7). We need the specific form of adaptation
of (µn,Σn) only in Section 5. For the stability results in Section 4 it is sufficient that Σn ∈ Cζ .

Denote Fn := σ(Wn, Un : 1 ≤ k ≤ n) so that (Fn)n≥1 is a filtration and also each Γn is
Fn-adapted. With these definitions, we may write

Yn+1 | Fn ∼ qΓn (Xn, ·) (11)

Xn+1 = Yn+11{Un+1≤αn+1} + Xn1{Un+1>αn+1} (12)

Sn+1 = Sn + ηn+1 H(Xn, Yn+1) (13)

where 1A stands for the indicator function of a set A and H(x, y) := α(x, y) − α∗ with
α(x, y) := min{1,

π(y)
π(x)

}. Moreover, for γ = (s, µ,Σ ) ∈ G the proposal density is defined
as

qγ (z) = q(s,Σ )(z) = [φ(s)]−d det(Σ )−1/2q([φ(s)]−1Σ−1/2z). (14)

Note that the form (13) of adaptation can be considered as the Robbins–Monro stochastic
approximation; see [1–3] and references therein.

We will need the notion of expected acceptance rate at x ∈ X with parameter γ ∈ G as

acc(x, γ ) :=

∫
X

α(x, y)qγ (x − y)dy.

On average, the adaptation rule decreases Sn whenever acc(Xn,Γn) < α∗, and vice versa. So, it
is plausible to expect that the algorithm would eventually result in Γn → γ ∗

∈ G such that
the overall expected acceptance rate


X acc(x, γ )π(x)dx = α∗. In this paper, however, the

convergence of Γn is not the main concern, but the stability of it, as it turns out to be crucial
for the validity of the algorithms considered.

The Metropolis transition kernel with a proposal density qγ is given as

Pγ (x, A) := 1A(x)

∫
Rd

[1 − α(x, y)]qγ (x − y)dy +

∫
A

α(x, y)qγ (x − y)dy. (15)

Using the kernels Pγ , one can write (11) and (12) as P(Xn+1 ∈ A | Fn) = PΓn (Xn, A). As
usual, integration of a function f with respect to a transition kernel is denoted as

Pγ f (x) :=

∫
X

f (y)Pγ (x, dy).

Let V ≥ 1 be a function. The V -norm of a function f is defined as

‖ f ‖V := sup
x

| f (x)|

V (x)
.
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The closed ball in Rd is written as B(x, r) := {y ∈ Rd
: ‖x − y‖ ≤ r}, and the distance of a

point x ∈ Rd from the set A ⊂ Rd is denoted as d(x, A) := inf{‖x − y‖ : y ∈ A}.

4. Stability

This section develops stability results for the general adaptive scaling process of Section 3. We
start with a general stability theorem based on a martingale argument. This theorem is auxiliary
for the present paper, but may have applications also in other settings.

Theorem 14. Suppose (Fn)n≥1 is a filtration, (ηn)n≥2 are non-negative constants such that∑
η2

n < ∞ and Hn are Fn-adapted random variables satisfying lim supn→∞ ηn Hn ≤ 0 and

∞−
n=2

η2
n(E[H2

n | Fn−1] − E[Hn | Fn−1]
2) < ∞. (16)

Let S1 ≡ s1 ∈ R, and define Sn+1 := Sn + ηn+1 Hn+1 recursively for all n ≥ 1.

(i) If there is a constant a < ∞ such that for all n ≥ 1

E[Hn+11{Sn≥a} | Fn] ≤ 0,

then lim supn→∞ Sn < ∞ a.s.
(ii) If also

∑
ηn = ∞ and there is a non-decreasing sequence of Fn-adapted random variables

(An)n≥1 ⊂ R and a constant b < 0 such that for all n ≥ 1

E[Hn+11{Sn≥An} | Fn] ≤ b1{Sn≥An},

then lim supn→∞(Sn − An) ≤ 0 a.s.

Proof. Let Wn := Hn1{Sn−1≥a} for n ≥ 2, and define the martingale (Mn, Fn)n≥1 by setting
M1 := 0, and Mn :=

∑n
k=2 dMk for n ≥ 2 with the differences dMn := ηn(Wn −E[Wn | Fn−1]).

Now,
∞−

k=2

E[dM2
k | Fk−1] =

∞−
k=2

η2
k (E[H2

n | Fn−1] − E[Hn | Fn−1]
2)1{Sn−1≥a} < ∞

by assumption. This implies that almost every path of Mn converges to a finite limit M∞ (e.g.
[12, Theorem 2.15]).

Let (τk)k≥1 be the exit times of Sn from (−∞, a), defined as τk := inf{n > τk−1 : Sn ≥

a, Sn−1 < a} using the conventions τ0 = 0, S0 < a, and inf ∅ = ∞. Define also the latest exit
from (−∞, a) until time n by σn := sup{τk : k ≥ 1, τk ≤ n}. Whenever Sn ≥ a, one can write
Sn = Sσn + (Mn − Mσn ) + Zσn ,n where

Zm,n :=

n−
k=m+1

ηkE[Wk | Fk−1] ≤ 0

by assumption. In this case,

Sn ≤ Sσn + (Mn − Mσn ) ≤ max{S1, a} + ησn Hσn + |Mn| + |Mσn |

≤ max{S1, a} + sup
k≥1

ηk Hk + 2 sup
k≥1

|Mk | ≤ C (17)

where C is a.s. finite. If Sn < a the claim is trivial and (i) holds.
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Assume then (ii). If Sn < An for all n greater than some N1(ω) < ∞, the claim is trivial.
Suppose then that Sn ≥ An infinitely often. Define (τk)k≥1 as the exit times of Sn from (−∞, An)

as above, τk := inf{n > τk−1 : Sn ≥ An, Sn−1 < An−1} with τ0 ≡ 0 and S0 < A0. The times
τk must be a.s. finite in this case (and Sn returns to (−∞, An) infinitely often), for suppose the
contrary: then the last exit times σn are bounded by some σn ≤ σ < ∞, and for n ≥ σ one may
write

Sn = Sσ + (Mn − Mσ ) + Zσ,n ≤ Cσ + Zσ,n

where Mn and Zn,m are defined as above, but using the random variables Wn := Hn1{Sn−1≥An−1},
and the random variable Cσ is a.s. finite as in (17). Now, Zσ,n → −∞ a.s. as n → ∞, so
Sn < An a.s. for sufficiently large n.

Consider then the case (τk)k≥1 are all finite and Mn converges to a finite M∞. Fix an ϵ > 0
and let N0 = N0(ω, ϵ) be such that for all n ≥ N0, it holds that ησn Hσn ≤ ϵ/3 and that
|Mk − M∞| ≤ ϵ/3 a.s. for all k ≥ σn . The claim follows from the estimate

Sn ≤ Sσn + (Mn − Mσn ) = Sσn−1 + ησn Hσn + (Mn − Mσn )

≤ Aσn + ϵ/3 + |Mn − M∞| + |M∞ − Mσn | ≤ An + ϵ

for all n ≥ N0. �

Hereafter, we shall consider the adaptive scaling process described in Section 3. One can give
simple conditions under which the result of Theorem 14 applies, since

E[H(Xn, Yn+1) | Fn] = acc(Xn,Γn) − α∗,

so by the boundedness of H it is sufficient to find out when acc(x, γ ) is below or above α∗.

Lemma 15. Suppose q satisfies Assumption 2 and q(s,Σ ) is defined through (14). Then, there
exists a constant c̄ < ∞ such that

sup
z∈Rd ,Σ∈Cζ

q(s,Σ )(z) ≤ c̄[φ(s)]−d for all s ∈ R. (18)

Moreover, for any ϵ > 0 there exist M < ∞ such that for all s ∈ R and any plane P ⊂ Rd

inf
Σ∈Cζ

∫
B(0,φ(s)M)

q(s,Σ )(z)dz ≥ 1 − ϵ (19)

sup
Σ∈Cζ

∫
{d(z,P)≤φ(s)M−1}

q(s,Σ )(z)dz ≤ ϵ. (20)

The proof of Lemma 15 is straightforward; the details are given in Appendix A.
Let us then record a simple estimate on the expected acceptance rate when π is compact and

Sn is large.

Proposition 16. Suppose q satisfies Assumption 2 and π is supported on a compact set X ⊂ Rd

and α∗ > 0. Then, there is b < 0 and a ∈ R such that

E[H(Xn, Yn+1) | Fn] ≤ b whenever Sn ≥ a. (21)
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Proof. Compute for any x ∈ X and all γ = (s, µ,Σ ) ∈ G

acc(x, γ ) =

∫
Rd

α(x, y)qγ (x − y)dy ≤

∫
B(x,diam(X))

qγ (z)dz

≤

∫
B(x,diam(X))

sup
Σ∈Cζ

q(s,Σ )(z)dz ≤ c̄[φ(s)]−d
∫

B(0,diam(X))

dz

by (18) in Lemma 15. We may choose a to be sufficiently large so that acc(x, γ ) ≤ α∗/2
whenever s ≥ a. That is, (21) holds with b = −α∗/2 < 0, whenever Sn ≥ a. �

Next, we shall consider the case Sn small, simultaneously for both cases where π is compactly
supported and π has a super-exponential tail.

Proposition 17. Suppose that there is a t0 > 0 such that L t0 := {y ∈ Rd
: π(y) ≥ t0} is

compact and π is continuous on L t0 . Moreover, suppose that the sets in the collection {L t }0<t≤t0
have uniformly continuous normals (Definition 6) and q satisfies Assumption 2. Then, for any
α∗ < 1/2, there are a ∈ R and b > 0 such that

E[H(Xn, Yn+1) | Fn] ≥ b whenever Sn ≤ a. (22)

Before giving the proof of Proposition 17, let us outline the simple intuition behind it. For
all s small enough and for any Σ ∈ Cζ , the mass of q(s,Σ ) is essentially concentrated on a
small ball B(0, ϵ). If one looks the target π only on B(x, ϵ), there are, roughly speaking, two
alternatives. The first one is that π is approximately constant on that small ball and acc(x, γ ) ≈ 1.
The second alternative is that π decreases very rapidly to one direction, in which case the set
{y : π(y) ≥ π(x)} looks like a half-space on the ball B(x, ϵ), and consequently acc(x, γ ) & 1/2.

Before the proof, we shall formulate a lemma on this ‘half-space approximation.’

Lemma 18. Suppose that the sets {Ai }i∈I with Ai ⊂ Rd have uniformly continuous
normals (Definition 6). Then, for any ϵ > 0, there is a δ > 0 such that for any i ∈ I , any
x ∈ Ai and any r ∈ (0, δ], there is a half-space T such that B(x, r) ∩ T ⊂ B(x, r) ∩ Ai , and
the distance d(x, T ) ≤ ϵr .

The claim is geometrically evident. The technical verification is given in Appendix A.

Proof of Proposition 17. Fix an ϵ∗
∈ (0, 1) and let M = M(ϵ∗) be the constant from Lemma 15

applied with ϵ = ϵ∗.
By compactness of L t0 and continuity of π one can find δ1 > 0 such that for all x, y ∈ L t0

with ‖x − y‖ ≤ δ1, it holds that | log π(x) − log π(y)| ≤ ϵ∗ so that

1 − α(x, y) = e0
− emin{0,log π(y)−log π(x)}

≤ | log π(y) − log π(x)| ≤ ϵ∗.

Let δ2 > 0 be sufficiently small to satisfy Lemma 18 with the choice ϵ = M−2.
Choose a small enough a ∈ R so that 2φ(a)M ≤ min{δ1, δ2}. Let s ≤ a, denote rs := φ(s)M ,

and write for any x ∈ L t0∫
X

α(x, y)qγ (x − y)dy ≥

∫
B(x,rs )∩L t0

α(x, y)qγ (x − y)dy

≥ (1 − ϵ∗)

∫
B(x,rs )∩L t0

qγ (x − y)dy
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since 2rs ≤ δ1. Denote by T the half-space from Lemma 18, such that B(x, rs) ∩ T ⊂

B(x, rs) ∩ L t0 and the distance d(x, T ) ≤ M−2rs . One obtains∫
X

α(x, y)qγ (x − y)dy ≥ (1 − ϵ∗)

∫
B(x,rs )∩T

qγ (x − y)dy

≥ (1 − ϵ∗)

∫
B(x,rs )∩T̃

qγ (x − y)dy

−

∫
{d(y,P)≤M−2rs }

qγ (x − y)dy

≥
1
2
(1 − ϵ∗)2

− ϵ∗

where T̃ is the half-space with the boundary plane P parallel to the boundary of T , and passing
through x . Lemma 15 yields the last inequality, specifically (19) with the symmetry of qγ and
(20). The same estimate clearly holds for any x ∈ L t with t ∈ (0, t0).

To conclude, for any α∗ < 1/2 one can choose a sufficiently small ϵ∗
= ϵ∗(α∗) > 0 such that

for all x ∈ X and for any γ = (s, µ,Σ ) with s ≤ a

acc(x, γ ) =

∫
X

α(x, y)qγ (x − y)dy ≥
1
2

−
1
2


1
2

− α∗


.

This implies (22) with b = (1/2 − α∗)/2 > 0. �

As an easy corollary of the propositions above, one establishes the stability of the adaptive
scaling process on the case of compactly supported π .

Corollary 19. Suppose q and (ηn)n≥2 satisfy Assumptions 2 and 3, respectively, π has a compact
support X ⊂ Rd and π is continuous, bounded and bounded away from zero on X. Moreover,
assume that X has a uniformly continuous normal (Definition 6). Then, for the general adaptive
scaling process in Section 3 with any α∗

∈ (0, 1
2 ) there exist a.s. finite random variables A1 and

A2 such that for all n ≥ 1

A1 ≤ Sn ≤ A2. (23)

Proof. The conditions of Propositions 16 and 17 are satisfied, so there are constants −∞ < a1 <

a2 < ∞ and b < 0 such that

E[H(Xn, Yn+1) | Fn] ≤ b whenever Sn ≥ a2,

E[H(Xn, Yn+1) | Fn] ≥ −b whenever Sn ≤ a1.

Theorem 14 can be applied to −Sn and Sn , since by the boundedness of H (16) is implied
by
∑

η2
n < ∞. Theorem 14 guarantees that a1 ≤ lim infn→∞ Sn and lim supn→∞ Sn ≤ a2,

respectively, from which one obtains a.s. finite A1 and A2 for which (23) holds. �

The rest of this section considers targets π with an unbounded support. Under a suitably
regular π , it is shown that the growth of Sn can be controlled. The following estimate for the at
most polynomial growth of φ(Sn) is crucial for the ergodicity result in Theorem 9.

Proposition 20. Suppose π fulfils Assumption 8 and there is a t0 > 0 such that the collection
of contour sets {x ∈ Rd

: π(x) ≥ t}0<t≤t0 have uniformly continuous normals (Definition 6).
Suppose also that φ, q and (ηn)n≥2 satisfy Assumptions 1, 2 and 3, respectively. Then, for the
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general adaptive scaling process in Section 3 with α∗
∈ (0, 1

2 ), and for any β > 0, there exist an
a.s. positive Θ1 = Θ1(ω) and an a.s. finite Θ2 = Θ2(ω, β) such that for all n ≥ 1

Θ1 ≤ φ(Sn) ≤ Θ2nβ .

Before the proof, let us consider an estimate of acc(x, (s, µ,Σ )) depending on both x and s.

Lemma 21. Assume q satisfies Assumption 2 and π satisfies Assumption 8. Then, for any ϵ > 0,
there is a constant c = c(ϵ) ≥ 1 such that acc(x, (s, µ,Σ )) ≤ ϵ for all φ(s) ≥ c max{1, ‖x‖}.

Proof. Let r1 ≥ 1 be sufficiently large so that for some ν > 0 it holds that x
‖x‖

·
∇π(x)

‖∇π(x)‖
< −ν

and x
‖x‖ρ · ∇ log π(x) < −ν for all ‖x‖ ≥ r1. Increase r1, if necessary, so that for any ‖x‖ ≥ r1

one can write Lπ(x) = {y : π(y) ≥ π(x)} = {ru : u ∈ Sd , 0 ≤ r ≤ g(u)} where
Sd

:= {u ∈ Rd
: ‖u‖ = 1} is the unit sphere and the function g : Sd

→ (0, ∞) parametrises
the boundary of Lπ(x). Notice also that the contour normal condition implies the existence of an
M ≥ 1 such that Lπ(x) ⊂ B(0, M‖x‖) for all ‖x‖ ≥ r1 (see [21, Lemma 22]).

Write for ‖x‖ ≥ r2 := Mr1 and denoting Tx := {d(y, Lπ(x)) > ‖x‖}

acc(x, γ ) =

∫
Rd

α(x, y)qγ (x − y)dy

≤

∫
Rd\Tx

qγ (x − y)dy + sup
y∈Rd

qγ (x − y)

∫
Tx

α(x, y)dy.

The first term can be estimated from above by (18) of Lemma 15∫
B(0,M‖x‖+‖x‖)

qγ (x − y)dy ≤ c̄[φ(s)]−d
∫

B(0,(M+1)‖x‖)

dz ≤ c1[φ(s)]−d
‖x‖

d
≤

ϵ

2

whenever φ(s) ≥ (c12/ϵ)1/d
‖x‖.

For the integral in the latter term, we use polar integration to estimate∫
Tx

α(x, y)dy ≤ cd sup
u∈Sd

∫
∞

r>g(u)+‖x‖

rd−1elog π(ru)−log π(g(u)u)dr

where cd is the surface measure of the sphere Sd . Since ‖x‖ ≥ r2, one has that g(u) ≥ r1 ≥ 1,
and from the gradient decay condition, one obtains that for r > g(u) + 1

log π(ru) − log π(g(u)u) =

∫ r

g(u)

tu

‖tu‖
· ∇ log π(tu)dt ≤ −ν

∫ r

g(u)

tρ−1dt

≤ −νg(u)ρ−1
[r − g(u)]

from which∫
∞

r>g(u)+‖x‖

rd−1elog π(ru)−log π(g(u)u)dr ≤

∫
∞

0
e−

νw
2 dw sup

r>g(u)+‖x‖

rd−1e−
ν
2 g(u)ρ−1

[r−g(u)].

Consequently,∫
Tx

α(x, y)dy ≤ cd
2
ν

sup
g̃≥1, r̃>1

exp

(d − 1) log(g̃ + r̃) −

ν

2
g̃ρ−1r̃


≤ c2

with a finite constant c2 whenever ‖x‖ ≥ r2.
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To sum up, there is a c3 > 0 such that for any ‖x‖ ≥ r2 and any s satisfying

φ(s) ≥ c3 max{1, ‖x‖} ≥ max


2c1

ϵ

1/d

‖x‖,


2c̄c2

ϵ

1/d


,

it holds that acc(x, (s, µ,Σ )) ≤ ϵ. For any ‖x‖ < r2 there is a r2 ≤ ‖x0‖ ≤ Mr2 such that
π(x0) ≤ π(x). Consequently, α(x, y) ≤ α(x0, y) for all y ∈ Rd and therefore

acc(x, γ ) ≤

∫
Rd

α(x0, y)qγ (x − y)dy

≤

∫
Rd\Tx0

qγ (x − y)dy + sup
y∈Rd

qγ (x − y)

∫
Tx0

α(x0, y)dy.

Repeating the arguments above, there is a finite constant c4 such that acc(x, (s, µ,Σ )) ≤ ϵ for
all (µ,Σ ) ∈ Sζ and for all s ∈ R such that φ(s) ≥ c4 max{1, ‖x‖}. �

Having Lemma 21 and the lower bound from Proposition 17, the proof of Proposition 20 can be
obtained by applying the growth condition on ‖Xn‖ established in [21].

Proof of Proposition 20. Proposition 17 applied with Theorem 14 for −Sn gives an a.s. finite
A1 such that A1 ≤ Sn for all n ≥ 1. The random variable Θ1 := φ(A1) is a.s. positive, showing
the lower bound.

To check the polynomial growth condition for φ(Sn), it is first verified that ‖Xn‖ grows
at most polynomially. Fix an ϵ > 0 and let θ1 = θ1(ϵ) > 0 and a1 = a1(ϵ) ∈ R be
such that θ1 = φ(a1), and that P(B1) ≥ 1 − ϵ, with B1 := {Θ1 ≥ θ1} = {A1 ≥ a1}.
Let V (x) := cππ−1/2(x), where the constant cπ := [supx π(x)]1/2 ensures that V ≥ 1.
Proposition 25 in Appendix B shows that the drift inequality

P(s,Σ )V (x) ≤ V (x) + b (24)

holds for all Σ ∈ Cd and φ(s) ≥ θ1 > 0 with some b = b(θ1) < ∞. Construct an auxiliary
process (X ′

n,Γ ′
n)n≥1 coinciding with (Xn,Γn)n≥1 in B1 by setting (X ′

n,Γ ′
n) = (Xτn ,Γτn ) where

the stopping times τn are defined as

τn :=


n, if φ(Sk) ≥ θ1 for all 1 ≤ k ≤ n
inf{1 ≤ k ≤ n − 1 : φ(Sk+1) < θ1}, otherwise.

Having the inequality (24), set β ′
= κ−1β where the constant κ ≥ 1 is from Assumption 1

and use Proposition 7 of [21] to obtain the bound ‖X ′
n‖ ≤ Θϵnβ ′

for some a.s. finite Θϵ . The
ϵ > 0 was arbitrary, so one can let ϵ → 0 and obtain an a.s. finite Θ such that ‖Xn‖ ≤ Θnβ ′

.
Applying Lemma 21, one obtains that acc(Xn, (Sn,Σn)) ≤ α∗/2 whenever φ(Sn) ≥ Θ ′nβ ′

with
Θ ′

:= c1 max{1,Θ}.
Fix again an ϵ > 0 and let θ2 = θ2(ϵ) < ∞ be such that P(B2) ≥ 1 − ϵ where

B2 := {Θ ′
≤ θ2}. Construct an auxiliary process (X ′

n, S′
n)n≥1 coinciding with (Xn, Sn)n≥1 in B2

by stopping the process if φ(Sk) > θ2kβ ′

as in the construction above. Theorem 14 ensures that

lim sup
n→∞

[S′
n − ãn] ≤ 0

where ãn are defined so that φ(ãn) = θ2nβ ′

. That is, S′
n ≤ ãn + En with En → 0 almost

surely. Consider Assumption 1 and take N0 so large that En < h for all n ≥ N0. Then,
φ(x + h) = φ(x) + hφ′(x + h̄) for some 0 ≤ h̄ ≤ h, and hence φ(x + h) ≤ c2 max{1, φ(x)κ}.
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For n ≥ N0, one has

φ(S′
n) ≤ φ(ãn + En) ≤ c2 max{1, φ(ãn)κ} = c2 max{1, θκ

2 nκβ ′

} ≤ θ ′

2nβ

for some finite θ ′

2. Summing up, there is an a.s. finite Θ ′

2 such that

φ(S′
n) ≤ Θ ′

2nβ

on B2. Finally, letting ϵ → 0, one can find an a.s. finite Θ2 such that φ(Sn) ≤ Θ2nβ . �

5. Ergodicity

Section 4 established stability or controlled growth for the adaptive scaling process of
Section 3. This section employs these results to prove strong laws of large numbers in Theorems 7
and 9 for the ASM and the ASWAM processes defined in Section 2, relying on the results
introduced in [21]. For this purpose, consider the following theoretical adaptation framework
introduced in [21] using a sequence of restriction sets K1 ⊂ K2 ⊂ · · · ⊂ Kn ⊂ · · · ⊂ G.

Assume (X̃n, Ỹn, Γ̃n)n≥1 follow the general adaptation framework as described in Section 3.
Assume Γ̃1 ≡ γ̃1 ∈ K1 and instead of (13) let (Γ̃n)n≥1 follow the ‘truncated’ recursion

Γ̃n+1 = σKn+1(Γ̃n, ηn+1 Ĥ(X̃n, Ỹn+1)) (25)

where the restriction function σK : G × Ḡ → G is defined as

σK (γ, γ ′) :=


γ + γ ′, if γ + γ ′

∈ K
γ, otherwise,

Ḡ := R × Rd
× Rd×d

⊃ G and the function Ĥ : G × X2
→ Ḡ is defined as

Ĥ((s, µ,Σ ), x, y) =

 H(x, y)

x − µ

(x − µ)(x − µ)T
− Σ

 .

That is, σKn ensures that Γ̃n ∈ Kn for all n ≥ 1. Observe that such a ‘truncated process’
can be constructed using an ‘original process’ (Xn,Γn)n≥1 from Section 3 and the random
variables (Yn, Un)n≥2 following (12) and (13), so that the two processes coincide in the set
∩

∞

n=1{Γn ∈ Kn}.
Before stating the ergodicity result from [21] for this truncated chain, four technical

assumptions are listed, which must hold for some constants c ≥ 1 and β ≥ 0 and ι ∈ (0, 1
2 ).

(A1) For all measurable A ⊂ X, it holds that P(X̃n+1 ∈ A | Fn) = PΓ̃n
(X̃n, A) almost surely,

and for each γ ∈ G, the transition probability Pγ has π as the unique invariant distribution.
(A2) For each n ≥ 1, the following uniform drift and minorisation conditions hold for all

γ ∈ Kn , for all x ∈ X and all measurable A ⊂ X
Pγ V (x) ≤ λn V (x) + bn1Cn (x)

Pγ (x, A) ≥ δn1Cn (x)νγ (A)

where Cn ⊂ X is a subset (a minorisation set), V : X → [1, ∞) is a drift function such that
supx∈Cn

V (x) ≤ bn and νγ is a probability measure on X concentrated on Cn . Furthermore,
the constants λn ∈ (0, 1) and bn ∈ (0, ∞) are increasing, δn ∈ (0, 1] is decreasing with
respect to n and they are polynomially bounded so that

max{(1 − λn)−1, δ−1
n , bn} ≤ cnβ .
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(A3) For all n ≥ 1 and any r ∈ (0, 1], there is c′
= c′(r) ≥ 1 such that for all γ and γ ′ in Kn ,

‖Pγ f − Pγ ′ f ‖V r ≤ c′nβ
‖ f ‖V r |γ − γ ′

|

with the norm on the space Ḡ defined as |γ | = |(s, µ,Σ )| = |s| + ‖µ‖ + ‖Σ‖.
(A4) The inequality |Ĥ(γ, x, y)| ≤ cnβ V ι(x) holds for all γ ∈ Kn and all x, y ∈ X.

Theorem 22. Assume (A1)–(A4) hold and let f be a function with ‖ f ‖V τ < ∞ for some
τ ∈ (0, 1 − ι). Assume β < κ−1

∗ min{1/2, 1 − ι − τ } and
∑

∞

k=1 kκ∗β−1ηk < ∞ where κ∗ ≥ 1 is
an independent constant. Then,

1
n

n−
k=1

f (X̃k)
n→∞
−−−→

∫
X

f (x)π(x)dx almost surely. (26)

Proof. This theorem is a straightforward modification of Theorem 2 in [21]. In particular, the
assumption (A4) here is only slightly more general than assumption (A4) in [21] and the changes
required for the proof are obvious. �

Now we are ready to give a proof to the first main result considering the case of compactly
supported π .

Proof of Theorem 7. Corollary 19 ensures that for any ϵ > 0, there are −∞ < a(ϵ)
1 < a(ϵ)

2 < ∞

such that P(B(ϵ)) ≥ 1 − ϵ, where

B(ϵ)
:= {a(ϵ)

1 ≤ Sn ≤ a(ϵ)
2 for all n ≥ 1}.

Set K (ϵ)
n := K (ϵ)

:= [a(ϵ)
1 , a(ϵ)

2 ] × Sζ for all n ≥ 1, and construct the truncated process

(X̃ (ϵ)
n , Γ̃ (ϵ)

n ) using these restriction sets in (25). Define θ
(ϵ)
1 := φ(a(ϵ)

1 ) > 0 and θ
(ϵ)
2 := φ(a(ϵ)

2 )

< ∞.
Let us next verify the above assumptions (A1)–(A4) with some c ≥ 1, β = 0 and V ≡ 1. The

assumption (A1) holds by construction of the process and the Metropolis kernel. For (A2), take
Cn := X for all n ≥ 1, and notice that Pγ V (x) = 1 for all x ∈ X and γ ∈ G. By Assumption 2
one can estimate for all γ ∈ K (ϵ) and all x ∈ X,

Pγ (x, A) ≥

∫
A

α(x, y)qγ (x − y)dy

≥


inf

x,y∈X, γ∈K (ϵ)
qγ (x − y)

∫
A

π(y)

sup
z∈X

π(z)
dy

≥ θ−d
2 ζ−1/2


inf

|z|≤diam(X)
q̂(‖θ−1

1 ζ 1/2z‖)


c1νγ (A) ≥ δνγ (A)

with a δ > 0, where νγ (A) := ν(A) := c−1
1


A

π(y)
supz∈X π(z)dy and c1 > 0 chosen so that ν(X) = 1.

Assumption 1 ensures that the derivative of φ is bounded on [a(ϵ)
1 , a(ϵ)

2 ] and therefore we
have

‖φ(s)Σ 1/2
− φ(s′)Σ ′

1/2
‖ ≤ ‖Σ‖ · |φ(s) − φ(s′)| + |φ(s)| · ‖Σ − Σ ′

‖ ≤ c2|γ − γ ′
|
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with some finite c2 = c2(ϵ) and Proposition 26 in Appendix B implies (A3). Finally, it holds that
|H(γ, x, y)| ≤ c for all γ ∈ Kn and x, y ∈ X, implying (A4).

All (A1)–(A4) hold and
∑

∞

k=1 k−1ηk ≤ (
∑

∞

k=1 k−2)1/2(
∑

∞

k=1 η2
k )

1/2 < ∞ by Assumption 3,

so Theorem 22 yields a strong law of large numbers for the truncated process X̃ (ϵ)
n in case of a

bounded function f . Since (X̃ (ϵ)
n )n≥1 coincides with the original process (Xn)n≥1 in B(ϵ), the

ergodic averages corresponding to Xn(ω) converge to


f (x)π(x)dx with almost every ω ∈ B(ϵ).
Since ϵ > 0 was arbitrary, the strong law of large numbers (8) holds almost surely. �

Remark 23. Theorem 22 (Theorem 2 of [21]) is a modification of Proposition 6 in [1]. Having
Corollary 19 ensuring the boundedness of the trajectories of Sn , Theorem 7 could be obtained
also using other techniques, in particular, the mixingale approach described in [6,11], or the
coupling technique of [19] (resulting in a weak law of large numbers). These other techniques
do not, however, apply directly to Theorem 9, since in this case the trajectories of Sn are not
necessarily bounded from above, but only satisfy the polynomial bound of Proposition 20.

Proof of Theorem 9. Proposition 20 ensures that for any β ′ > 0 there are a.s. positive Θ1 and
a.s. finite Θ2 such that

Θ1 ≤ φ(Sn) ≤ Θ2nβ ′

. (27)

Now, similarly as in the proof of Theorem 7, for any ϵ > 0, one can find 0 < θ
(ϵ)
1 ≤ θ

(ϵ)
2 < ∞

such that

P(∀n ≥ 1 : θ
(ϵ)
1 ≤ φ(Sn) ≤ θ

(ϵ)
2 nβ ′

) ≥ 1 − ϵ (28)

and construct (X̃ (ϵ)
n , S̃(ϵ)

n )n≥1 using the restriction sets K (ϵ)
n := [a(ϵ)

1 , a(n,ϵ)
2 ], where φ(a(ϵ)

1 ) =

θ
(ϵ)
1 and φ(a(ϵ,n)

2 ) = θ
(ϵ)
2 nβ ′

.
Let ξ ∈ (p, 1) and let V (x) := cV π−ξ (x) with cV := supx π ξ (x). Assumption (A1)

holds by construction and (A4) holds for any given ι ∈ (0, 1 − ξ) as verified in the proof of
Theorem 10 in [21], observing that |H(x, y)| ≤ 1. Proposition 25 in Appendix B with the fact
det(θΣ ) = θd det(Σ ) yields (A2) with β = dβ ′. Assumption 1 ensures that φ′(s) ≤ c1φ

κ(s)
for all s ∈ R, from which |φ(s) − φ(s′)| ≤ c1(θ

(ϵ)
2 nβ ′

)κ |s − s′
| ≤ c2nκβ ′

|s − s′
| for all

s, s′
∈ [a(ϵ)

1 , a(n,ϵ)
2 ]. Now, Proposition 26 in Appendix B shows (A3) with β = c3β

′ as in the
proof of Theorem 7. To conclude, the assumptions (A1)–(A4) hold with constants (c, β), where
β = β(ϵ, β ′) > 0 can be selected to be arbitrarily small and c = c(ϵ, β) < ∞.

In particular, one can let β < 1/2κ−1
∗ , so that

∑
∞

k=1 kκ∗β−1ηk < ∞ as in the proof of
Theorem 7. Take now τ = p/ξ ∈ (0, 1) so that | f (x)|/V τ (x) = cτ

V | f (x)|π p(x), implying
that ‖ f ‖V τ < ∞. Theorem 22 guarantees that the strong law of large numbers holds in the set
(28), and a.s. by letting ϵ → 0. �
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Appendix A. Proofs of geometric lemmas

Proof of Lemma 15. Let Σ ∈ Sζ with ζ ∈ [1, ∞), that is, the set of eigenvalues satisfy
λ(Σ ) ⊂ [ζ−1, ζ ]. Then ζ−d

≤ det(Σ ) ≤ ζ d and the claim (18) follows by

sup
Σ∈Sζ , z∈Rd

q(s,Σ )(z) ≤ [φ(s)]−dζ d/2 sup
z∈Rd

q(z).

Observe then that for any constant M > 0 one has∫
B(0,φ(s)M)

[φ(s)]−d det(Σ )−1/2q([φ(s)]−1Σ−1/2z)dz ≥

∫
B(0,ζ−1/2 M)

q(u)du

since u ∈ B(0, ξ−1/2 M) implies that [φ(s)]Σ 1/2u ∈ B(0, φ(s)M). Clearly M can be chosen
sufficiently large so that (19) holds.

Let then P ⊂ Rd be a plane, and let z ∈ Rd such that d(z, P) ≤ φ(s)M−1. Denote by z∗ the
orthogonal projection of z to P , whence ‖z∗

−z‖ ≤ φ(s)M−1. Denote then u = [φ(s)]−1Σ−1/2z
and u∗

= [φ(s)]−1Σ−1/2z∗. We obtain that

‖u − u∗
‖ ≤ [φ(s)]−1ζ 1/2

‖z − z∗
‖ ≤ ζ 1/2 M−1.

Having this estimate, we can estimate∫
{d(z,P)≤φ(s)M−1}

q(s,Σ )(z)dz ≤

∫
{d(u,P̃)≤ζ 1/2 M−1}

q(u)du

where P̃ = [φ(s)]−1Σ−1/2 P is a plane. To conclude, we may choose M sufficiently large so
that (20) and (19) hold. �

Proof of Lemma 18. Fix an ϵ′ > 0. By the uniform smoothness of {∂ Ai }i∈I , one can find δ > 0
so that ‖ni (y) − ni (z)‖ ≤ ϵ′ for all i ∈ I and y, z ∈ ∂ Ai with ‖y − z‖ ≤ 2δ.

Fix an i ∈ I , an x ∈ Ai and a r ∈ [0, δ]. If B(x, r) \ Ai = ∅, one can let T be any
half-space passing through x . Suppose for the rest of the proof that B(x, r) \ Ai ≠ ∅ and let
y ∈ B(x, r) ∩ ∂ Ai . Consider the open cones

C− := {y + z : ni (y) · z < −ϵ′
‖z‖}

C+ := {y + z : ni (y) · z > ϵ′
‖z‖}

illustrated in Fig. A.1. We shall verify that B(y, 2δ)∩C− ⊂ B(y, 2δ)∩ Ai and B(y, 2δ)∩C+ ⊂

B(y, 2δ) \ Ai .
Namely, let u ∈ B(y, 2δ) ∩ C− and write u = y + z. Suppose that u ∉ Ai and define

t0 := inf{t ∈ [0, 1] : y + t z ∉ Ai }. Let u0 := y + t0z and notice that u0 ∈ B(y, 2δ) ∩ ∂ Ai .
Moreover, the line segment y + t z with t ∈ [0, 1] passes through ∂ Ai at u0 and therefore
ni (u0) · z ≥ 0, since ni is the outer-pointing normal of Ai . On the other hand,

ni (u0) ·
z

‖z‖
= (ni (u0) − ni (y)) ·

z

‖z‖
+ ni (y) ·

z

‖z‖

< ‖ni (u0) − ni (y)‖ − ϵ′ < 0,

which is a contradiction, implying C− ∩ B(y, 2δ) ⊂ Ai ∩ B(y, 2δ). The case with C+ is verified
similarly.

Let us define the half-space T := {y − 2ϵ′rni (y) + z : z · ni (y) < 0}. It holds that
B(y, 2r) ∩ T ⊂ B(y, 2r) ∩ C− since taking y + w ∈ B(y, 2r) ∩ T one has ni (y) · w <
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Fig. A.1. Illustration of the half-space approximation. The set Ai is shown in light grey, and the cones C− and C+ in
dark grey.

−2ϵ′r ≤ −ϵ′
‖w‖. On the other hand, B(y, 2r) ∩ C− ⊂ B(y, 2r) ∩ Ai and B(x, r) ⊂ B(y, 2r),

so B(x, r) ∩ T ⊂ B(x, r) ∩ Ai . Clearly, d(y, T ) = 2ϵ′r , and since x ∉ C+ one has
ni (y) · (x − y) ≤ ϵ′

‖x − y‖ ≤ ϵ′r . To conclude, d(x, T ) ≤ 3ϵ′r , and taking ϵ′
= ϵ/3 yields the

claim. �

Appendix B. Simultaneous properties for Metropolis kernels

We shall consider here the following general assumption on the proposal densities.

Assumption 24. Let Cd ⊂ Rd×d stand for the symmetric and positive definite matrices. Suppose
P ⊂ Cd and {qR}R∈P is a family of probability densities defined through

qR(z) := | det(R)|−1q̂(‖R−1z‖), (B.1)

where q̂ : [0, ∞) → (0, ∞) is a bounded, decreasing, and differentiable function, satisfying the
conditions in Assumption 2. Moreover, suppose that there is a constant κ > 0 such that all the
eigenvalues of each R ∈ P are bounded from below by κ .

Proposition 25. Suppose π satisfies Assumption 8 and the family {qR}R∈P satisfies Assump-
tion 24 with some κ > 0 and β ∈ (0, 1). Let PR be the Metropolis transition probability defined
in (15) and using the proposal density qR . Then, there exists a compact set C ⊂ Rd , a probability
measure ν on C and a constant b ∈ [0, ∞) such that for all R ∈ P , x ∈ Rd and measurable
A ⊂ Rd ,

PR V (x) ≤ λR V (x) + b1C (x) (B.2)

PR(x, A) ≥ δR1C (x)ν(A) (B.3)

where V (x) := cV π−β(x) ≥ 1 with cV := supx πβ(x) and the constants λR, δR ∈ (0, 1) satisfy
the bound

max{(1 − λR)−1, δ−1
R } ≤ c| det(R)|−1

for some constant c ≥ 1.



M. Vihola / Stochastic Processes and their Applications 121 (2011) 2839–2860 2857

Proof. Proposition 25 is a generalisation of [21, Proposition 15] considering Gaussian densities
qR and the case β = 1/2. We shall describe the changes in the proof of [21, Proposition 15]
required for the class of proposal distributions in Assumption 24.

First, observe that with V (x) = cV π−β(x) one has

1 −
PR V (x)

V (x)
=

∫
Ax


1 −


π(x)

π(y)

β


qR(y − x)dy

−

∫
Rx


π(y)

π(x)

1−β


1 −


π(y)

π(x)

β


qR(y − x)dy.

The 1/4 in the estimate (37) of [21] is replaced with c∗ = supu∈[0,1] u1−β(1 − uβ) ∈ (0, 1). One
can easily make 1 − (π(x)/π(y))β > c∗ for all y ∈ Ãx , where c∗ is any chosen value in (c∗, 1).

For a non-negative function f , one can write by Fubini’s theorem∫
Rd

f (z + x)qR(z)dz = | det(R)|−1
∫ q̂(0)

0

∫
{q̂(‖R−1z‖)≥t}

f (z + x)dzdt

= −| det(R)|−1
∫

∞

0

∫
Eu

f (y)dyq̂ ′(u)du

where the substitution t = q̂(u) was used, and Eu := {x + z : ‖R−1z‖ ≤ u}. One has
‖R−1z‖ ≤ κ−1

‖z‖, and thus Eu ⊃ B(x, uκ).
The conditions in Assumption 2 for the derivative q̂ ′ correspond to the estimate obtained

in [21, Lemma 14] for a Gaussian family, that is, q̂ = e−x2/2 and the case ξ = 1/2. In
the present case, the choice ξ = c∗/c∗ is used. These facts are enough to complete the proof
of [21, Proposition 15] to yield the claim. �

Proposition 26. Suppose the family {qR}R∈P satisfies Assumption 24 with some κ > 0. Suppose,
in addition, that either

(i) V ≡ 1 or
(ii) π satisfies Assumption 8 and β ∈ (0, 1), V (x) := cV π−β(x) ≥ 1 with cV := supx πβ(x).

Then, there is a constant c > 0 such that for the Metropolis transition probability PR given
in (15), it holds that

‖PR f − PR′ f ‖V r ≤ c max{‖R‖, ‖R′
‖}

d+1
‖ f ‖V r ‖R − R′

‖ (B.4)

for all R, R′
∈ P and r ∈ [0, 1]. The matrix norm above is the Frobenius norm defined as

‖R‖ :=


tr(RT R).

Proof. Consider first (i). From the definition of the Metropolis kernel (15), one obtains

sup
x

|PR f (x) − PR′ f (x)| ≤ 2 sup
x

| f (x)|

∫
X

|qR(x) − qR′(x)|dx .

For (ii), Proposition 12 of [1] shows that for any r ∈ [0, 1] it holds that

‖PR f − PR′ f ‖V r ≤ 2‖ f ‖V r

∫
Rd

|qR(x) − qR′(x)|dx

so it is sufficient to consider only the total variation of the proposal distributions.



2858 M. Vihola / Stochastic Processes and their Applications 121 (2011) 2839–2860

As in [1,11], one can write∫
X

|qR(x) − qR′(x)|dx =

∫
X


∫ 1

0

d
dt

qRt (x)dt

 dx

where Rt := R′
+ t (R − R′). Let us compute

d
dt

qRt (x) = −tr

R−1

t (R − R′)

qRt (x) + | det(Rt )|

−1q̂ ′(‖R−1
t x‖)

d
dt

‖R−1
t x‖

and

d
dt

‖R−1
t x‖ = −


R−1

t x

‖R−1
t x‖

T

R−1
t (R − R′)R−1

t x .

Since R − R′ and R−1
t are symmetric and R−1

t positive definite, it holds that |tr(R−1
t (R − R′))| ≤

tr(R−1
t ) max1≤i≤d |λi | ≤ tr(R−1

t )‖R−R′
‖ where λi are the eigenvalues of R−R′ (see, e.g, [24]).

Since the Frobenius norm is sub-multiplicative,∫
X

|qR(x) − qR′(x)|dx

≤ sup
t∈[0,1]


tr(R−1

t ) + | det(Rt )|
−1

‖R−1
t ‖

2
∫
X

‖x‖
q̂ ′(‖R−1

t x‖)
dx


‖R − R′

‖

≤


dκ−1

+ dκ−d−2cd sup
‖u‖=1, t∈[0,1]

∫
∞

0
rd

|q̂ ′(r‖R−1
t u‖)|dr


‖R − R′

‖

by polar integration. Denote λ = λ(u, t) := ‖R−1
t u‖, and observe that since q̂ is decreasing,

integration by parts yields∫ M

0
rd

|q̂ ′(λr)|dr =
d

λ

∫ M

0
rd−1q̂(λr)dr − Md q̂(λM)

λ

≤
d

λd+1

∫
∞

0
ud−1q̂(u)du =

dcq̂

λd+1

for all M > 0. Since λ−1 is smaller, for any ‖u‖ = 1 and t ∈ [0, 1], than the maximum eigenvalue
of R and R′, which is smaller than max{‖R‖, ‖R′

‖}, we obtain∫
Rd

|qR(x) − qR′(x)|dx ≤ c1 max{‖R‖, ‖R′
‖}

d+1
‖R − R′

‖

concluding the proof with c = 2c1. �

Proposition 27. Suppose the proposal density q is given as q(z) = cq̃(‖z‖) where c > 0 is a
constant and

(i) q̃(x) = e−x2/2, or
(ii) q̃(x) = (1 + x2)−d/2−p for some p > 0.

That is, q is a (multivariate) Gaussian or Student distribution, respectively. Then, q satisfies
Assumption 2.
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Proof. It is sufficient to verify that the derivative of q̃ satisfies the conditions in Assumption 2.
Fix ξ ∈ (0, 1) and assume ϵ > 0. Consider first (i), in which case

ξ q̃ ′(x) − q̃ ′(x + ϵ) = (x + ϵ)e−(x+ϵ)2/2
− ξ xe−x2/2

≥ xe−x2/2
[e−ϵx−ϵ2/2

− ξ ] > 0

if and only if x < xϵ := −
ϵ
2 −

log ξ
ϵ

. Let ϵ∗ ∈ (0, 1) be small enough so that xϵ > 0 for all
ϵ ∈ (0, ϵ∗], from which one obtains c1 > 0 and 0 ≤ a < b < ∞ such that ξ q̃ ′(x)−q̃ ′(x+ϵ) ≥ c1
for all x ∈ [a, b] and all ϵ ∈ [0, ϵ∗]. Moreover, for all ϵ ∈ (0, ϵ∗)∫

∞

0
min{0, ξ q̃ ′(x) − q̃ ′(x + ϵ)}dx ≥

∫
∞

xϵ

xe−x2/2
[e−ϵx−ϵ2/2

− ξ ]dx ≥ −ξe−x2
ϵ /2

= −ξe−ϵ2/8−log(ξ)/2e−(log ξ)2ϵ−2/2
≥ −c2e−c3ϵ

−1

with c2 = ξe− log(ξ)/2 and c3 = (log ξ)2/2.
Assume then (ii). By the mean value theorem, denoting c := d + 2p and α := d/2 + p + 1,

one can write for some ϵ′
∈ [0, ϵ]

ξ q̃ ′(x) − q̃ ′(x + ϵ) ≥ cx


1

(1 + (x + ϵ)2)α
−

ξ

(1 + x2)α


= cx


1 − ξ

(1 + (x + ϵ)2)α
−

2ξαϵ(x + ϵ′)

(1 + (x + ϵ′)2)α+1


≥

c(1 − ξ)x

(1 + (x + ϵ)2)α


1 −

2ξαϵ

1 − ξ


1 + (x + ϵ)2

1 + (x + ϵ′)2

α


> 0

for all x > 0, whenever ϵ > 0 is sufficiently small. The claim follows easily. �
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[2] C. Andrieu, É Moulines, P. Priouret, Stability of stochastic approximation under verifiable conditions, SIAM J.
Control Optim. 44 (2005) 283–312.

[3] C. Andrieu, C.P. Robert, Controlled MCMC for Optimal Sampling, Technical Report Ceremade 0125, Université
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